1
|
Quintero-Rincón A, Di-Pasquale R, Quintero-Rodríguez K, Batatia H. Computer-based quantitative image texture analysis using multi-collinearity diagnosis in chest X-ray images. PLoS One 2025; 20:e0320706. [PMID: 40228193 PMCID: PMC11996224 DOI: 10.1371/journal.pone.0320706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/23/2025] [Indexed: 04/16/2025] Open
Abstract
Despite tremendous efforts devoted to the area, image texture analysis is still an open research field. This paper presents an algorithm and experimental results demonstrating the feasibility of developing automated tools to detect abnormal X-ray images based on tissue attenuation. Specifically, this work proposes using the variability characterised by singular values and conditional indices extracted from the singular value decomposition (SVD) as image texture features. In addition, the paper introduces a "tuning weight" parameter to consider the variability of the X-ray attenuation in tissues affected by pathologies. This weight is estimated using the coefficient of variation of the minimum covariance determinant from the bandwidth yielded by the non-parametric distribution of variance-decomposition proportions of the SVD. When multiplied by the two features (singular values and conditional indices), this single parameter acts as a tuning weight, reducing misclassification and improving the classic performance metrics, such as true positive rate, false negative rate, positive predictive values, false discovery rate, area-under-curve, accuracy rate, and total cost. The proposed method implements an ensemble bagged trees classification model to classify X-ray chest images as COVID-19, viral pneumonia, lung opacity, or normal. It was tested using a challenging, imbalanced chest X-ray public dataset. The results show an accuracy of 88% without applying the tuning weight and 99% with its application. The proposed method outperforms state-of-the-art methods, as attested by all performance metrics.
Collapse
Affiliation(s)
- Antonio Quintero-Rincón
- Department of Data Science, Data Science and AI Laboratory, Catholic University of Argentina (UCA), Buenos Aires, Argentina
- Department of Computer Sciences, Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Ricardo Di-Pasquale
- Department of Data Science, Data Science and AI Laboratory, Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | | | - Hadj Batatia
- MACS School, Heriot-Watt University, Dubai, United Arab Emirates
| |
Collapse
|
2
|
Zhang CJ, Ruan LT, Ji LF, Feng LL, Tang FQ. COVID-19 recognition from chest X-ray images by combining deep learning with transfer learning. Digit Health 2025; 11:20552076251319667. [PMID: 39949849 PMCID: PMC11822832 DOI: 10.1177/20552076251319667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Objective Based on the current research status, this paper proposes a deep learning model named Covid-DenseNet for COVID-19 detection from CXR (computed tomography) images, aiming to build a model with smaller computational complexity, stronger generalization ability, and excellent performance on benchmark datasets and other datasets with different sample distribution features and sample sizes. Methods The proposed model first extracts and obtains features of multiple scales from the input image through transfer learning, followed by assigning internal weights to the extracted features through the attention mechanism to enhance important features and suppress irrelevant features; finally, the model fuses these features of different scales through the multi-scale fusion architecture we designed to obtain richer semantic information and improve modeling efficiency. Results We evaluated our model and compared it with advanced models on three publicly available chest radiology datasets of different types, one of which is the baseline dataset, on which we constructed the model Covid-DenseNet, and the recognition accuracy on this test set was 96.89%, respectively. With recognition accuracy of 98.02% and 96.21% on the other two publicly available datasets, our model performs better than other advanced models. In addition, the performance of the model was further evaluated on external test sets, trained on data sets with balanced sample distribution (experiment 1) and unbalanced sample distribution (experiment 2), identified on the same external test set, and compared with DenseNet121. The recognition accuracy of the model in experiment 1 and experiment 2 is 80% and 77.5% respectively, which is 3.33% and 4.17% higher than that of DenseNet121 on external test set. On this basis, we also changed the number of samples in experiment 1 and experiment 2, and compared the impact of the change in the number of training set samples on the recognition accuracy of the model on the external test set. The results showed that when the number of samples increased and the sample features became more abundant, the trained Covid-DenseNet performed better on the external test set and the model became more robust. Conclusion Compared with other advanced models, our model has achieved better results on multiple datasets, and the recognition effect on external test sets is also quite good, with good generalization performance and robustness, and with the enrichment of sample features, the robustness of the model is further improved, and it has better clinical practice ability.
Collapse
Affiliation(s)
- Chang-Jiang Zhang
- Taizhou Central Hospital, Affiliated Hospital of Taizhou University, Taizhou, China
- School of Electronic & Information Engineering (School of Big Data Science), Taizhou University, Taizhou, China
| | - Lu-Ting Ruan
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, China
| | - Ling-Feng Ji
- School of Electronic & Information Engineering (School of Big Data Science), Taizhou University, Taizhou, China
| | - Li-Li Feng
- Taizhou Central Hospital, Affiliated Hospital of Taizhou University, Taizhou, China
| | - Fu-Qin Tang
- Taizhou Central Hospital, Affiliated Hospital of Taizhou University, Taizhou, China
| |
Collapse
|
3
|
Hong Q, Lin L, Li Z, Li Q, Yao J, Wu Q, Liu K, Tian J. A Distance Transformation Deep Forest Framework With Hybrid-Feature Fusion for CXR Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:14633-14644. [PMID: 37285251 DOI: 10.1109/tnnls.2023.3280646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Detecting pneumonia, especially coronavirus disease 2019 (COVID-19), from chest X-ray (CXR) images is one of the most effective ways for disease diagnosis and patient triage. The application of deep neural networks (DNNs) for CXR image classification is limited due to the small sample size of the well-curated data. To tackle this problem, this article proposes a distance transformation-based deep forest framework with hybrid-feature fusion (DTDF-HFF) for accurate CXR image classification. In our proposed method, hybrid features of CXR images are extracted in two ways: hand-crafted feature extraction and multigrained scanning. Different types of features are fed into different classifiers in the same layer of the deep forest (DF), and the prediction vector obtained at each layer is transformed to form distance vector based on a self-adaptive scheme. The distance vectors obtained by different classifiers are fused and concatenated with the original features, then input into the corresponding classifier at the next layer. The cascade grows until DTDF-HFF can no longer gain benefits from the new layer. We compare the proposed method with other methods on the public CXR datasets, and the experimental results show that the proposed method can achieve state-of-the art (SOTA) performance. The code will be made publicly available at https://github.com/hongqq/DTDF-HFF.
Collapse
|
4
|
Fu J, Peng H, Li B, Liu Z, Lugu R, Wang J, Ramírez-de-Arellano A. Multitask Adversarial Networks Based on Extensive Nonlinear Spiking Neuron Models. Int J Neural Syst 2024; 34:2450032. [PMID: 38624267 DOI: 10.1142/s0129065724500321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Deep learning technology has been successfully used in Chest X-ray (CXR) images of COVID-19 patients. However, due to the characteristics of COVID-19 pneumonia and X-ray imaging, the deep learning methods still face many challenges, such as lower imaging quality, fewer training samples, complex radiological features and irregular shapes. To address these challenges, this study first introduces an extensive NSNP-like neuron model, and then proposes a multitask adversarial network architecture based on ENSNP-like neurons for chest X-ray images of COVID-19, called MAE-Net. The MAE-Net serves two tasks: (i) converting low-quality CXR images to high-quality images; (ii) classifying CXR images of COVID-19. The adversarial architecture of MAE-Net uses two generators and two discriminators, and two new loss functions have been introduced to guide the optimization of the network. The MAE-Net is tested on four benchmark COVID-19 CXR image datasets and compared them with eight deep learning models. The experimental results show that the proposed MAE-Net can enhance the conversion quality and the accuracy of image classification results.
Collapse
Affiliation(s)
- Jun Fu
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Hong Peng
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Bing Li
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Zhicai Liu
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Rikong Lugu
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Jun Wang
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, P. R. China
| | - Antonio Ramírez-de-Arellano
- Research Group of Natural Computing, Department of Computer Science and Artificial Intelligence, University of Seville, Sevilla 41012, Spain
| |
Collapse
|
5
|
Papanastasiou G, Dikaios N, Huang J, Wang C, Yang G. Is Attention all You Need in Medical Image Analysis? A Review. IEEE J Biomed Health Inform 2024; 28:1398-1411. [PMID: 38157463 DOI: 10.1109/jbhi.2023.3348436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Medical imaging is a key component in clinical diagnosis, treatment planning and clinical trial design, accounting for almost 90% of all healthcare data. CNNs achieved performance gains in medical image analysis (MIA) over the last years. CNNs can efficiently model local pixel interactions and be trained on small-scale MI data. Despite their important advances, typical CNN have relatively limited capabilities in modelling "global" pixel interactions, which restricts their generalisation ability to understand out-of-distribution data with different "global" information. The recent progress of Artificial Intelligence gave rise to Transformers, which can learn global relationships from data. However, full Transformer models need to be trained on large-scale data and involve tremendous computational complexity. Attention and Transformer compartments ("Transf/Attention") which can well maintain properties for modelling global relationships, have been proposed as lighter alternatives of full Transformers. Recently, there is an increasing trend to co-pollinate complementary local-global properties from CNN and Transf/Attention architectures, which led to a new era of hybrid models. The past years have witnessed substantial growth in hybrid CNN-Transf/Attention models across diverse MIA problems. In this systematic review, we survey existing hybrid CNN-Transf/Attention models, review and unravel key architectural designs, analyse breakthroughs, and evaluate current and future opportunities as well as challenges. We also introduced an analysis framework on generalisation opportunities of scientific and clinical impact, based on which new data-driven domain generalisation and adaptation methods can be stimulated.
Collapse
|
6
|
Turk F. RNGU-NET: a novel efficient approach in Segmenting Tuberculosis using chest X-Ray images. PeerJ Comput Sci 2024; 10:e1780. [PMID: 38435571 PMCID: PMC10909175 DOI: 10.7717/peerj-cs.1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/05/2023] [Indexed: 03/05/2024]
Abstract
Tuberculosis affects various tissues, including the lungs, kidneys, and brain. According to the medical report published by the World Health Organization (WHO) in 2020, approximately ten million people have been infected with tuberculosis. U-NET, a preferred method for detecting tuberculosis-like cases, is a convolutional neural network developed for segmentation in biomedical image processing. The proposed RNGU-NET architecture is a new segmentation technique combining the ResNet, Non-Local Block, and Gate Attention Block architectures. In the RNGU-NET design, the encoder phase is strengthened with ResNet, and the decoder phase incorporates the Gate Attention Block. The key innovation lies in the proposed Local Non-Local Block architecture, overcoming the bottleneck issue in U-Net models. In this study, the effectiveness of the proposed model in tuberculosis segmentation is compared to the U-NET, U-NET+ResNet, and RNGU-NET algorithms using the Shenzhen dataset. According to the results, the RNGU-NET architecture achieves the highest accuracy rate of 98.56%, Dice coefficient of 97.21%, and Jaccard index of 96.87% in tuberculosis segmentation. Conversely, the U-NET model exhibits the lowest accuracy and Jaccard index scores, while U-NET+ResNet has the poorest Dice coefficient. These findings underscore the success of the proposed RNGU-NET method in tuberculosis segmentation.
Collapse
Affiliation(s)
- Fuat Turk
- Computer Engineering/Faculty of Engineering and Architecture, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
7
|
Liang J, Feng J, Lin Z, Wei J, Luo X, Wang QM, He B, Chen H, Ye Y. Research on prognostic risk assessment model for acute ischemic stroke based on imaging and multidimensional data. Front Neurol 2023; 14:1294723. [PMID: 38192576 PMCID: PMC10773779 DOI: 10.3389/fneur.2023.1294723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Accurately assessing the prognostic outcomes of patients with acute ischemic stroke and adjusting treatment plans in a timely manner for those with poor prognosis is crucial for intervening in modifiable risk factors. However, there is still controversy regarding the correlation between imaging-based predictions of complications in acute ischemic stroke. To address this, we developed a cross-modal attention module for integrating multidimensional data, including clinical information, imaging features, treatment plans, prognosis, and complications, to achieve complementary advantages. The fused features preserve magnetic resonance imaging (MRI) characteristics while supplementing clinical relevant information, providing a more comprehensive and informative basis for clinical diagnosis and treatment. The proposed framework based on multidimensional data for activity of daily living (ADL) scoring in patients with acute ischemic stroke demonstrates higher accuracy compared to other state-of-the-art network models, and ablation experiments confirm the effectiveness of each module in the framework.
Collapse
Affiliation(s)
- Jiabin Liang
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Jie Feng
- Radiology Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijie Lin
- Laboratory for Intelligent Information Processing, Guangdong University of Technology, Guangzhou, China
| | - Jinbo Wei
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
| | - Bingjie He
- Panyu Health Management Center, Guangzhou, China
| | - Hanwei Chen
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
- Panyu Health Management Center, Guangzhou, China
| | - Yufeng Ye
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| |
Collapse
|
8
|
Ahmad IS, Li N, Wang T, Liu X, Dai J, Chan Y, Liu H, Zhu J, Kong W, Lu Z, Xie Y, Liang X. COVID-19 Detection via Ultra-Low-Dose X-ray Images Enabled by Deep Learning. Bioengineering (Basel) 2023; 10:1314. [PMID: 38002438 PMCID: PMC10669345 DOI: 10.3390/bioengineering10111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The detection of Coronavirus disease 2019 (COVID-19) is crucial for controlling the spread of the virus. Current research utilizes X-ray imaging and artificial intelligence for COVID-19 diagnosis. However, conventional X-ray scans expose patients to excessive radiation, rendering repeated examinations impractical. Ultra-low-dose X-ray imaging technology enables rapid and accurate COVID-19 detection with minimal additional radiation exposure. In this retrospective cohort study, ULTRA-X-COVID, a deep neural network specifically designed for automatic detection of COVID-19 infections using ultra-low-dose X-ray images, is presented. The study included a multinational and multicenter dataset consisting of 30,882 X-ray images obtained from approximately 16,600 patients across 51 countries. It is important to note that there was no overlap between the training and test sets. The data analysis was conducted from 1 April 2020 to 1 January 2022. To evaluate the effectiveness of the model, various metrics such as the area under the receiver operating characteristic curve, receiver operating characteristic, accuracy, specificity, and F1 score were utilized. In the test set, the model demonstrated an AUC of 0.968 (95% CI, 0.956-0.983), accuracy of 94.3%, specificity of 88.9%, and F1 score of 99.0%. Notably, the ULTRA-X-COVID model demonstrated a performance comparable to conventional X-ray doses, with a prediction time of only 0.1 s per image. These findings suggest that the ULTRA-X-COVID model can effectively identify COVID-19 cases using ultra-low-dose X-ray scans, providing a novel alternative for COVID-19 detection. Moreover, the model exhibits potential adaptability for diagnoses of various other diseases.
Collapse
Affiliation(s)
- Isah Salim Ahmad
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (I.S.A.); (T.W.); (X.L.); (J.D.); (Y.C.); (Y.X.)
| | - Na Li
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China; (N.L.); (H.L.); (J.Z.); (W.K.); (Z.L.)
| | - Tangsheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (I.S.A.); (T.W.); (X.L.); (J.D.); (Y.C.); (Y.X.)
| | - Xuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (I.S.A.); (T.W.); (X.L.); (J.D.); (Y.C.); (Y.X.)
| | - Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (I.S.A.); (T.W.); (X.L.); (J.D.); (Y.C.); (Y.X.)
| | - Yinping Chan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (I.S.A.); (T.W.); (X.L.); (J.D.); (Y.C.); (Y.X.)
| | - Haoyang Liu
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China; (N.L.); (H.L.); (J.Z.); (W.K.); (Z.L.)
| | - Junming Zhu
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China; (N.L.); (H.L.); (J.Z.); (W.K.); (Z.L.)
| | - Weibin Kong
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China; (N.L.); (H.L.); (J.Z.); (W.K.); (Z.L.)
| | - Zefeng Lu
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China; (N.L.); (H.L.); (J.Z.); (W.K.); (Z.L.)
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (I.S.A.); (T.W.); (X.L.); (J.D.); (Y.C.); (Y.X.)
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (I.S.A.); (T.W.); (X.L.); (J.D.); (Y.C.); (Y.X.)
| |
Collapse
|
9
|
Li G, Togo R, Ogawa T, Haseyama M. Boosting automatic COVID-19 detection performance with self-supervised learning and batch knowledge ensembling. Comput Biol Med 2023; 158:106877. [PMID: 37019015 PMCID: PMC10063457 DOI: 10.1016/j.compbiomed.2023.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
PROBLEM Detecting COVID-19 from chest X-ray (CXR) images has become one of the fastest and easiest methods for detecting COVID-19. However, the existing methods usually use supervised transfer learning from natural images as a pretraining process. These methods do not consider the unique features of COVID-19 and the similar features between COVID-19 and other pneumonia. AIM In this paper, we want to design a novel high-accuracy COVID-19 detection method that uses CXR images, which can consider the unique features of COVID-19 and the similar features between COVID-19 and other pneumonia. METHODS Our method consists of two phases. One is self-supervised learning-based pertaining; the other is batch knowledge ensembling-based fine-tuning. Self-supervised learning-based pretraining can learn distinguished representations from CXR images without manually annotated labels. On the other hand, batch knowledge ensembling-based fine-tuning can utilize category knowledge of images in a batch according to their visual feature similarities to improve detection performance. Unlike our previous implementation, we introduce batch knowledge ensembling into the fine-tuning phase, reducing the memory used in self-supervised learning and improving COVID-19 detection accuracy. RESULTS On two public COVID-19 CXR datasets, namely, a large dataset and an unbalanced dataset, our method exhibited promising COVID-19 detection performance. Our method maintains high detection accuracy even when annotated CXR training images are reduced significantly (e.g., using only 10% of the original dataset). In addition, our method is insensitive to changes in hyperparameters. CONCLUSION The proposed method outperforms other state-of-the-art COVID-19 detection methods in different settings. Our method can reduce the workloads of healthcare providers and radiologists.
Collapse
Affiliation(s)
- Guang Li
- Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Ren Togo
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Takahiro Ogawa
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Miki Haseyama
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| |
Collapse
|
10
|
Liu Y, Xing W, Zhao M, Lin M. A new classification method for diagnosing COVID-19 pneumonia based on joint CNN features of chest X-ray images and parallel pyramid MLP-mixer module. Neural Comput Appl 2023; 35:1-13. [PMID: 37362575 PMCID: PMC10147369 DOI: 10.1007/s00521-023-08604-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/11/2023] [Indexed: 06/28/2023]
Abstract
During the past three years, the coronavirus disease 2019 (COVID-19) has swept the world. The rapid and accurate recognition of covid-19 pneumonia are ,therefore, of great importance. To handle this problem, we propose a new pipeline of deep learning framework for diagnosing COVID-19 pneumonia via chest X-ray images from normal, COVID-19, and other pneumonia patients. In detail, the self-trained YOLO-v4 network was first used to locate and segment the thoracic region, and the output images were scaled to the same size. Subsequently, the pre-trained convolutional neural network was adopted to extract the features of X-ray images from 13 convolutional layers, which were fused with the original image to form a 14-dimensional image matrix. It was then put into three parallel pyramid multi-layer perceptron (MLP)-Mixer modules for comprehensive feature extraction through spatial fusion and channel fusion based on different scales so as to grasp more extensive feature correlation. Finally, by combining all image features from the 14-channel output, the classification task was achieved using two fully connected layers as well as Softmax classifier for classification. Extensive simulations based on a total of 4099 chest X-ray images were conducted to verify the effectiveness of the proposed method. Experimental results indicated that our proposed method can achieve the best performance in almost all cases, which is good for auxiliary diagnosis of COVID-19 and has great clinical application potential.
Collapse
Affiliation(s)
- Yiwen Liu
- College of Information Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Wenyu Xing
- School of Information Science and Technology, Fudan University, Shanghai, People’s Republic of China
| | - Mingbo Zhao
- College of Information Science and Technology, Donghua University, Shanghai, People’s Republic of China
- Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong People’s Republic of China
| | - Mingquan Lin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong People’s Republic of China
| |
Collapse
|
11
|
Ullah Z, Usman M, Gwak J. MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images. EXPERT SYSTEMS WITH APPLICATIONS 2023; 216:119475. [PMID: 36619348 PMCID: PMC9810379 DOI: 10.1016/j.eswa.2022.119475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/28/2022] [Accepted: 12/22/2022] [Indexed: 06/12/2023]
Abstract
Efficient diagnosis of COVID-19 plays an important role in preventing the spread of the disease. There are three major modalities to diagnose COVID-19 which include polymerase chain reaction tests, computed tomography scans, and chest X-rays (CXRs). Among these, diagnosis using CXRs is the most economical approach; however, it requires extensive human expertise to diagnose COVID-19 in CXRs, which may deprive it of cost-effectiveness. The computer-aided diagnosis with deep learning has the potential to perform accurate detection of COVID-19 in CXRs without human intervention while preserving its cost-effectiveness. Many efforts have been made to develop a highly accurate and robust solution. However, due to the limited amount of labeled data, existing solutions are evaluated on a small set of test dataset. In this work, we proposed a solution to this problem by using a multi-task semi-supervised learning (MTSSL) framework that utilized auxiliary tasks for which adequate data is publicly available. Specifically, we utilized Pneumonia, Lung Opacity, and Pleural Effusion as additional tasks using the ChesXpert dataset. We illustrated that the primary task of COVID-19 detection, for which only limited labeled data is available, can be improved by using this additional data. We further employed an adversarial autoencoder (AAE), which has a strong capability to learn powerful and discriminative features, within our MTSSL framework to maximize the benefit of multi-task learning. In addition, the supervised classification networks in combination with the unsupervised AAE empower semi-supervised learning, which includes a discriminative part in the unsupervised AAE training pipeline. The generalization of our framework is improved due to this semi-supervised learning and thus it leads to enhancement in COVID-19 detection performance. The proposed model is rigorously evaluated on the largest publicly available COVID-19 dataset and experimental results show that the proposed model attained state-of-the-art performance.
Collapse
Affiliation(s)
- Zahid Ullah
- Department of Software, Korea National University of Transportation, Chungju 27469, South Korea
| | - Muhammad Usman
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju 27469, South Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, South Korea
- Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, South Korea
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, South Korea
| |
Collapse
|
12
|
Zgheib R, Chahbandarian G, Kamalov F, Messiry HE, Al-Gindy A. Towards an ML-based semantic IoT for pandemic management: A survey of enabling technologies for COVID-19. Neurocomputing 2023; 528:160-177. [PMID: 36647510 PMCID: PMC9833856 DOI: 10.1016/j.neucom.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/03/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
The connection between humans and digital technologies has been documented extensively in the past decades but needs to be evaluated through the current global pandemic. Artificial Intelligence(AI), with its two strands, Machine Learning (ML) and Semantic Reasoning, has proven to be a great solution to provide efficient ways to prevent, diagnose and limit the spread of COVID-19. IoT solutions have been widely proposed for COVID-19 disease monitoring, infection geolocation, and social applications. In this paper, we investigate the usage of the three technologies for handling the COVID-19 pandemic. For this purpose, we surveyed the existing ML applications and algorithms proposed during the pandemic to detect COVID-19 disease using symptom factors and image processing. The survey includes existing approaches including semantic technologies and IoT systems for COVID-19. Based on the survey result, we classified the main challenges and the solutions that could solve them. The study proposes a conceptual framework for pandemic management and discusses challenges and trends for future research.
Collapse
Affiliation(s)
- Rita Zgheib
- Department of Computer Engineering, Canadian University Dubai, Dubai, United Arab Emirates
| | | | - Firuz Kamalov
- Department of Electrical Engineering, Canadian University Dubai, Dubai, United Arab Emirates
| | - Haythem El Messiry
- University of Science and Technology of Fujairah, Fujairah, United Arab Emirates
- University of Ain Shams, Cairo, Egypt
| | - Ahmed Al-Gindy
- Department of Electrical Engineering, Canadian University Dubai, Dubai, United Arab Emirates
| |
Collapse
|
13
|
Wang X, Han Y, Deng Y. CSGSA-Net: Canonical-structured graph sparse attention network for fetal ECG estimation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Deep Learning for Detecting COVID-19 Using Medical Images. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010019. [PMID: 36671590 PMCID: PMC9854504 DOI: 10.3390/bioengineering10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The global spread of COVID-19 (also known as SARS-CoV-2) is a major international public health crisis [...].
Collapse
|
15
|
Liu S, Cai T, Tang X, Zhang Y, Wang C. COVID-19 diagnosis via chest X-ray image classification based on multiscale class residual attention. Comput Biol Med 2022; 149:106065. [PMID: 36081225 PMCID: PMC9433340 DOI: 10.1016/j.compbiomed.2022.106065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/07/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022]
Abstract
Aiming at detecting COVID-19 effectively, a multiscale class residual attention (MCRA) network is proposed via chest X-ray (CXR) image classification. First, to overcome the data shortage and improve the robustness of our network, a pixel-level image mixing of local regions was introduced to achieve data augmentation and reduce noise. Secondly, multi-scale fusion strategy was adopted to extract global contextual information at different scales and enhance semantic representation. Last but not least, class residual attention was employed to generate spatial attention for each class, which can avoid inter-class interference and enhance related features to further improve the COVID-19 detection. Experimental results show that our network achieves superior diagnostic performance on COVIDx dataset, and its accuracy, PPV, sensitivity, specificity and F1-score are 97.71%, 96.76%, 96.56%, 98.96% and 96.64%, respectively; moreover, the heat maps can endow our deep model with somewhat interpretability.
Collapse
Affiliation(s)
- Shangwang Liu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China.
| | - Tongbo Cai
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China
| | - Xiufang Tang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China
| | - Yangyang Zhang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China
| | - Changgeng Wang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China
| |
Collapse
|
16
|
|
17
|
Management of Smart and Sustainable Cities in the Post-COVID-19 Era: Lessons and Implications. SUSTAINABILITY 2022. [DOI: 10.3390/su14127267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, the concept of smart sustainable governance is wrapped around basic principles such as: (i) transparency, (ii) accountability, (iii) stakeholders’ involvement, and iv) citizens’ participation. It is through these principles that are influenced by information and communication technologies (ICT), Internet of Things (IoT), and artificial intelligence, that the practices employed by citizens and their interaction with electronic government (e-government) are diversified. Previously, the misleading concepts of the smart city implied only the objective of the local level or public officials to utilize technology. However, the recent European experience and research studies have led to a more comprehensive notion that refers to the search for intelligent solutions which allow modern sustainable cities to enhance the quality of services provided to citizens and to improve the management of urban mobility. The smart city is based on the usage of connected sensors, data management, and analytics platforms to improve the quality and functioning of built-environment systems. The aim of this paper is to understand the effects of the pandemic on smart cities and to accentuate major exercises that can be learned for post-COVID sustainable urban management and patterns. The lessons and implications outlined in this paper can be used to enforce social distancing community measures in an effective and timely way, and to optimize the use of resources in smart and sustainable cities in critical situations. The paper offers a conceptual overview and serves as a stepping-stone to extensive research and the deployment of sustainable smart city platforms and intelligent transportation systems (a sub-area of smart city applications) after the COVID-19 pandemic using a case study from Russia. Overall, our results demonstrate that the COVID-19 crisis encompasses an excellent opportunity for urban planners and policy makers to take transformative actions towards creating cities that are more intelligent and sustainable.
Collapse
|
18
|
Ghosh S, Mukherjee A. STROVE: spatial data infrastructure enabled cloud-fog-edge computing framework for combating COVID-19 pandemic. INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING 2022:1-17. [PMID: 35677629 PMCID: PMC9162382 DOI: 10.1007/s11334-022-00458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The outbreak of 2019 novel coronavirus (COVID-19) has triggered unprecedented challenges and put the whole world in a parlous condition. The impacts of COVID-19 is a matter of grave concern in terms of fatality rate, socio-economical condition, health infrastructure. It is obvious that only pharmaceutical solutions (vaccine) cannot eradicate this pandemic completely, and effective strategies regarding lockdown measures, restricted mobility, emergency services to users-in brief data-driven decision system is of utmost importance. This necessitates an efficient data analytics framework, data infrastructure to store, manage pandemic related information, and distributed computing platform to support such data-driven operations. In the past few decades, Internet of Things-based devices and applications have emerged significantly in various sectors including healthcare and time-critical applications. To be specific, health-sensors help to accumulate health-related parameters at different time-instances of a day, the movement sensors keep track of mobility traces of the user, and helps to assist them in varied conditions. The smartphones are equipped with several such sensors and the ability of low-cost connected sensors to cover large areas makes it the most useful component to combat pandemics such as COVID-19. However, analysing and managing the huge amount of data generated by these sensors is a big challenge. In this paper we have proposed a unified framework which has three major components: (i) Spatial Data Infrastructure to manage, store, analyse and share spatio-temporal information with stakeholders efficiently, (ii) Cloud-Fog-Edge-based hierarchical architecture to support preliminary diagnosis, monitoring patients' mobility, health parameters and activities while they are in quarantine or home-based treatment, and (iii) Assisting users in varied emergency situation leveraging efficient data-driven techniques at low-latency and energy consumption. The mobility data analytics along with SDI is required to interpret the movement dynamics of the region and correlate with COVID-19 hotspots. Further, Cloud-Fog-Edge-based system architecture is required to provision healthcare services efficiently and in timely manner. The proposed framework yields encouraging results in taking decisions based on the COVID-19 context and assisting users effectively by enhancing accuracy of detecting suspected infected people by ∼ 24% and reducing delay by ∼ 55% compared to cloud-only system.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
- College of Information Sciences and Technology, The Pennsylvania State University, State College, USA
| | - Anwesha Mukherjee
- Department of Computer Science, Mahishadal Raj College, Mahishadal, West Bengal India
| |
Collapse
|
19
|
Liu J, Qi J, Chen W, Nian Y. Multi-branch fusion auxiliary learning for the detection of pneumonia from chest X-ray images. Comput Biol Med 2022; 147:105732. [PMID: 35779478 PMCID: PMC9212341 DOI: 10.1016/j.compbiomed.2022.105732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
Lung infections caused by bacteria and viruses are infectious and require timely screening and isolation, and different types of pneumonia require different treatment plans. Therefore, finding a rapid and accurate screening method for lung infections is critical. To achieve this goal, we proposed a multi-branch fusion auxiliary learning (MBFAL) method for pneumonia detection from chest X-ray (CXR) images. The MBFAL method was used to perform two tasks through a double-branch network. The first task was to recognize the absence of pneumonia (normal), COVID-19, other viral pneumonia and bacterial pneumonia from CXR images, and the second task was to recognize the three types of pneumonia from CXR images. The latter task was used to assist the learning of the former task to achieve a better recognition effect. In the process of auxiliary parameter updating, the feature maps of different branches were fused after sample screening through label information to enhance the model’s ability to recognize case of pneumonia without impacting its ability to recognize normal cases. Experiments show that an average classification accuracy of 95.61% is achieved using MBFAL. The single class accuracy for normal, COVID-19, other viral pneumonia and bacterial pneumonia was 98.70%, 99.10%, 96.60% and 96.80%, respectively, and the recall was 97.20%, 98.60%, 96.10% and 89.20%, respectively, using the MBFAL method. Compared with the baseline model and the model constructed using the above methods separately, better results for the rapid screening of pneumonia were achieved using MBFAL.
Collapse
|
20
|
Zhao H, Fang Z, Ren J, MacLellan C, Xia Y, Li S, Sun M, Ren K. SC2Net: A Novel Segmentation-based Classification Network for Detection of COVID-19 in Chest X-ray Images. IEEE J Biomed Health Inform 2022; 26:4032-4043. [PMID: 35613061 DOI: 10.1109/jbhi.2022.3177854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The pandemic of COVID-19 has become a global crisis in public health, which has led to a massive number of deaths and severe economic degradation. To suppress the spread of COVID-19, accurate diagnosis at an early stage is crucial. As the popularly used real-time reverse transcriptase polymerase chain reaction (RT-PCR) swab test can be lengthy and inaccurate, chest screening with radiography imaging is still preferred. However, due to limited image data and the difficulty of the early-stage diagnosis, existing models suffer from ineffective feature extraction and poor network convergence and optimisation. To tackle these issues, a segmentation-based COVID-19 classification network, namely SC2Net, is proposed for effective detection of the COVID-19 from chest x-ray (CXR) images. The SC2Net consists of two subnets: a COVID-19 lung segmentation network (CLSeg), and a spatial attention network (SANet). In order to supress the interference from the background, the CLSeg is first applied to segment the lung region from the CXR. The segmented lung region is then fed to the SANet for classification and diagnosis of the COVID-19. As a shallow yet effective classifier, SANet takes the ResNet-18 as the feature extractor and enhances highlevel feature via the proposed spatial attention module. For performance evaluation, the COVIDGR 1.0 dataset is used, which is a high-quality dataset with various severity levels of the COVID-19. Experimental results have shown that, our SC2Net has an average accuracy of 84.23% and an average F1 score of 81.31% in detection of COVID-19, outperforming several state-of-the-art approaches.
Collapse
|