1
|
Mattera A, Alfieri V, Granato G, Baldassarre G. Chaotic recurrent neural networks for brain modelling: A review. Neural Netw 2025; 184:107079. [PMID: 39756119 DOI: 10.1016/j.neunet.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Even in the absence of external stimuli, the brain is spontaneously active. Indeed, most cortical activity is internally generated by recurrence. Both theoretical and experimental studies suggest that chaotic dynamics characterize this spontaneous activity. While the precise function of brain chaotic activity is still puzzling, we know that chaos confers many advantages. From a computational perspective, chaos enhances the complexity of network dynamics. From a behavioural point of view, chaotic activity could generate the variability required for exploration. Furthermore, information storage and transfer are maximized at the critical border between order and chaos. Despite these benefits, many computational brain models avoid incorporating spontaneous chaotic activity due to the challenges it poses for learning algorithms. In recent years, however, multiple approaches have been proposed to overcome this limitation. As a result, many different algorithms have been developed, initially within the reservoir computing paradigm. Over time, the field has evolved to increase the biological plausibility and performance of the algorithms, sometimes going beyond the reservoir computing framework. In this review article, we examine the computational benefits of chaos and the unique properties of chaotic recurrent neural networks, with a particular focus on those typically utilized in reservoir computing. We also provide a detailed analysis of the algorithms designed to train chaotic RNNs, tracing their historical evolution and highlighting key milestones in their development. Finally, we explore the applications and limitations of chaotic RNNs for brain modelling, consider their potential broader impacts beyond neuroscience, and outline promising directions for future research.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy.
| | - Valerio Alfieri
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy; International School of Advanced Studies, Center for Neuroscience, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Giovanni Granato
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| |
Collapse
|
2
|
Stenning KD, Gartside JC, Manneschi L, Cheung CTS, Chen T, Vanstone A, Love J, Holder H, Caravelli F, Kurebayashi H, Everschor-Sitte K, Vasilaki E, Branford WR. Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks. Nat Commun 2024; 15:7377. [PMID: 39191747 PMCID: PMC11350220 DOI: 10.1038/s41467-024-50633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Physical neuromorphic computing, exploiting the complex dynamics of physical systems, has seen rapid advancements in sophistication and performance. Physical reservoir computing, a subset of neuromorphic computing, faces limitations due to its reliance on single systems. This constrains output dimensionality and dynamic range, limiting performance to a narrow range of tasks. Here, we engineer a suite of nanomagnetic array physical reservoirs and interconnect them in parallel and series to create a multilayer neural network architecture. The output of one reservoir is recorded, scaled and virtually fed as input to the next reservoir. This networked approach increases output dimensionality, internal dynamics and computational performance. We demonstrate that a physical neuromorphic system can achieve an overparameterised state, facilitating meta-learning on small training sets and yielding strong performance across a wide range of tasks. Our approach's efficacy is further demonstrated through few-shot learning, where the system rapidly adapts to new tasks.
Collapse
Affiliation(s)
- Kilian D Stenning
- Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom.
- London Centre for Nanotechnology, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Jack C Gartside
- Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
- London Centre for Nanotechnology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Luca Manneschi
- University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Tony Chen
- Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jake Love
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Holly Holder
- Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Francesco Caravelli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Hidekazu Kurebayashi
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, United Kingdom
- Department of Electronic and Electrical Engineering, University College London, London, WC1H 0AH, United Kingdom
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Karin Everschor-Sitte
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Eleni Vasilaki
- University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Will R Branford
- Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
- London Centre for Nanotechnology, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Parnas M, Manoim JE, Lin AC. Sensory encoding and memory in the mushroom body: signals, noise, and variability. Learn Mem 2024; 31:a053825. [PMID: 38862174 PMCID: PMC11199953 DOI: 10.1101/lm.053825.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, highlighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spatially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory systems.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
4
|
Vidamour IT, Ellis MOA, Griffin D, Venkat G, Swindells C, Dawidek RWS, Broomhall TJ, Steinke NJ, Cooper JFK, Maccherozzi F, Dhesi SS, Stepney S, Vasilaki E, Allwood DA, Hayward TJ. Quantifying the computational capability of a nanomagnetic reservoir computing platform with emergent magnetisation dynamics. NANOTECHNOLOGY 2022; 33:485203. [PMID: 35940063 DOI: 10.1088/1361-6528/ac87b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Devices based on arrays of interconnected magnetic nano-rings with emergent magnetization dynamics have recently been proposed for use in reservoir computing applications, but for them to be computationally useful it must be possible to optimise their dynamical responses. Here, we use a phenomenological model to demonstrate that such reservoirs can be optimised for classification tasks by tuning hyperparameters that control the scaling and input-rate of data into the system using rotating magnetic fields. We use task-independent metrics to assess the rings' computational capabilities at each set of these hyperparameters and show how these metrics correlate directly to performance in spoken and written digit recognition tasks. We then show that these metrics, and performance in tasks, can be further improved by expanding the reservoir's output to include multiple, concurrent measures of the ring arrays' magnetic states.
Collapse
Affiliation(s)
- I T Vidamour
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - M O A Ellis
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
| | - D Griffin
- Department of Computer Science, University of York, York YO10 5GH, United Kingdom
| | - G Venkat
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - C Swindells
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - R W S Dawidek
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - T J Broomhall
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - N J Steinke
- ISIS Neutron and Muon Source, Rutherford Appleton Lab, Didcot, OX11 0QX, United Kingdom
| | - J F K Cooper
- ISIS Neutron and Muon Source, Rutherford Appleton Lab, Didcot, OX11 0QX, United Kingdom
| | - F Maccherozzi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S S Dhesi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S Stepney
- Department of Computer Science, University of York, York YO10 5GH, United Kingdom
| | - E Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zürich, Switzerland
| | - D A Allwood
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - T J Hayward
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
5
|
Jedlicka P, Tomko M, Robins A, Abraham WC. Contributions by metaplasticity to solving the Catastrophic Forgetting Problem. Trends Neurosci 2022; 45:656-666. [PMID: 35798611 DOI: 10.1016/j.tins.2022.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
Catastrophic forgetting (CF) refers to the sudden and severe loss of prior information in learning systems when acquiring new information. CF has been an Achilles heel of standard artificial neural networks (ANNs) when learning multiple tasks sequentially. The brain, by contrast, has solved this problem during evolution. Modellers now use a variety of strategies to overcome CF, many of which have parallels to cellular and circuit functions in the brain. One common strategy, based on metaplasticity phenomena, controls the future rate of change at key connections to help retain previously learned information. However, the metaplasticity properties so far used are only a subset of those existing in neurobiology. We propose that as models become more sophisticated, there could be value in drawing on a richer set of metaplasticity rules, especially when promoting continual learning in agents moving about the environment.
Collapse
Affiliation(s)
- Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University, Giessen, Germany; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany; Frankfurt Institute for Advanced Studies, Frankfurt 60438, Germany.
| | - Matus Tomko
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University, Giessen, Germany; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anthony Robins
- Department of Computer Science, University of Otago, Dunedin 9016, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
6
|
Gaurav A, Song X, Manhas S, Gilra A, Vasilaki E, Roy P, De Souza MM. Reservoir Computing for Temporal Data Classification Using a Dynamic Solid Electrolyte ZnO Thin Film Transistor. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.869013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The processing of sequential and temporal data is essential to computer vision and speech recognition, two of the most common applications of artificial intelligence (AI). Reservoir computing (RC) is a branch of AI that offers a highly efficient framework for processing temporal inputs at a low training cost compared to conventional Recurrent Neural Networks (RNNs). However, despite extensive effort, two-terminal memristor-based reservoirs have, until now, been implemented to process sequential data by reading their conductance states only once, at the end of the entire sequence. This method reduces the dimensionality, related to the number of signals from the reservoir and thereby lowers the overall performance of reservoir systems. Higher dimensionality facilitates the separation of originally inseparable inputs by reading out from a larger set of spatiotemporal features of inputs. Moreover, memristor-based reservoirs either use multiple pulse rates, fast or slow read (immediately or with a delay introduced after the end of the sequence), or excitatory pulses to enhance the dimensionality of reservoir states. This adds to the complexity of the reservoir system and reduces power efficiency. In this paper, we demonstrate the first reservoir computing system based on a dynamic three terminal solid electrolyte ZnO/Ta2O5 Thin-film Transistor fabricated at less than 100°C. The inherent nonlinearity and dynamic memory of the device lead to a rich separation property of reservoir states that results in, to our knowledge, the highest accuracy of 94.44%, using electronic charge-based system, for the classification of hand-written digits. This improvement is attributed to an increase in the dimensionality of the reservoir by reading the reservoir states after each pulse rather than at the end of the sequence. The third terminal enables a read operation in the off state, that is when no pulse is applied at the gate terminal, via a small read pulse at the drain. This fundamentally allows multiple read operations without increasing energy consumption, which is not possible in the conventional two-terminal memristor counterpart. Further, we have also shown that devices do not saturate even after multiple write pulses which demonstrates the device’s ability to process longer sequences.
Collapse
|
7
|
Ozdemir A, Scerri M, Barron AB, Philippides A, Mangan M, Vasilaki E, Manneschi L. EchoVPR: Echo State Networks for Visual Place Recognition. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3150505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Abdelrahman NY, Vasilaki E, Lin AC. Compensatory variability in network parameters enhances memory performance in the Drosophila mushroom body. Proc Natl Acad Sci U S A 2021; 118:e2102158118. [PMID: 34845010 PMCID: PMC8670477 DOI: 10.1073/pnas.2102158118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Neural circuits use homeostatic compensation to achieve consistent behavior despite variability in underlying intrinsic and network parameters. However, it remains unclear how compensation regulates variability across a population of the same type of neurons within an individual and what computational benefits might result from such compensation. We address these questions in the Drosophila mushroom body, the fly's olfactory memory center. In a computational model, we show that under sparse coding conditions, memory performance is degraded when the mushroom body's principal neurons, Kenyon cells (KCs), vary realistically in key parameters governing their excitability. However, memory performance is rescued while maintaining realistic variability if parameters compensate for each other to equalize KC average activity. Such compensation can be achieved through both activity-dependent and activity-independent mechanisms. Finally, we show that correlations predicted by our model's compensatory mechanisms appear in the Drosophila hemibrain connectome. These findings reveal compensatory variability in the mushroom body and describe its computational benefits for associative memory.
Collapse
Affiliation(s)
- Nada Y Abdelrahman
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom;
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|