1
|
Xu X, Wang Z, Ren S, Niu S, Li D. Local-Global Geometric Information and View Complementarity Introduced Multiview Metric Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:5428-5441. [PMID: 38546990 DOI: 10.1109/tnnls.2024.3380020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Geometry studies the spatial structure and location information of objects, providing a priori knowledge and intuitive explanation for classification methods. Considering samples from a geometric perspective offers a novel approach to understanding their information. In this article, we propose a method called local-global geometric information and view complementarity introduced multiview metric learning (GIVCMML). Our method effectively exploits the geometric information of multiview samples. The learned metric space retains the geometric relations of samples and makes them more separable. First, we propose the global geometrical constraint in the maximum margin criterion framework. By maximizing the distance between class centers in the metric space, we ensure that samples from different classes are well separated. Second, to maintain the manifold structure of the original space, we build an adjacency matrix that contains the sample label information. This helps explore the local geometric information of sample pairs. Finally, to better mine the complementary information of multiview samples, GIVCMML maximizes the correlation between each view in the metric space. This enables each view to adaptively learn from the others and explore the complementary information between views. We extensively evaluate the effectiveness of our method on real-world datasets. The experimental results demonstrate that GIVCMML achieves competitive performance compared with multiview metric learning (MvML) methods.
Collapse
|
2
|
Gao J, Liu M, Li P, Zhang J, Chen Z. Deep Multiview Adaptive Clustering With Semantic Invariance. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:12965-12978. [PMID: 37134040 DOI: 10.1109/tnnls.2023.3265699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Multiview clustering has attracted significant attention in various fields, due to the superiority in mining patterns of multiview data. However, previous methods are still confronted with two challenges. First, they do not fully consider the semantic invariance of multiview data in aggregating complementary information, degrading semantic robustness of fusion representations. Second, they rely on predefined clustering strategies to mine patterns, lacking adequate explorations of data structures. To address the challenges, deep multiview adaptive clustering via semantic invariance (DMAC-SI) is proposed, which learns an adaptive clustering strategy on semantics-robust fusion representations to fully explore structures in mining patterns. Specifically, a mirror fusion architecture is devised to explore interview invariance and intrainstance invariance hidden in multiview data, which captures invariant semantics of complementary information to learn semantics-robust fusion representations. Then, a Markov decision process of multiview data partitions is proposed within the reinforcement learning framework, which learns an adaptive clustering strategy on semantics-robust fusion representations to guarantee the structure explorations in mining patterns. The two components seamlessly collaborate in an end-to-end manner to accurately partition multiview data. Finally, extensive experiment results on five benchmark datasets demonstrate that DMAC-SI outperforms the state-of-the-art methods.
Collapse
|
3
|
Tong Y, Hu Z, Wang H, Huang J, Zhan Y, Chai W, Deng Y, Yuan Y, Shen K, Wang Y, Chen X, Yu J. Anti-HER2 therapy response assessment for guiding treatment (de-)escalation in early HER2-positive breast cancer using a novel deep learning radiomics model. Eur Radiol 2024; 34:5477-5486. [PMID: 38329503 PMCID: PMC11255056 DOI: 10.1007/s00330-024-10609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES Anti-HER2 targeted therapy significantly reduces risk of relapse in HER2 + breast cancer. New measures are needed for a precise risk stratification to guide (de-)escalation of anti-HER2 strategy. METHODS A total of 726 HER2 + cases who received no/single/dual anti-HER2 targeted therapies were split into three respective cohorts. A deep learning model (DeepTEPP) based on preoperative breast magnetic resonance (MR) was developed. Patients were scored and categorized into low-, moderate-, and high-risk groups. Recurrence-free survival (RFS) was compared in patients with different risk groups according to the anti-HER2 treatment they received, to validate the value of DeepTEPP in predicting treatment efficacy and guiding anti-HER2 strategy. RESULTS DeepTEPP was capable of risk stratification and guiding anti-HER2 treatment strategy: DeepTEPP-Low patients (60.5%) did not derive significant RFS benefit from trastuzumab (p = 0.144), proposing an anti-HER2 de-escalation. DeepTEPP-Moderate patients (19.8%) significantly benefited from trastuzumab (p = 0.048), but did not obtain additional improvements from pertuzumab (p = 0.125). DeepTEPP-High patients (19.7%) significantly benefited from dual HER2 blockade (p = 0.045), suggesting an anti-HER2 escalation. CONCLUSIONS DeepTEPP represents a pioneering MR-based deep learning model that enables the non-invasive prediction of adjuvant anti-HER2 effectiveness, thereby providing valuable guidance for anti-HER2 (de-)escalation strategies. DeepTEPP provides an important reference for choosing the appropriate individualized treatment in HER2 + breast cancer patients, warranting prospective validation. CLINICAL RELEVANCE STATEMENT We built an MR-based deep learning model DeepTEPP, which enables the non-invasive prediction of adjuvant anti-HER2 effectiveness, thus guiding anti-HER2 (de-)escalation strategies in early HER2-positive breast cancer patients. KEY POINTS • DeepTEPP is able to predict anti-HER2 effectiveness and to guide treatment (de-)escalation. • DeepTEPP demonstrated an impressive prognostic efficacy for recurrence-free survival and overall survival. • To our knowledge, this is one of the very few, also the largest study to test the efficacy of a deep learning model extracted from breast MR images on HER2-positive breast cancer survival and anti-HER2 therapy effectiveness prediction.
Collapse
Affiliation(s)
- Yiwei Tong
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhaoyu Hu
- School of Information Science and Technology, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Haoyu Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiahui Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ying Zhan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weimin Chai
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinhui Deng
- School of Information Science and Technology, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Ying Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
4
|
Jiang X, Luo C, Peng X, Zhang J, Yang L, Liu LZ, Cui YF, Liu MW, Miao L, Jiang JM, Ren JL, Yang XT, Li M, Zhang L. Incidence rate of occult lymph node metastasis in clinical T 1-2N 0M 0 small cell lung cancer patients and radiomic prediction based on contrast-enhanced CT imaging: a multicenter study : Original research. Respir Res 2024; 25:226. [PMID: 38811960 PMCID: PMC11138070 DOI: 10.1186/s12931-024-02852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND This study aimed to explore the incidence of occult lymph node metastasis (OLM) in clinical T1 - 2N0M0 (cT1 - 2N0M0) small cell lung cancer (SCLC) patients and develop machine learning prediction models using preoperative intratumoral and peritumoral contrast-enhanced CT-based radiomic data. METHODS By conducting a retrospective analysis involving 242 eligible patients from 4 centeres, we determined the incidence of OLM in cT1 - 2N0M0 SCLC patients. For each lesion, two ROIs were defined using the gross tumour volume (GTV) and peritumoral volume 15 mm around the tumour (PTV). By extracting a comprehensive set of 1595 enhanced CT-based radiomic features individually from the GTV and PTV, five models were constucted and we rigorously evaluated the model performance using various metrics, including the area under the curve (AUC), accuracy, sensitivity, specificity, calibration curve, and decision curve analysis (DCA). For enhanced clinical applicability, we formulated a nomogram that integrates clinical parameters and the rad_score (GTV and PTV). RESULTS The initial investigation revealed a 33.9% OLM positivity rate in cT1 - 2N0M0 SCLC patients. Our combined model, which incorporates three radiomic features from the GTV and PTV, along with two clinical parameters (smoking status and shape), exhibited robust predictive capabilities. With a peak AUC value of 0.772 in the external validation cohort, the model outperformed the alternative models. The nomogram significantly enhanced diagnostic precision for radiologists and added substantial value to the clinical decision-making process for cT1 - 2N0M0 SCLC patients. CONCLUSIONS The incidence of OLM in SCLC patients surpassed that in non-small cell lung cancer patients. The combined model demonstrated a notable generalization effect, effectively distinguishing between positive and negative OLMs in a noninvasive manner, thereby guiding individualized clinical decisions for patients with cT1 - 2N0M0 SCLC.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xin Peng
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, 610031, China
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jing Zhang
- Department of Radiology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China
| | - Lin Yang
- Department of Pathology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li-Zhi Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yan-Fen Cui
- Department of Radiology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China
| | - Meng-Wen Liu
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Miao
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiu-Ming Jiang
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Liang Ren
- Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, 100176, China
| | - Xiao-Tang Yang
- Department of Radiology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China.
| | - Meng Li
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Li Zhang
- Department of Diagnostic Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Shao X, Ge X, Gao J, Niu R, Shi Y, Shao X, Jiang Z, Li R, Wang Y. Transfer learning-based PET/CT three-dimensional convolutional neural network fusion of image and clinical information for prediction of EGFR mutation in lung adenocarcinoma. BMC Med Imaging 2024; 24:54. [PMID: 38438844 PMCID: PMC10913633 DOI: 10.1186/s12880-024-01232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND To introduce a three-dimensional convolutional neural network (3D CNN) leveraging transfer learning for fusing PET/CT images and clinical data to predict EGFR mutation status in lung adenocarcinoma (LADC). METHODS Retrospective data from 516 LADC patients, encompassing preoperative PET/CT images, clinical information, and EGFR mutation status, were divided into training (n = 404) and test sets (n = 112). Several deep learning models were developed utilizing transfer learning, involving CT-only and PET-only models. A dual-stream model fusing PET and CT and a three-stream transfer learning model (TS_TL) integrating clinical data were also developed. Image preprocessing includes semi-automatic segmentation, resampling, and image cropping. Considering the impact of class imbalance, the performance of the model was evaluated using ROC curves and AUC values. RESULTS TS_TL model demonstrated promising performance in predicting the EGFR mutation status, with an AUC of 0.883 (95%CI = 0.849-0.917) in the training set and 0.730 (95%CI = 0.629-0.830) in the independent test set. Particularly in advanced LADC, the model achieved an AUC of 0.871 (95%CI = 0.823-0.919) in the training set and 0.760 (95%CI = 0.638-0.881) in the test set. The model identified distinct activation areas in solid or subsolid lesions associated with wild and mutant types. Additionally, the patterns captured by the model were significantly altered by effective tyrosine kinase inhibitors treatment, leading to notable changes in predicted mutation probabilities. CONCLUSION PET/CT deep learning model can act as a tool for predicting EGFR mutation in LADC. Additionally, it offers clinicians insights for treatment decisions through evaluations both before and after treatment.
Collapse
Affiliation(s)
- Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China.
| | - Xinyu Ge
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Jianxiong Gao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Rong Niu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Yunmei Shi
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Zhenxing Jiang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Renyuan Li
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China.
| |
Collapse
|
6
|
Shi J, Chen X, Xie Y, Zhang H, Sun Y. Delicately Reinforced k-Nearest Neighbor Classifier Combined With Expert Knowledge Applied to Abnormity Forecast in Electrolytic Cell. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:3027-3037. [PMID: 37494170 DOI: 10.1109/tnnls.2023.3280963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
As the profit and safety requirements become higher and higher, it is more and more necessary to realize an advanced intelligent analysis for abnormity forecast of the synthetical balance of material and energy (AF-SBME) on aluminum reduction cells (ARCs). Without loss of generality, AF-SBME belongs to classification problems. Its advanced intelligent analysis can be realized by high-performance data-driven classifiers. However, AF-SBME has some difficulties, including a high requirement for interpretability of data-driven classifiers, a small number, and decreasing-over-time correctness of training samples. In this article, based on a preferable data-driven classifier, which is called a reinforced k -nearest neighbor (R-KNN) classifier, a delicately R-KNN combined with expert knowledge (DR-KNN/CE) is proposed. It improves R-KNN in two ways, including using expert knowledge as external assistance and enhancing self-ability to mine and synthesize data knowledge. The related experiments on AF-SBME, where the relevant data are directly sampled from practical production, have demonstrated that the proposed DR-KNN/CE not only makes an effective improvement for R-KNN, but also has a more advanced performance compared with other existing high-performance data-driven classifiers.
Collapse
|
7
|
Corti A, De Cecco L, Cavalieri S, Lenoci D, Pistore F, Calareso G, Mattavelli D, de Graaf P, Leemans CR, Brakenhoff RH, Ravanelli M, Poli T, Licitra L, Corino V, Mainardi L. MRI-based radiomic prognostic signature for locally advanced oral cavity squamous cell carcinoma: development, testing and comparison with genomic prognostic signatures. Biomark Res 2023; 11:69. [PMID: 37455307 DOI: 10.1186/s40364-023-00494-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND . At present, the prognostic prediction in advanced oral cavity squamous cell carcinoma (OCSCC) is based on the tumor-node-metastasis (TNM) staging system, and the most used imaging modality in these patients is magnetic resonance image (MRI). With the aim to improve the prediction, we developed an MRI-based radiomic signature as a prognostic marker for overall survival (OS) in OCSCC patients and compared it with published gene expression signatures for prognosis of OS in head and neck cancer patients, replicated herein on our OCSCC dataset. METHODS For each patient, 1072 radiomic features were extracted from T1 and T2-weighted MRI (T1w and T2w). Features selection was performed, and an optimal set of five of them was used to fit a Cox proportional hazard regression model for OS. The radiomic signature was developed on a multi-centric locally advanced OCSCC retrospective dataset (n = 123) and validated on a prospective cohort (n = 108). RESULTS The performance of the signature was evaluated in terms of C-index (0.68 (IQR 0.66-0.70)), hazard ratio (HR 2.64 (95% CI 1.62-4.31)), and high/low risk group stratification (log-rank p < 0.001, Kaplan-Meier curves). When tested on a multi-centric prospective cohort (n = 108), the signature had a C-index of 0.62 (IQR 0.58-0.64) and outperformed the clinical and pathologic TNM stage and six out of seven gene expression prognostic signatures. In addition, the significant difference of the radiomic signature between stages III and IVa/b in patients receiving surgery suggests a potential association of MRI features with the pathologic stage. CONCLUSIONS Overall, the present study suggests that MRI signatures, containing non-invasive and cost-effective remarkable information, could be exploited as prognostic tools.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Pistore
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Radiology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Pim de Graaf
- Amsterdam UMC location Vrije Universiteit, Radiology and Nuclear Medicine, de Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - C René Leemans
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Valentina Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
8
|
Yang J, Wang L, Qin J, Du J, Ding M, Niu T, Li R. Multi-view learning for lymph node metastasis prediction using tumor and nodal radiomics in gastric cancer. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Purpose. This study aims to develop and validate a multi-view learning method by the combination of primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status in gastric cancer (GC). Methods. A total of 170 contrast-enhanced abdominal CT images from GC patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection approach including Pearson correlation analysis and supervised feature selection method based on test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics features respectively. Two types of discriminative features were then learned by an unsupervised multi-view partial least squares (UMvPLS) for a latent common space on which a logistic regression classifier is trained. Five repeated random hold-out experiments were employed. Results. On 20-dimensional latent common space, area under receiver operating characteristic curve (AUC), precision, accuracy, recall and F1-score are 0.9531 ± 0.0183, 0.9260 ± 0.0184, 0.9136 ± 0.0174, 0.9468 ± 0.0106 and 0.9362 ± 0.0125 for the training cohort respectively, and 0.8984 ± 0.0536, 0.8671 ± 0.0489, 0.8500 ± 0.0599, 0.9118 ± 0.0550 and 0.8882 ± 0.0440 for the validation cohort respectively (reported as mean ± standard deviation). It shows a better discrimination capability than single-view methods, our previous method, and eight baseline methods. When the dimension was reduced to 2, the model not only has effective prediction performance, but also is convenient for data visualization. Conclusions. Our proposed method by integrating radiomics features of primary tumor and LN can be helpful in predicting lymph node metastasis in patients of GC. It shows multi-view learning has great potential for guiding the prognosis and treatment decision-making in GC.
Collapse
|
9
|
Navarro F, Dapper H, Asadpour R, Knebel C, Spraker MB, Schwarze V, Schaub SK, Mayr NA, Specht K, Woodruff HC, Lambin P, Gersing AS, Nyflot MJ, Menze BH, Combs SE, Peeken JC. Development and External Validation of Deep-Learning-Based Tumor Grading Models in Soft-Tissue Sarcoma Patients Using MR Imaging. Cancers (Basel) 2021; 13:2866. [PMID: 34201251 PMCID: PMC8227009 DOI: 10.3390/cancers13122866] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In patients with soft-tissue sarcomas, tumor grading constitutes a decisive factor to determine the best treatment decision. Tumor grading is obtained by pathological work-up after focal biopsies. Deep learning (DL)-based imaging analysis may pose an alternative way to characterize STS tissue. In this work, we sought to non-invasively differentiate tumor grading into low-grade (G1) and high-grade (G2/G3) STS using DL techniques based on MR-imaging. METHODS Contrast-enhanced T1-weighted fat-saturated (T1FSGd) MRI sequences and fat-saturated T2-weighted (T2FS) sequences were collected from two independent retrospective cohorts (training: 148 patients, testing: 158 patients). Tumor grading was determined following the French Federation of Cancer Centers Sarcoma Group in pre-therapeutic biopsies. DL models were developed using transfer learning based on the DenseNet 161 architecture. RESULTS The T1FSGd and T2FS-based DL models achieved area under the receiver operator characteristic curve (AUC) values of 0.75 and 0.76 on the test cohort, respectively. T1FSGd achieved the best F1-score of all models (0.90). The T2FS-based DL model was able to significantly risk-stratify for overall survival. Attention maps revealed relevant features within the tumor volume and in border regions. CONCLUSIONS MRI-based DL models are capable of predicting tumor grading with good reproducibility in external validation.
Collapse
Affiliation(s)
- Fernando Navarro
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; (F.N.); (H.D.); (R.A.); (S.E.C.)
- Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, 85748 Garching, Germany;
- TranslaTUM—Central Institute for Translational Cancer Research, Einsteinstraße 25, 81675 Munich, Germany
| | - Hendrik Dapper
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; (F.N.); (H.D.); (R.A.); (S.E.C.)
| | - Rebecca Asadpour
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; (F.N.); (H.D.); (R.A.); (S.E.C.)
| | - Carolin Knebel
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany;
| | - Matthew B. Spraker
- Department of Radiation Oncology, Washington University in St. Louis, 4511 Forest Park Ave, St. Louis, MO 63108, USA;
| | - Vincent Schwarze
- Department of Radiology, Grosshadern Campus, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany; (V.S.); (A.S.G.)
| | - Stephanie K. Schaub
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, 356043, Seattle, WA 98195, USA; (S.K.S.); (N.A.M.); (M.J.N.)
| | - Nina A. Mayr
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, 356043, Seattle, WA 98195, USA; (S.K.S.); (N.A.M.); (M.J.N.)
| | - Katja Specht
- Department of Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany;
| | - Henry C. Woodruff
- Department of Precision Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Imaging, GROW—School for Oncology and Developmental Biology, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Imaging, GROW—School for Oncology and Developmental Biology, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Alexandra S. Gersing
- Department of Radiology, Grosshadern Campus, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany; (V.S.); (A.S.G.)
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Matthew J. Nyflot
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, 356043, Seattle, WA 98195, USA; (S.K.S.); (N.A.M.); (M.J.N.)
- Department of Radiology, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Bjoern H. Menze
- Department of Informatics, Technical University of Munich (TUM), Boltzmannstr. 3, 85748 Garching, Germany;
- Department for Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; (F.N.); (H.D.); (R.A.); (S.E.C.)
- Department for Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Ingolstaedter Landstr. 1, 85764 Munich, Germany
| | - Jan C. Peeken
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; (F.N.); (H.D.); (R.A.); (S.E.C.)
- Department of Radiology and Nuclear Imaging, GROW—School for Oncology and Developmental Biology, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Ingolstaedter Landstr. 1, 85764 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, 85764 Munich, Germany
| |
Collapse
|