1
|
Xing P, Tang H, Tang J, Li Z. ADPS: Asymmetric Distillation Postsegmentation for Image Anomaly Detection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:7051-7064. [PMID: 38683707 DOI: 10.1109/tnnls.2024.3390806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Knowledge distillation-based anomaly detection (KDAD) methods rely on the teacher-student paradigm to detect and segment anomalous regions by contrasting the unique features extracted by both networks. However, existing KDAD methods suffer from two main limitations: 1) the student network can effortlessly replicate the teacher network's representations and 2) the features of the teacher network serve solely as a "reference standard" and are not fully leveraged. Toward this end, we depart from the established paradigm and instead propose an innovative approach called asymmetric distillation postsegmentation (ADPS). Our ADPS employs an asymmetric distillation paradigm that takes distinct forms of the same image as the input of the teacher-student networks, driving the student network to learn discriminating representations for anomalous regions. Meanwhile, a customized Weight Mask Block (WMB) is proposed to generate a coarse anomaly localization mask that transfers the distilled knowledge acquired from the asymmetric paradigm to the teacher network. Equipped with WMB, the proposed postsegmentation module (PSM) can effectively detect and segment abnormal regions with fine structures and clear boundaries. Experimental results demonstrate that the proposed ADPS outperforms the state-of-the-art methods in detecting and segmenting anomalies. Surprisingly, ADPS significantly improves average precision (AP) metric by $\mathbf {9}\%$ and $\mathbf {20}\%$ on the MVTec anomaly detection (AD) and KolektorSDD2 datasets, respectively.
Collapse
|
2
|
Tian Y, Xie L, Fang J, Jiao J, Ye Q, Tian Q. Exploring Complicated Search Spaces With Interleaving-Free Sampling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:7764-7771. [PMID: 39024083 DOI: 10.1109/tnnls.2024.3408329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Conventional neural architecture search (NAS) algorithms typically work on search spaces with short-distance node connections. We argue that such designs, though safe and stable, are obstacles to exploring more effective network architectures. In this brief, we explore the search algorithm upon a complicated search space with long-distance connections and show that existing weight-sharing search algorithms fail due to the existence of interleaved connections (ICs). Based on the observation, we present a simple-yet-effective algorithm, termed interleaving-free neural architecture search (IF-NAS). We further design a periodic sampling strategy to construct subnetworks during the search procedure, avoiding the ICs to emerge in any of them. In the proposed search space, IF-NAS outperforms both random sampling and previous weight-sharing search algorithms by significant margins. It can also be well-generalized to the microcell-based spaces. This study emphasizes the importance of macrostructure and we look forward to further efforts in this direction. The code is available at github.com/sunsmarterjie/IFNAS.
Collapse
|
3
|
Zhang Z, Lei Z, Zhou M, Hasegawa H, Gao S. Complex-Valued Convolutional Gated Recurrent Neural Network for Ultrasound Beamforming. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:5668-5679. [PMID: 38598398 DOI: 10.1109/tnnls.2024.3384314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Ultrasound detection is a potent tool for the clinical diagnosis of various diseases due to its real-time, convenient, and noninvasive qualities. Yet, existing ultrasound beamforming and related methods face a big challenge to improve both the quality and speed of imaging for the required clinical applications. The most notable characteristic of ultrasound signal data is its spatial and temporal features. Because most signals are complex-valued, directly processing them by using real-valued networks leads to phase distortion and inaccurate output. In this study, for the first time, we propose a complex-valued convolutional gated recurrent (CCGR) neural network to handle ultrasound analytic signals with the aforementioned properties. The complex-valued network operations proposed in this study improve the beamforming accuracy of complex-valued ultrasound signals over traditional real-valued methods. Further, the proposed deep integration of convolution and recurrent neural networks makes a great contribution to extracting rich and informative ultrasound signal features. Our experimental results reveal its outstanding imaging quality over existing state-of-the-art methods. More significantly, its ultrafast processing speed of only 0.07 s per image promises considerable clinical application potential. The code is available at https://github.com/zhangzm0128/CCGR.
Collapse
|
4
|
Zhu H, Liu W, Gao Z, Zhang H. Explainable Classification of Benign-Malignant Pulmonary Nodules With Neural Networks and Information Bottleneck. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:2028-2039. [PMID: 37843998 DOI: 10.1109/tnnls.2023.3303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Computerized tomography (CT) is a clinically primary technique to differentiate benign-malignant pulmonary nodules for lung cancer diagnosis. Early classification of pulmonary nodules is essential to slow down the degenerative process and reduce mortality. The interactive paradigm assisted by neural networks is considered to be an effective means for early lung cancer screening in large populations. However, some inherent characteristics of pulmonary nodules in high-resolution CT images, e.g., diverse shapes and sparse distribution over the lung fields, have been inducing inaccurate results. On the other hand, most existing methods with neural networks are dissatisfactory from a lack of transparency. In order to overcome these obstacles, a united framework is proposed, including the classification and feature visualization stages, to learn distinctive features and provide visual results. Specifically, a bilateral scheme is employed to synchronously extract and aggregate global-local features in the classification stage, where the global branch is constructed to perceive deep-level features and the local branch is built to focus on the refined details. Furthermore, an encoder is built to generate some features, and a decoder is constructed to simulate decision behavior, followed by the information bottleneck viewpoint to optimize the objective. Extensive experiments are performed to evaluate our framework on two publicly available datasets, namely, 1) the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and 2) the Lung and Colon Histopathological Image Dataset (LC25000). For instance, our framework achieves 92.98% accuracy and presents additional visualizations on the LIDC. The experiment results show that our framework can obtain outstanding performance and is effective to facilitate explainability. It also demonstrates that this united framework is a serviceable tool and further has the scalability to be introduced into clinical research.
Collapse
|
5
|
He C, Li K, Xu G, Yan J, Tang L, Zhang Y, Wang Y, Li X. HQG-Net: Unpaired Medical Image Enhancement With High-Quality Guidance. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:18404-18418. [PMID: 37796672 DOI: 10.1109/tnnls.2023.3315307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Unpaired medical image enhancement (UMIE) aims to transform a low-quality (LQ) medical image into a high-quality (HQ) one without relying on paired images for training. While most existing approaches are based on Pix2Pix/CycleGAN and are effective to some extent, they fail to explicitly use HQ information to guide the enhancement process, which can lead to undesired artifacts and structural distortions. In this article, we propose a novel UMIE approach that avoids the above limitation of existing methods by directly encoding HQ cues into the LQ enhancement process in a variational fashion and thus model the UMIE task under the joint distribution between the LQ and HQ domains. Specifically, we extract features from an HQ image and explicitly insert the features, which are expected to encode HQ cues, into the enhancement network to guide the LQ enhancement with the variational normalization module. We train the enhancement network adversarially with a discriminator to ensure the generated HQ image falls into the HQ domain. We further propose a content-aware loss to guide the enhancement process with wavelet-based pixel-level and multiencoder-based feature-level constraints. Additionally, as a key motivation for performing image enhancement is to make the enhanced images serve better for downstream tasks, we propose a bi-level learning scheme to optimize the UMIE task and downstream tasks cooperatively, helping generate HQ images both visually appealing and favorable for downstream tasks. Experiments on three medical datasets verify that our method outperforms existing techniques in terms of both enhancement quality and downstream task performance. The code and the newly collected datasets are publicly available at https://github.com/ChunmingHe/HQG-Net.
Collapse
|
6
|
Ali MJ, Essaid M, Moalic L, Idoumghar L. A review of AutoML optimization techniques for medical image applications. Comput Med Imaging Graph 2024; 118:102441. [PMID: 39489100 DOI: 10.1016/j.compmedimag.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Automatic analysis of medical images using machine learning techniques has gained significant importance over the years. A large number of approaches have been proposed for solving different medical image analysis tasks using machine learning and deep learning approaches. These approaches are quite effective thanks to their ability to analyze large volume of medical imaging data. Moreover, they can also identify patterns that may be difficult for human experts to detect. Manually designing and tuning the parameters of these algorithms is a challenging and time-consuming task. Furthermore, designing a generalized model that can handle different imaging modalities is difficult, as each modality has specific characteristics. To solve these problems and automate the whole pipeline of different medical image analysis tasks, numerous Automatic Machine Learning (AutoML) techniques have been proposed. These techniques include Hyper-parameter Optimization (HPO), Neural Architecture Search (NAS), and Automatic Data Augmentation (ADA). This study provides an overview of several AutoML-based approaches for different medical imaging tasks in terms of optimization search strategies. The usage of optimization techniques (evolutionary, gradient-based, Bayesian optimization, etc.) is of significant importance for these AutoML approaches. We comprehensively reviewed existing AutoML approaches, categorized them, and performed a detailed analysis of different proposed approaches. Furthermore, current challenges and possible future research directions are also discussed.
Collapse
Affiliation(s)
| | - Mokhtar Essaid
- Université de Haute-Alsace, IRIMAS UR7499, Mulhouse, 68100, France.
| | - Laurent Moalic
- Université de Haute-Alsace, IRIMAS UR7499, Mulhouse, 68100, France.
| | | |
Collapse
|
7
|
Zhang R, Jiao L, Wang D, Liu F, Liu X, Yang S. A Fast Evolutionary Knowledge Transfer Search for Multiscale Deep Neural Architecture. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:17450-17464. [PMID: 37610895 DOI: 10.1109/tnnls.2023.3304291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The emergence of neural architecture search (NAS) algorithms has removed the constraints on manually designed neural network architectures, so that neural network development no longer requires extensive professional knowledge, trial and error. However, the extremely high computational cost limits the development of NAS algorithms. In this article, in order to reduce computational costs and to improve the efficiency and effectiveness of evolutionary NAS (ENAS) is investigated. In this article, we present a fast ENAS framework for multiscale convolutional networks based on evolutionary knowledge transfer search (EKTS). This framework is novel, in that it combines global optimization methods with local optimization methods for search, and searches a multiscale network architecture. In this article, evolutionary computation is used as a global optimization algorithm with high robustness and wide applicability for searching neural architectures. At the same time, for fast search, we combine knowledge transfer and local fast learning to improve the search speed. In addition, we explore a multiscale gray-box structure. This gray box structure combines the Bandelet transform with convolution to improve network approximation, learning, and generalization. Finally, we compare the architectures with more than 40 different neural architectures, and the results confirmed its effectiveness.
Collapse
|
8
|
Lin Q, Tan W, Cai S, Yan B, Li J, Zhong Y. Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:11142-11156. [PMID: 37028330 DOI: 10.1109/tnnls.2023.3248804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) network for assisting early cancer diagnosis. We introduce a plug-and-play module called self-sampling similar feature disentangling module (FDM) to obtain accurate lesion boundaries. Then, we propose a feature separation loss (FSL) function to separate pathological features from normal ones. Moreover, since physicians make diagnoses with multimodal data, we propose a multimodal cooperative segmentation network with two different modal images as input: white-light images (WLIs) and narrowband images (NBIs). Our FDM and FSL show a good performance for both single-modal and multimodal segmentations. Extensive experiments on five backbones prove that our FDM and FSL can be easily applied to different backbones for a significant lesion segmentation accuracy improvement, and the maximum increase of mean Intersection over Union (mIoU) is 4.58. For colonoscopy, we can achieve up to mIoU of 91.49 on our Dataset A and 84.41 on the three public datasets. For esophagoscopy, mIoU of 64.32 is best achieved on the WLI dataset and 66.31 on the NBI dataset.
Collapse
|
9
|
Fernandes JND, Cardoso VEM, Comesaña-Campos A, Pinheira A. Comprehensive Review: Machine and Deep Learning in Brain Stroke Diagnosis. SENSORS (BASEL, SWITZERLAND) 2024; 24:4355. [PMID: 39001134 PMCID: PMC11244385 DOI: 10.3390/s24134355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Brain stroke, or a cerebrovascular accident, is a devastating medical condition that disrupts the blood supply to the brain, depriving it of oxygen and nutrients. Each year, according to the World Health Organization, 15 million people worldwide experience a stroke. This results in approximately 5 million deaths and another 5 million individuals suffering permanent disabilities. The complex interplay of various risk factors highlights the urgent need for sophisticated analytical methods to more accurately predict stroke risks and manage their outcomes. Machine learning and deep learning technologies offer promising solutions by analyzing extensive datasets including patient demographics, health records, and lifestyle choices to uncover patterns and predictors not easily discernible by humans. These technologies enable advanced data processing, analysis, and fusion techniques for a comprehensive health assessment. We conducted a comprehensive review of 25 review papers published between 2020 and 2024 on machine learning and deep learning applications in brain stroke diagnosis, focusing on classification, segmentation, and object detection. Furthermore, all these reviews explore the performance evaluation and validation of advanced sensor systems in these areas, enhancing predictive health monitoring and personalized care recommendations. Moreover, we also provide a collection of the most relevant datasets used in brain stroke analysis. The selection of the papers was conducted according to PRISMA guidelines. Furthermore, this review critically examines each domain, identifies current challenges, and proposes future research directions, emphasizing the potential of AI methods in transforming health monitoring and patient care.
Collapse
Affiliation(s)
- João N. D. Fernandes
- INESC TEC, 4200-465 Porto, Portugal
- Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Department of Computer Engineering, Superior Institute of Engineering of Porto, 4249-015 Porto, Portugal;
| | - Vitor E. M. Cardoso
- Collaborative Laboratory for the Future Built Environment (BUILT CoLAB), Rua Do Campo Alegre, 760, 4150-003 Porto, Portugal;
- Department of Computer Engineering, Superior Institute of Engineering of Porto, 4249-015 Porto, Portugal;
| | - Alberto Comesaña-Campos
- Department of Design in Engineering, University of Vigo, 36312 Vigo, Spain;
- Design, Expert Systems and Artificial Intelligent Solutions Group (DESAINS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Alberto Pinheira
- Department of Computer Engineering, Superior Institute of Engineering of Porto, 4249-015 Porto, Portugal;
- Department of Design in Engineering, University of Vigo, 36312 Vigo, Spain;
- Design, Expert Systems and Artificial Intelligent Solutions Group (DESAINS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
- Center for Health Technologies and Information Systems Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
10
|
Hong W, Li G, Liu S, Yang P, Tang K. Multi-objective evolutionary optimization for hardware-aware neural network pruning. FUNDAMENTAL RESEARCH 2024; 4:941-950. [PMID: 39156574 PMCID: PMC11330115 DOI: 10.1016/j.fmre.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Neural network pruning is a popular approach to reducing the computational complexity of deep neural networks. In recent years, as growing evidence shows that conventional network pruning methods employ inappropriate proxy metrics, and as new types of hardware become increasingly available, hardware-aware network pruning that incorporates hardware characteristics in the loop of network pruning has gained growing attention. Both network accuracy and hardware efficiency (latency, memory consumption, etc.) are critical objectives to the success of network pruning, but the conflict between the multiple objectives makes it impossible to find a single optimal solution. Previous studies mostly convert the hardware-aware network pruning to optimization problems with a single objective. In this paper, we propose to solve the hardware-aware network pruning problem with Multi-Objective Evolutionary Algorithms (MOEAs). Specifically, we formulate the problem as a multi-objective optimization problem, and propose a novel memetic MOEA, namely HAMP, that combines an efficient portfolio-based selection and a surrogate-assisted local search, to solve it. Empirical studies demonstrate the potential of MOEAs in providing simultaneously a set of alternative solutions and the superiority of HAMP compared to the state-of-the-art hardware-aware network pruning method.
Collapse
Affiliation(s)
- Wenjing Hong
- Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guiying Li
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shengcai Liu
- Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peng Yang
- Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Tang
- Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
He Y, Xiao L. Structured Pruning for Deep Convolutional Neural Networks: A Survey. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:2900-2919. [PMID: 38015707 DOI: 10.1109/tpami.2023.3334614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The remarkable performance of deep Convolutional neural networks (CNNs) is generally attributed to their deeper and wider architectures, which can come with significant computational costs. Pruning neural networks has thus gained interest since it effectively lowers storage and computational costs. In contrast to weight pruning, which results in unstructured models, structured pruning provides the benefit of realistic acceleration by producing models that are friendly to hardware implementation. The special requirements of structured pruning have led to the discovery of numerous new challenges and the development of innovative solutions. This article surveys the recent progress towards structured pruning of deep CNNs. We summarize and compare the state-of-the-art structured pruning techniques with respect to filter ranking methods, regularization methods, dynamic execution, neural architecture search, the lottery ticket hypothesis, and the applications of pruning. While discussing structured pruning algorithms, we briefly introduce the unstructured pruning counterpart to emphasize their differences. Furthermore, we provide insights into potential research opportunities in the field of structured pruning. A curated list of neural network pruning papers can be found at: https://github.com/he-y/Awesome-Pruning. A dedicated website offering a more interactive comparison of structured pruning methods can be found at: https://huggingface.co/spaces/he-yang/Structured-Pruning-Survey.
Collapse
|
12
|
Holste G, Jiang Z, Jaiswal A, Hanna M, Minkowitz S, Legasto AC, Escalon JG, Steinberger S, Bittman M, Shen TC, Ding Y, Summers RM, Shih G, Peng Y, Wang Z. How Does Pruning Impact Long-Tailed Multi-label Medical Image Classifiers? MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14224:663-673. [PMID: 37829549 PMCID: PMC10568970 DOI: 10.1007/978-3-031-43904-9_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance. However, the nuanced ways in which pruning impacts model behavior are not well understood, particularly for long-tailed, multi-label datasets commonly found in clinical settings. This knowledge gap could have dangerous implications when deploying a pruned model for diagnosis, where unexpected model behavior could impact patient well-being. To fill this gap, we perform the first analysis of pruning's effect on neural networks trained to diagnose thorax diseases from chest X-rays (CXRs). On two large CXR datasets, we examine which diseases are most affected by pruning and characterize class "forgettability" based on disease frequency and co-occurrence behavior. Further, we identify individual CXRs where uncompressed and heavily pruned models disagree, known as pruning-identified exemplars (PIEs), and conduct a human reader study to evaluate their unifying qualities. We find that radiologists perceive PIEs as having more label noise, lower image quality, and higher diagnosis difficulty. This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification. All code, model weights, and data access instructions can be found at https://github.com/VITA-Group/PruneCXR.
Collapse
Affiliation(s)
| | - Ziyu Jiang
- Texas A&M University, College Station, TX, USA
| | - Ajay Jaiswal
- The University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | | | - Thomas C Shen
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ying Ding
- The University of Texas at Austin, Austin, TX, USA
| | - Ronald M Summers
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Yifan Peng
- Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
13
|
A PLS-based pruning algorithm for simplified long–short term memory neural network in time series prediction. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Chaotic Image Encryption: State-of-the-Art, Ecosystem, and Future Roadmap. APPLIED SYSTEM INNOVATION 2022. [DOI: 10.3390/asi5030057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, many researchers have been interested in the application of chaos in cryptography. Specifically, numerous research works have been focusing on chaotic image encryption. A comprehensive survey can highlight existing trends and shed light on less-studied topics in the area of chaotic image encryption. In addition to such a survey, this paper studies the main challenges in this field, establishes an ecosystem for chaotic image encryption, and develops a future roadmap for further research in this area.
Collapse
|
15
|
Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection. SENSORS 2021; 21:s21227506. [PMID: 34833583 PMCID: PMC8622476 DOI: 10.3390/s21227506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
Automatic flood detection may be an important component for triggering damage control systems and minimizing the risk of social or economic impacts caused by flooding. Riverside images from regular cameras are a widely available resource that can be used for tackling this problem. Nevertheless, state-of-the-art neural networks, the most suitable approach for this type of computer vision task, are usually resource-consuming, which poses a challenge for deploying these models within low-capability Internet of Things (IoT) devices with unstable internet connections. In this work, we propose a deep neural network (DNN) architecture pruning algorithm capable of finding a pruned version of a given DNN within a user-specified memory footprint. Our results demonstrate that our proposed algorithm can find a pruned DNN model with the specified memory footprint with little to no degradation of its segmentation performance. Finally, we show that our algorithm can be used in a memory-constraint wireless sensor network (WSN) employed to detect flooding events of urban rivers, and the resulting pruned models have competitive results compared with the original models.
Collapse
|
16
|
Fernandes FE, Yen GG. Pruning of generative adversarial neural networks for medical imaging diagnostics with evolution strategy. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.12.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|