Luo J, Cui W, Xu S, Wang L, Chen H, Li Y. A Cross-Scale Transformer and Triple-View Attention Based Domain-Rectified Transfer Learning for EEG Classification in RSVP Tasks.
IEEE Trans Neural Syst Rehabil Eng 2024;
32:672-683. [PMID:
38285586 DOI:
10.1109/tnsre.2024.3359191]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL.
Collapse