1
|
张 晓, 王 昊, 曾 栋, 边 兆. [A low-dose CT image restoration method based on central guidance and alternating optimization]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:844-852. [PMID: 40294935 PMCID: PMC12037291 DOI: 10.12122/j.issn.1673-4254.2025.04.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Indexed: 04/30/2025]
Abstract
OBJECTIVES We propose a low-dose CT image restoration method based on central guidance and alternating optimization (FedGP). METHODS The FedGP framework revolutionizes the traditional federated learning model by adopting a structure without a fixed central server, where each institution alternatively serves as the central server. This method uses an institution-modulated CT image restoration network as the core of client-side local training. Through a federated learning approach of central guidance and alternating optimization, the central server leverages local labeled data to guide client-side network training to enhance the generalization capability of the CT imaging model across multiple institutions. RESULTS In the low-dose and sparse-view CT image restoration tasks, the FedGP method showed significant advantages in both visual and quantitative evaluation and achieved the highest PSNR (40.25 and 38.84), the highest SSIM (0.95 and 0.92), and the lowest RMSE (2.39 and 2.56). Ablation study of FedGP demonstrated that compared with FedGP(w/o GP) without central guidance, the FedGP method better adapted to data heterogeneity across institutions, thus ensuring robustness and generalization capability of the model in different imaging conditions. CONCLUSIONS FedGP provides a more flexible FL framework to solve the problem of CT imaging heterogeneity and well adapts to multi-institutional data characteristics to improve generalization ability of the model under diverse imaging geometric configurations.
Collapse
|
2
|
Chi J, Sun Z, Meng L, Wang S, Yu X, Wei X, Yang B. Low-Dose CT Image Super-Resolution With Noise Suppression Based on Prior Degradation Estimator and Self-Guidance Mechanism. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:601-617. [PMID: 39231060 DOI: 10.1109/tmi.2024.3454268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The anatomies in low-dose computer tomography (LDCT) are usually distorted during the zooming-in observation process due to the small amount of quantum. Super-resolution (SR) methods have been proposed to enhance qualities of LDCT images as post-processing approaches without increasing radiation damage to patients, but suffered from incorrect prediction of degradation information and incomplete leverage of internal connections within the 3D CT volume, resulting in the imbalance between noise removal and detail sharpening in the super-resolution results. In this paper, we propose a novel LDCT SR network where the degradation information self-parsed from the LDCT slice and the 3D anatomical information captured from the LDCT volume are integrated to guide the backbone network. The prior degradation estimator (PDE) is proposed following the contrastive learning strategy to estimate the degradation features in the LDCT images without paired low-normal dose CT images. The self-guidance fusion module (SGFM) is designed to capture anatomical features with internal 3D consistencies between the squashed images along the coronal, sagittal, and axial views of the CT volume. Finally, the features representing degradation and anatomical structures are integrated to recover the CT images with higher resolutions. We apply the proposed method to the 2016 NIH-AAPM Mayo Clinic LDCT Grand Challenge dataset and our collected LDCT dataset to evaluate its ability to recover LDCT images. Experimental results illustrate the superiority of our network concerning quantitative metrics and qualitative observations, demonstrating its potential in recovering detail-sharp and noise-free CT images with higher resolutions from the practical LDCT images.
Collapse
|
3
|
Liu X, Xie Y, Liu C, Cheng J, Diao S, Tan S, Liang X. Diffusion probabilistic priors for zero-shot low-dose CT image denoising. Med Phys 2025; 52:329-345. [PMID: 39413369 DOI: 10.1002/mp.17431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Denoising low-dose computed tomography (CT) images is a critical task in medical image computing. Supervised deep learning-based approaches have made significant advancements in this area in recent years. However, these methods typically require pairs of low-dose and normal-dose CT images for training, which are challenging to obtain in clinical settings. Existing unsupervised deep learning-based methods often require training with a large number of low-dose CT images or rely on specially designed data acquisition processes to obtain training data. PURPOSE To address these limitations, we propose a novel unsupervised method that only utilizes normal-dose CT images during training, enabling zero-shot denoising of low-dose CT images. METHODS Our method leverages the diffusion model, a powerful generative model. We begin by training a cascaded unconditional diffusion model capable of generating high-quality normal-dose CT images from low-resolution to high-resolution. The cascaded architecture makes the training of high-resolution diffusion models more feasible. Subsequently, we introduce low-dose CT images into the reverse process of the diffusion model as likelihood, combined with the priors provided by the diffusion model and iteratively solve multiple maximum a posteriori (MAP) problems to achieve denoising. Additionally, we propose methods to adaptively adjust the coefficients that balance the likelihood and prior in MAP estimations, allowing for adaptation to different noise levels in low-dose CT images. RESULTS We test our method on low-dose CT datasets of different regions with varying dose levels. The results demonstrate that our method outperforms the state-of-the-art unsupervised method and surpasses several supervised deep learning-based methods. Our method achieves PSNR of 45.02 and 35.35 dB on the abdomen CT dataset and the chest CT dataset, respectively, surpassing the best unsupervised algorithm Noise2Sim in the comparative methods by 0.39 and 0.85 dB, respectively. CONCLUSIONS We propose a novel low-dose CT image denoising method based on diffusion model. Our proposed method only requires normal-dose CT images as training data, greatly alleviating the data scarcity issue faced by most deep learning-based methods. At the same time, as an unsupervised algorithm, our method achieves very good qualitative and quantitative results. The Codes are available in https://github.com/DeepXuan/Dn-Dp.
Collapse
Affiliation(s)
- Xuan Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoqin Xie
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenbin Liu
- Radiation Oncology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jun Cheng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Songhui Diao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shan Tan
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaokun Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
4
|
Liu J, Corti A, Corino VDA, Mainardi L. Lung nodule classification using radiomics model trained on degraded SDCT images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108474. [PMID: 39481281 DOI: 10.1016/j.cmpb.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challenges, we propose a novel approach using synthetic LDCT images generated from standard-dose CT (SDCT) scans from the LIDC-IDRI dataset. Our objective is to develop and validate an interpretable radiomics-based model for distinguishing likely benign from likely malignant pulmonary nodules. METHODS From a total of 1010 CT images (695 SDCTs and 315 LDCTs), we degraded SDCTs in the sinogram domain and obtained 1950 nodules as the training set. The 675 nodules from the LDCTs were stratified into 50%-50% partitions for validation and testing. Radiomic features were extracted from nodules, and three feature sets were assessed using: a) only shape and size (SS) features, b) all features but SS features, and c) all features. A systematic pipeline was developed to optimize the feature set and evaluate multiple machine learning models. Models were trained using degraded SDCT, validated and tested on the LDCT nodules. RESULTS Training a logistic regression model using three SS features yielded the most promising results, achieving on the test set mean balanced accuracy, sensitivity, specificity, and AUC-ROC scores of 0.81, 0.76, 0.85, and 0.87, respectively. CONCLUSIONS Our study demonstrates the feasibility and effectiveness of using synthetic LDCT images for developing a relatively accurate radiomics-based model in lung nodule classification. This approach addresses challenges associated with LDCT screening, offering potential implications for improving lung cancer detection and reducing false positives.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Politecnico di Milano, Via Giuseppe Ponzio, 34, 20133 Milan, Italy.
| | - Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Politecnico di Milano, Via Giuseppe Ponzio, 34, 20133 Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Politecnico di Milano, Via Giuseppe Ponzio, 34, 20133 Milan, Italy; Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Politecnico di Milano, Via Giuseppe Ponzio, 34, 20133 Milan, Italy
| |
Collapse
|
5
|
Sharma V, Awate SP. Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT. Med Image Anal 2024; 97:103291. [PMID: 39121545 DOI: 10.1016/j.media.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
In positron emission tomography (PET) and X-ray computed tomography (CT), reducing radiation dose can cause significant degradation in image quality. For image quality enhancement in low-dose PET and CT, we propose a novel theoretical adversarial and variational deep neural network (DNN) framework relying on expectation maximization (EM) based learning, termed adversarial EM (AdvEM). AdvEM proposes an encoder-decoder architecture with a multiscale latent space, and generalized-Gaussian models enabling datum-specific robust statistical modeling in latent space and image space. The model robustness is further enhanced by including adversarial learning in the training protocol. Unlike typical variational-DNN learning, AdvEM proposes latent-space sampling from the posterior distribution, and uses a Metropolis-Hastings scheme. Unlike existing schemes for PET or CT image enhancement which train using pairs of low-dose images with their corresponding normal-dose versions, we propose a semi-supervised AdvEM (ssAdvEM) framework that enables learning using a small number of normal-dose images. AdvEM and ssAdvEM enable per-pixel uncertainty estimates for their outputs. Empirical analyses on real-world PET and CT data involving many baselines, out-of-distribution data, and ablation studies show the benefits of the proposed framework.
Collapse
Affiliation(s)
- Vatsala Sharma
- Computer Science and Engineering (CSE) Department, Indian Institute of Technology (IIT) Bombay, Mumbai, India.
| | - Suyash P Awate
- Computer Science and Engineering (CSE) Department, Indian Institute of Technology (IIT) Bombay, Mumbai, India
| |
Collapse
|
6
|
Tunissen SAM, Moriakov N, Mikerov M, Smit EJ, Sechopoulos I, Teuwen J. Deep learning-based low-dose CT simulator for non-linear reconstruction methods. Med Phys 2024; 51:6046-6060. [PMID: 38843540 DOI: 10.1002/mp.17232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Computer algorithms that simulate lower-doses computed tomography (CT) images from clinical-dose images are widely available. However, most operate in the projection domain and assume access to the reconstruction method. Access to commercial reconstruction methods may often not be available in medical research, making image-domain noise simulation methods useful. However, the introduction of non-linear reconstruction methods, such as iterative and deep learning-based reconstruction, makes noise insertion in the image domain intractable, as it is not possible to determine the noise textures analytically. PURPOSE To develop a deep learning-based image-domain method to generate low-dose CT images from clinical-dose CT (CDCT) images for non-linear reconstruction methods. METHODS We propose a fully image domain-based method, utilizing a series of three convolutional neural networks (CNNs), which, respectively, denoise CDCT images, predict the standard deviation map of the low-dose image, and generate the noise power spectra (NPS) of local patches throughout the low-dose image. All three models have U-net-based architectures and are partly or fully three-dimensional. As a use case for this study and with no loss of generality, we use paired low-dose and clinical-dose brain CT scans. A dataset of326 $\hskip.001pt 326$ paired scans was retrospectively obtained. All images were acquired with a wide-area detector clinical system and reconstructed using its standard clinical iterative algorithm. Each pair was registered using rigid registration to correct for motion between acquisitions. The data was randomly partitioned into training (251 $\hskip.001pt 251$ samples), validation (25 $\hskip.001pt 25$ samples), and test (50 $\hskip.001pt 50$ samples) sets. The performance of each of these three CNNs was validated separately. For the denoising CNN, the local standard deviation decrease, and bias were determined. For the standard deviation map CNN, the real and estimated standard deviations were compared locally. Finally, for the NPS CNN, the NPS of the synthetic and real low-dose noise were compared inside and outside the skull. Two proof-of-concept denoising studies were performed to determine if the performance of a CNN- or a gradient-based denoising filter on the synthetic low-dose data versus real data differed. RESULTS The denoising network had a median decrease in noise in the cerebrospinal fluid by a factor of1.71 $1.71$ and introduced a median bias of+ 0.7 $ + 0.7$ HU. The network for standard deviation map estimation had a median error of+ 0.1 $ + 0.1$ HU. The noise power spectrum estimation network was able to capture the anisotropic and shift-variant nature of the noise structure by showing good agreement between the synthetic and real low-dose noise and their corresponding power spectra. The two proof of concept denoising studies showed only minimal difference in standard deviation improvement ratio between the synthetic and real low-dose CT images with the median difference between the two being 0.0 and +0.05 for the CNN- and gradient-based filter, respectively. CONCLUSION The proposed method demonstrated good performance in generating synthetic low-dose brain CT scans without access to the projection data or to the reconstruction method. This method can generate multiple low-dose image realizations from one clinical-dose image, so it is useful for validation, optimization, and repeatability studies of image-processing algorithms.
Collapse
Affiliation(s)
| | - Nikita Moriakov
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- AI for Oncology Lab, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mikhail Mikerov
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Ewoud J Smit
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
- Technical Medicine Centre, University of Twente, Enschede, The Netherlands
| | - Jonas Teuwen
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- AI for Oncology Lab, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Depatment of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
7
|
Chi J, Wei X, Sun Z, Yang Y, Yang B. Low-Dose CT Image Super-resolution Network with Noise Inhibition Based on Feedback Feature Distillation Mechanism. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1902-1921. [PMID: 38378965 PMCID: PMC11300784 DOI: 10.1007/s10278-024-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/22/2024]
Abstract
Low-dose computed tomography (LDCT) has been widely used in medical diagnosis. In practice, doctors often zoom in on LDCT slices for clearer lesions and issues, while, a simple zooming operation fails to suppress low-dose artifacts, leading to distorted details. Therefore, numerous LDCT super-resolution (SR) methods have been proposed to promote the quality of zooming without the increase of the dose in CT scanning. However, there are still some drawbacks that need to be addressed in existing methods. First, the region of interest (ROI) is not emphasized due to the lack of guidance in the reconstruction process. Second, the convolutional blocks extracting fix-resolution features fail to concentrate on the essential multi-scale features. Third, a single SR head cannot suppress the residual artifacts. To address these issues, we propose an LDCT CT joint SR and denoising reconstruction network. Our proposed network consists of global dual-guidance attention fusion modules (GDAFMs) and multi-scale anastomosis blocks (MABs). The GDAFM directs the network to focus on ROI by fusing the extra mask guidance and average CT image guidance, while the MAB introduces hierarchical features through anastomosis connections to leverage multi-scale features and promote the feature representation ability. To suppress radial residual artifacts, we optimize our network using the feedback feature distillation mechanism (FFDM) which shares the backbone to learn features corresponding to the denoising task. We apply the proposed method to the 3D-IRCADB and PANCREAS datasets to evaluate its ability on LDCT image SR reconstruction. The experimental results compared with state-of-the-art methods illustrate the superiority of our approach with respect to peak signal-to-noise (PSNR), structural similarity (SSIM), and qualitative observations. Our proposed LDCT joint SR and denoising reconstruction network has been extensively evaluated through ablation, quantitative, and qualitative experiments. The results demonstrate that our method can recover noise-free and detail-sharp images, resulting in better reconstruction results. Code is available at https://github.com/neu-szy/ldct_sr_dn_w_ffdm .
Collapse
Affiliation(s)
- Jianning Chi
- Faculty of Robot Science and Engineering, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China
- Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China
| | - Xiaolin Wei
- Department of Rehabilitation, the Second Hospital of Beijing, No. 36 Youfang Hutong, 100031, Beijing, China
| | - Zhiyi Sun
- Faculty of Robot Science and Engineering, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China.
| | - Yongming Yang
- Faculty of Robot Science and Engineering, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bin Yang
- Department of Radiology, the Second Hospital of Beijing, No. 36 Youfang Hutong, 100031, Beijing, China
| |
Collapse
|
8
|
Zhu B, Yang Y. Quality assessment of abdominal CT images: an improved ResNet algorithm with dual-attention mechanism. Am J Transl Res 2024; 16:3099-3107. [PMID: 39114678 PMCID: PMC11301486 DOI: 10.62347/wkns8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/19/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES To enhance medical image classification using a Dual-attention ResNet model and investigate the impact of attention mechanisms on model performance in a clinical setting. METHODS We utilized a dataset of medical images and implemented a Dual-attention ResNet model, integrating self-attention and spatial attention mechanisms. The model was trained and evaluated using binary and five-level quality classification tasks, leveraging standard evaluation metrics. RESULTS Our findings demonstrated substantial performance improvements with the Dual-attention ResNet model in both classification tasks. In the binary classification task, the model achieved an accuracy of 0.940, outperforming the conventional ResNet model. Similarly, in the five-level quality classification task, the Dual-attention ResNet model attained an accuracy of 0.757, highlighting its efficacy in capturing nuanced distinctions in image quality. CONCLUSIONS The integration of attention mechanisms within the ResNet model resulted in significant performance enhancements, showcasing its potential for improving medical image classification tasks. These results underscore the promising role of attention mechanisms in facilitating more accurate and discriminative analysis of medical images, thus holding substantial promise for clinical applications in radiology and diagnostics.
Collapse
Affiliation(s)
- Boying Zhu
- Shanghai Institute of Technical Physics, Chinese Academy of SciencesShanghai 200083, China
- University of Chinese Academy of SciencesBeijing 100049, China
| | - Yuanyuan Yang
- Shanghai Institute of Technical Physics, Chinese Academy of SciencesShanghai 200083, China
- University of Chinese Academy of SciencesBeijing 100049, China
| |
Collapse
|
9
|
Meng M, Wang Y, Zhu M, Tao X, Mao Z, Liao J, Bian Z, Zeng D, Ma J. DDT-Net: Dose-Agnostic Dual-Task Transfer Network for Simultaneous Low-Dose CT Denoising and Simulation. IEEE J Biomed Health Inform 2024; 28:3613-3625. [PMID: 38478459 DOI: 10.1109/jbhi.2024.3376628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Deep learning (DL) algorithms have achieved unprecedented success in low-dose CT (LDCT) imaging and are expected to be a new generation of CT reconstruction technology. However, most DL-based denoising models often lack the ability to generalize to unseen dose data. Moreover, most simulation tools for LDCT typically operate on proprietary projection data, which is generally not accessible without an established collaboration with CT manufacturers. To alleviate these issues, in this work, we propose a dose-agnostic dual-task transfer network, termed DDT-Net, for simultaneous LDCT denoising and simulation. Concretely, the dual-task learning module is constructed to integrate the LDCT denoising and simulation tasks into a unified optimization framework by learning the joint distribution of LDCT and NDCT data. We approximate the joint distribution of continuous dose level data by training DDT-Net with discrete dose data, which can be generalized to denoising and simulation of unseen dose data. In particular, the mixed-dose training strategy adopted by DDT-Net can promote the denoising performance of lower-dose data. The paired dataset simulated by DDT-Net can be used for data augmentation to further restore the tissue texture of LDCT images. Experimental results on synthetic data and clinical data show that the proposed DDT-Net outperforms competing methods in terms of denoising and generalization performance at unseen dose data, and it also provides a simulation tool that can quickly simulate realistic LDCT images at arbitrary dose levels.
Collapse
|
10
|
Li X, Jing K, Yang Y, Wang Y, Ma J, Zheng H, Xu Z. Noise-Generating and Imaging Mechanism Inspired Implicit Regularization Learning Network for Low Dose CT Reconstrution. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1677-1689. [PMID: 38145543 DOI: 10.1109/tmi.2023.3347258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Low-dose computed tomography (LDCT) helps to reduce radiation risks in CT scanning while maintaining image quality, which involves a consistent pursuit of lower incident rays and higher reconstruction performance. Although deep learning approaches have achieved encouraging success in LDCT reconstruction, most of them treat the task as a general inverse problem in either the image domain or the dual (sinogram and image) domains. Such frameworks have not considered the original noise generation of the projection data and suffer from limited performance improvement for the LDCT task. In this paper, we propose a novel reconstruction model based on noise-generating and imaging mechanism in full-domain, which fully considers the statistical properties of intrinsic noises in LDCT and prior information in sinogram and image domains. To solve the model, we propose an optimization algorithm based on the proximal gradient technique. Specifically, we derive the approximate solutions of the integer programming problem on the projection data theoretically. Instead of hand-crafting the sinogram and image regularizers, we propose to unroll the optimization algorithm to be a deep network. The network implicitly learns the proximal operators of sinogram and image regularizers with two deep neural networks, providing a more interpretable and effective reconstruction procedure. Numerical results demonstrate our proposed method improvements of > 2.9 dB in peak signal to noise ratio, > 1.4% promotion in structural similarity metric, and > 9 HU decrements in root mean square error over current state-of-the-art LDCT methods.
Collapse
|
11
|
Wang L, Meng M, Chen S, Bian Z, Zeng D, Meng D, Ma J. Semi-supervised iterative adaptive network for low-dose CT sinogram recovery. Phys Med Biol 2024; 69:085013. [PMID: 38422540 DOI: 10.1088/1361-6560/ad2ee7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Background.Concern has been expressed regarding the risk of carcinogenesis from medical computed tomography (CT) radiation. Lowering radiation in CT without appropriate modifications often leads to severe noise-induced artifacts in the images. The utilization of deep learning (DL) techniques has achieved promising reconstruction performance in low-dose CT (LDCT) imaging. However, most DL-based algorithms require the pre-collection of a large set of image pairs (low-dose/standard-dose) and the training of networks in an end-to-end supervised manner. Meanwhile, securing such a large volume of paired, well-registered training data in clinical practice is challenging. Moreover, these algorithms often overlook the potential to utilize the abundant information in a large collection of LDCT-only images/sinograms.Methods.In this paper, we introduce a semi-supervised iterative adaptive network (SIA-Net) for LDCT imaging, utilizing both labeled and unlabeled sinograms in a cohesive network framework, integrating supervised and unsupervised learning processes. Specifically, the supervised process captures critical features (i.e. noise distribution and tissue characteristics) latent in the paired sinograms, while the unsupervised process effectively learns these features in the unlabeled low-dose sinograms, employing a conventional weighted least-squares model with a regularization term. Furthermore, the SIA-Net method is designed to adaptively transfer the learned feature distribution from the supervised to the unsupervised process, thereby obtaining a high-fidelity sinogram through iterative adaptive learning. Finally, high-quality CT images can be reconstructed from the refined sinogram using the filtered back-projection algorithm.Results.Experimental results on two clinical datasets indicate that the proposed SIA-Net method achieves competitive performance in terms of noise reduction and structure preservation in LDCT imaging, when compared to traditional supervised learning methods.
Collapse
Affiliation(s)
- Lei Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Mingqiang Meng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangdong, People's Republic of China
| | - Shixuan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangdong, People's Republic of China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangdong, People's Republic of China
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangdong, People's Republic of China
| | - Deyu Meng
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
12
|
An R, Chen K, Li H. Self-supervised dual-domain balanced dropblock-network for low-dose CT denoising. Phys Med Biol 2024; 69:075026. [PMID: 38359449 DOI: 10.1088/1361-6560/ad29ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Objective.Self-supervised learning methods have been successfully applied for low-dose computed tomography (LDCT) denoising, with the advantage of not requiring labeled data. Conventional self-supervised methods operate only in the image domain, ignoring valuable priors in the sinogram domain. Recently proposed dual-domain methods address this limitation but encounter issues with blurring artifacts in the reconstructed image due to the inhomogeneous distribution of noise levels in low-dose sinograms.Approach.To tackle this challenge, this paper proposes SDBDNet, an end-to-end dual-domain self-supervised method for LDCT denoising. With the network designed based on the properties of inhomogeneous noise in low-dose sinograms and the principle of moderate sinogram-domain denoising, SDBDNet achieves effective denoising in dual domains without introducing blurring artifacts. Specifically, we split the sinogram into two subsets based on the positions of detector cells to generate paired training data with high similarity and independent noise. These sub-sinograms are then restored to their original size using 1D interpolation and learning-based correction. To achieve adaptive and moderate smoothing in the sinogram domain, we integrate Dropblock, a type of convolution layer with regularization, into SDBDNet, and set a weighted average between the denoised sinograms and their noisy counterparts, leading to a well-balanced dual-domain approach.Main results.Numerical experiments show that our method outperforms popular non-learning and self-supervised learning methods, demonstrating its effectiveness and superior performance.Significance.While introducing a novel high-performance dual-domain self-supervised LDCT denoising method, this paper also emphasizes and verifies the importance of appropriate sinogram-domain denoising in dual-domain methods, which might inspire future work.
Collapse
Affiliation(s)
- Ran An
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
- Centre for Mathematical Imaging Techniques, University of Liverpool, Liverpool, L69 7ZL, United Kingdom
| | - Ke Chen
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XQ, United Kingdom
| | - Hongwei Li
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
| |
Collapse
|
13
|
Gibson NM, Lee A, Bencsik M. A practical method to simulate realistic reduced-exposure CT images by the addition of computationally generated noise. Radiol Phys Technol 2024; 17:112-123. [PMID: 37955819 DOI: 10.1007/s12194-023-00755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Computed tomography (CT) scanning protocols should be optimized to minimize the radiation dose necessary for imaging. The addition of computationally generated noise to the CT images facilitates dose reduction. The objective of this study was to develop a noise addition method that reproduces the complexity of the noise texture present in clinical images with directionality that varies over images according to the underlying anatomy, requiring only Digital Imaging and Communications in Medicine (DICOM) images as input data and commonly available phantoms for calibration. The developed method is based on the estimation of projection data by forward projection from images, the addition of Poisson noise, and the reconstruction of new images. The method was validated by applying it to images acquired from cylindrical and thoracic phantoms using source images with exposures up to 49 mAs and target images between 39 and 5 mAs. 2D noise spectra were derived for regions of interest in the generated low-dose images and compared with those from the scanner-acquired low-dose images. The root mean square difference between the standard deviations of noise was 4%, except for very low exposures in peripheral regions of the cylindrical phantom. The noise spectra from the corresponding regions of interest exhibited remarkable agreement, indicating that the complex nature of the noise was reproduced. A practical method for adding noise to CT images was presented, and the magnitudes of noise and spectral content were validated. This method may be used to optimize CT imaging.
Collapse
Affiliation(s)
- Nicholas Mark Gibson
- Medical Physics and Clinical Engineering, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Derby Road, Nottingham, NG7 2UH, UK.
| | - Amy Lee
- Physics and Mathematics, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS, UK
| | - Martin Bencsik
- Physics and Mathematics, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS, UK
| |
Collapse
|
14
|
陈 世, 曾 栋, 边 兆, 马 建. [A low- dose CT reconstruction algorithm across different scanners based on federated feature learning]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:333-343. [PMID: 38501419 PMCID: PMC10954523 DOI: 10.12122/j.issn.1673-4254.2024.02.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To propose a low-dose CT reconstruction algorithm across different scanners based on federated feature learning (FedCT) to improve the generalization of deep learning models for multiple CT scanners and protect data privacy. METHODS In the proposed FedCT framework, each client is assigned an inverse Radon transform-based reconstruction model to serve as a local network model that participates in federated learning. A projection- domain specific learning strategy is adopted to preserve the geometry specificity in the local projection domain. Federated feature learning is introduced in the model, which utilizes conditional parameters to mark the local data and feed the conditional parameters into the network for encoding to enhance the generalization of the model in the image domain. RESULTS In the cross-client, multi-scanner, and multi-protocol low-dose CT reconstruction experiments, FedCT achieved the highest PSNR (+2.8048, +2.7301, and +2.7263 compared to the second best federated learning method), the highest SSIM (+0.0009, +0.0165, and +0.0131 in the same comparison), and the lowest RMSE (- 0.6687, - 1.5956, and - 0.9962). In the ablation experiment, compared with the general federated learning strategy, the model with projection-specific learning strategy showed an average improvement by 1.18 on Q1 of the PSNR and an average decrease by 1.36 on Q3 of the RMSE on the test set. The introduction of federated feature learning in FedCT further improved the Q1 of the PSNR on the test set by 3.56 and reduced the Q3 of the RMSE by 1.80. CONCLUSION FedCT provides an effective solution for collaborative construction of CT reconstruction models, which can enhance model generalization and further improve the reconstruction performance on global data while protecting data privacy.
Collapse
Affiliation(s)
- 世宣 陈
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangzhou Key Laboratory of Medical Radioimaging and Detection Technology, Guangzhou 510515, China
| | - 栋 曾
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangzhou Key Laboratory of Medical Radioimaging and Detection Technology, Guangzhou 510515, China
| | - 兆英 边
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangzhou Key Laboratory of Medical Radioimaging and Detection Technology, Guangzhou 510515, China
| | - 建华 马
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangzhou Key Laboratory of Medical Radioimaging and Detection Technology, Guangzhou 510515, China
| |
Collapse
|
15
|
Choi MH, Lee SW, Pak S. Low-dose versus conventional CT urography using dual-source CT with different time-current product values and the same tube voltage: image quality and diagnostic performance in various diagnoses. Br J Radiol 2024; 97:399-407. [PMID: 38308025 DOI: 10.1093/bjr/tqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVES To compare the image quality and diagnostic performance of low-dose CT urography to that of concurrently acquired conventional CT using dual-source CT. METHODS This retrospective study included 357 consecutive CT urograms performed by third-generation dual-source CT in a single institution between April 2020 and August 2021. Two-phase CT images (unenhanced phase, excretory phase with split bolus) were obtained with two different tube current-time products (280 mAs for the conventional-dose protocol and 70 mAs for the low-dose protocol) and the same tube voltage (90 kVp) for the two X-ray tubes. Iterative reconstruction was applied for both protocols. Two radiologists independently performed quantitative and qualitative image quality analysis and made diagnoses. The correlation between the noise level or the effective radiation dose and the patients' body weight was evaluated. RESULTS Significantly higher noise levels resulting in a significantly lower liver signal-to-noise ratio and contrast-to-noise ratio were noted in low-dose images compared to conventional images (P < .001). Qualitative analysis by both radiologists showed significantly lower image quality in low-dose CT than in conventional CT images (P < .001). Patient's body weight was positively correlated with noise and effective radiation dose (P < .001). Diagnostic performance for various diseases, including urolithiasis, inflammation, and mass, was not different between the two protocols. CONCLUSIONS Despite inferior image quality, low-dose CT urography with 70 mAs and 90 kVp and iterative reconstruction demonstrated diagnostic performance equivalent to that of conventional CT for identifying various diseases of the urinary tract. ADVANCES IN KNOWLEDGE Low-dose CT (25% radiation dose) with low tube current demonstrated diagnostic performance comparable to that of conventional CT for a variety of urinary tract diseases.
Collapse
Affiliation(s)
- Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Sheen-Woo Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Seongyong Pak
- Siemens Healthineers Ltd, Seoul 06620, Republic of Korea
| |
Collapse
|
16
|
Gao Q, Li Z, Zhang J, Zhang Y, Shan H. CoreDiff: Contextual Error-Modulated Generalized Diffusion Model for Low-Dose CT Denoising and Generalization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:745-759. [PMID: 37773896 DOI: 10.1109/tmi.2023.3320812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Low-dose computed tomography (CT) images suffer from noise and artifacts due to photon starvation and electronic noise. Recently, some works have attempted to use diffusion models to address the over-smoothness and training instability encountered by previous deep-learning-based denoising models. However, diffusion models suffer from long inference time due to a large number of sampling steps involved. Very recently, cold diffusion model generalizes classical diffusion models and has greater flexibility. Inspired by cold diffusion, this paper presents a novel COntextual eRror-modulated gEneralized Diffusion model for low-dose CT (LDCT) denoising, termed CoreDiff. First, CoreDiff utilizes LDCT images to displace the random Gaussian noise and employs a novel mean-preserving degradation operator to mimic the physical process of CT degradation, significantly reducing sampling steps thanks to the informative LDCT images as the starting point of the sampling process. Second, to alleviate the error accumulation problem caused by the imperfect restoration operator in the sampling process, we propose a novel ContextuaL Error-modulAted Restoration Network (CLEAR-Net), which can leverage contextual information to constrain the sampling process from structural distortion and modulate time step embedding features for better alignment with the input at the next time step. Third, to rapidly generalize the trained model to a new, unseen dose level with as few resources as possible, we devise a one-shot learning framework to make CoreDiff generalize faster and better using only one single LDCT image (un)paired with normal-dose CT (NDCT). Extensive experimental results on four datasets demonstrate that our CoreDiff outperforms competing methods in denoising and generalization performance, with clinically acceptable inference time. Source code is made available at https://github.com/qgao21/CoreDiff.
Collapse
|
17
|
Chao L, Wang Y, Zhang T, Shan W, Zhang H, Wang Z, Li Q. Joint denoising and interpolating network for low-dose cone-beam CT reconstruction under hybrid dose-reduction strategy. Comput Biol Med 2024; 168:107830. [PMID: 38086140 DOI: 10.1016/j.compbiomed.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/12/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Cone-beam computed tomography (CBCT) is generally reconstructed with hundreds of two-dimensional X-Ray projections through the FDK algorithm, and its excessive ionizing radiation of X-Ray may impair patients' health. Two common dose-reduction strategies are to either lower the intensity of X-Ray, i.e., low-intensity CBCT, or reduce the number of projections, i.e., sparse-view CBCT. Existing efforts improve the low-dose CBCT images only under a single dose-reduction strategy. In this paper, we argue that applying the two strategies simultaneously can reduce dose in a gentle manner and avoid the extreme degradation of the projection data in a single dose-reduction strategy, especially under ultra-low-dose situations. Therefore, we develop a Joint Denoising and Interpolating Network (JDINet) in projection domain to improve the CBCT quality with the hybrid low-intensity and sparse-view projections. Specifically, JDINet mainly includes two important components, i.e., denoising module and interpolating module, to respectively suppress the noise caused by the low-intensity strategy and interpolate the missing projections caused by the sparse-view strategy. Because FDK actually utilizes the projection information after ramp-filtering, we develop a filtered structural similarity constraint to help JDINet focus on the reconstruction-required information. Afterward, we employ a Postprocessing Network (PostNet) in the reconstruction domain to refine the CBCT images that are reconstructed with denoised and interpolated projections. In general, a complete CBCT reconstruction framework is built with JDINet, FDK, and PostNet. Experiments demonstrate that our framework decreases RMSE by approximately 8 %, 15 %, and 17 %, respectively, on the 1/8, 1/16, and 1/32 dose data, compared to the latest methods. In conclusion, our learning-based framework can be deeply imbedded into the CBCT systems to promote the development of CBCT. Source code is available at https://github.com/LianyingChao/FusionLowDoseCBCT.
Collapse
Affiliation(s)
- Lianying Chao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanli Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - TaoTao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China; Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Wenqi Shan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haobo Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwei Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Ikuta M, Zhang J. A Deep Convolutional Gated Recurrent Unit for CT Image Reconstruction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:10612-10625. [PMID: 35522637 DOI: 10.1109/tnnls.2022.3169569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computed tomography (CT) is one of the most important medical imaging technologies in use today. Most commercial CT products use a technique known as the filtered backprojection (FBP) that is fast and can produce decent image quality when an X-ray dose is high. However, the FBP is not good enough on low-dose X-ray CT imaging because the CT image reconstruction problem becomes more stochastic. A more effective reconstruction technique proposed recently and implemented in a limited number of CT commercial products is an iterative reconstruction (IR). The IR technique is based on a Bayesian formulation of the CT image reconstruction problem with an explicit model of the CT scanning, including its stochastic nature, and a prior model that incorporates our knowledge about what a good CT image should look like. However, constructing such prior knowledge is more complicated than it seems. In this article, we propose a novel neural network for CT image reconstruction. The network is based on the IR formulation and constructed with a recurrent neural network (RNN). Specifically, we transform the gated recurrent unit (GRU) into a neural network performing CT image reconstruction. We call it "GRU reconstruction." This neural network conducts concurrent dual-domain learning. Many deep learning (DL)-based methods in medical imaging are single-domain learning, but dual-domain learning performs better because it learns from both the sinogram and the image domain. In addition, we propose backpropagation through stage (BPTS) as a new RNN backpropagation algorithm. It is similar to the backpropagation through time (BPTT) of an RNN; however, it is tailored for iterative optimization. Results from extensive experiments indicate that our proposed method outperforms conventional model-based methods, single-domain DL methods, and state-of-the-art DL techniques in terms of the root mean squared error (RMSE), the peak signal-to-noise ratio (PSNR), and the structure similarity (SSIM) and in terms of visual appearance.
Collapse
|
19
|
Huang Z, Li W, Wang Y, Liu Z, Zhang Q, Jin Y, Wu R, Quan G, Liang D, Hu Z, Zhang N. MLNAN: Multi-level noise-aware network for low-dose CT imaging implemented with constrained cycle Wasserstein generative adversarial networks. Artif Intell Med 2023; 143:102609. [PMID: 37673577 DOI: 10.1016/j.artmed.2023.102609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 09/08/2023]
Abstract
Low-dose CT techniques attempt to minimize the radiation exposure of patients by estimating the high-resolution normal-dose CT images to reduce the risk of radiation-induced cancer. In recent years, many deep learning methods have been proposed to solve this problem by building a mapping function between low-dose CT images and their high-dose counterparts. However, most of these methods ignore the effect of different radiation doses on the final CT images, which results in large differences in the intensity of the noise observable in CT images. What'more, the noise intensity of low-dose CT images exists significantly differences under different medical devices manufacturers. In this paper, we propose a multi-level noise-aware network (MLNAN) implemented with constrained cycle Wasserstein generative adversarial networks to recovery the low-dose CT images under uncertain noise levels. Particularly, the noise-level classification is predicted and reused as a prior pattern in generator networks. Moreover, the discriminator network introduces noise-level determination. Under two dose-reduction strategies, experiments to evaluate the performance of proposed method are conducted on two datasets, including the simulated clinical AAPM challenge datasets and commercial CT datasets from United Imaging Healthcare (UIH). The experimental results illustrate the effectiveness of our proposed method in terms of noise suppression and structural detail preservation compared with several other deep-learning based methods. Ablation studies validate the effectiveness of the individual components regarding the afforded performance improvement. Further research for practical clinical applications and other medical modalities is required in future works.
Collapse
Affiliation(s)
- Zhenxing Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenbo Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunling Wang
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Qiyang Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuxi Jin
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruodai Wu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, China
| | - Guotao Quan
- Shanghai United Imaging Healthcare, Shanghai 201807, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
20
|
Niu C, Li M, Fan F, Wu W, Guo X, Lyu Q, Wang G. Noise Suppression With Similarity-Based Self-Supervised Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1590-1602. [PMID: 37015446 PMCID: PMC10288330 DOI: 10.1109/tmi.2022.3231428] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Image denoising is a prerequisite for downstream tasks in many fields. Low-dose and photon-counting computed tomography (CT) denoising can optimize diagnostic performance at minimized radiation dose. Supervised deep denoising methods are popular but require paired clean or noisy samples that are often unavailable in practice. Limited by the independent noise assumption, current self-supervised denoising methods cannot process correlated noises as in CT images. Here we propose the first-of-its-kind similarity-based self-supervised deep denoising approach, referred to as Noise2Sim, that works in a nonlocal and nonlinear fashion to suppress not only independent but also correlated noises. Theoretically, Noise2Sim is asymptotically equivalent to supervised learning methods under mild conditions. Experimentally, Nosie2Sim recovers intrinsic features from noisy low-dose CT and photon-counting CT images as effectively as or even better than supervised learning methods on practical datasets visually, quantitatively and statistically. Noise2Sim is a general self-supervised denoising approach and has great potential in diverse applications.
Collapse
|
21
|
Tivnan M, Gang GJ, Wang W, Noël P, Sulam J, Webster Stayman J. Tunable neural networks for CT image formation. J Med Imaging (Bellingham) 2023; 10:033501. [PMID: 37151806 PMCID: PMC10157542 DOI: 10.1117/1.jmi.10.3.033501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Optimization of CT image quality typically involves balancing variance and bias. In traditional filtered back-projection, this trade-off is controlled by the filter cutoff frequency. In model-based iterative reconstruction, the regularization strength parameter often serves the same function. Deep neural networks (DNNs) typically do not provide this tunable control over output image properties. Models are often trained to minimize the expected mean squared error, which penalizes both variance and bias in image outputs but does not offer any control over the trade-off between the two. We propose a method for controlling the output image properties of neural networks with a new loss function called weighted covariance and bias (WCB). Our proposed method uses multiple noise realizations of the input images during training to allow for separate weighting matrices for the variance and bias penalty terms. Moreover, we show that tuning these weights enables targeted penalization of specific image features with spatial frequency domain penalties. To evaluate our method, we present a simulation study using digital anthropomorphic phantoms, physical simulation of CT measurements, and image formation with various algorithms. We show that the WCB loss function offers a greater degree of control over trade-offs between variance and bias, whereas mean-squared error provides only one specific image quality configuration. We also show that WCB can be used to control specific image properties including variance, bias, spatial resolution, and the noise correlation of neural network outputs. Finally, we present a method to optimize the proposed weights for a spiculated lung nodule shape discrimination task. Our results demonstrate this new image quality can control the image properties of DNN outputs and optimize image quality for task-specific performance.
Collapse
Affiliation(s)
- Matthew Tivnan
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Grace J. Gang
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Wenying Wang
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Peter Noël
- Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Jeremias Sulam
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - J. Webster Stayman
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| |
Collapse
|
22
|
Ikuta M, Zhang J. TextureWGAN: texture preserving WGAN with multitask regularizer for computed tomography inverse problems. J Med Imaging (Bellingham) 2023; 10:024003. [PMID: 36895762 PMCID: PMC9990134 DOI: 10.1117/1.jmi.10.2.024003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
Purpose This paper presents a deep learning (DL) based method called TextureWGAN. It is designed to preserve image texture while maintaining high pixel fidelity for computed tomography (CT) inverse problems. Over-smoothed images by postprocessing algorithms have been a well-known problem in the medical imaging industry. Therefore, our method tries to solve the over-smoothing problem without compromising pixel fidelity. Approach The TextureWGAN extends from Wasserstein GAN (WGAN). The WGAN can create an image that looks like a genuine image. This aspect of the WGAN helps preserve image texture. However, an output image from the WGAN is not correlated to the corresponding ground truth image. To solve this problem, we introduce the multitask regularizer (MTR) to the WGAN framework to make a generated image highly correlated to the corresponding ground truth image so that the TextureWGAN can achieve high-level pixel fidelity. The MTR is capable of using multiple objective functions. In this research, we adopt a mean squared error (MSE) loss to maintain pixel fidelity. We also use a perception loss to improve the look and feel of result images. Furthermore, the regularization parameters in the MTR are trained along with generator network weights to maximize the performance of the TextureWGAN generator. Results The proposed method was evaluated in CT image reconstruction applications in addition to super-resolution and image-denoising applications. We conducted extensive qualitative and quantitative evaluations. We used PSNR and SSIM for pixel fidelity analysis and the first-order and the second-order statistical texture analysis for image texture. The results show that the TextureWGAN is more effective in preserving image texture compared with other well-known methods such as the conventional CNN and nonlocal mean filter (NLM). In addition, we demonstrate that TextureWGAN can achieve competitive pixel fidelity performance compared with CNN and NLM. The CNN with MSE loss can attain high-level pixel fidelity, but it often damages image texture. Conclusions TextureWGAN can preserve image texture while maintaining pixel fidelity. The MTR is not only helpful to stabilize the TextureWGAN's generator training but also maximizes the generator performance.
Collapse
Affiliation(s)
- Masaki Ikuta
- University of Wisconsin - Milwaukee, Department of Electrical Engineering and Computer Science, Milwaukee, Wisconsin, United States
- GE Healthcare, Computed Tomography Engineering - Image Reconstruction, Waukesha, Wisconsin, United States
| | - Jun Zhang
- University of Wisconsin - Milwaukee, Department of Electrical Engineering and Computer Science, Milwaukee, Wisconsin, United States
| |
Collapse
|
23
|
Tivnan M, Lee TC, Zhang R, Boedeker K, Cai L, Sulam J, Stayman JW. Task-Driven CT Image Quality Optimization for Low-Contrast Lesion Detectability with Tunable Neural Networks. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12463:124631M. [PMID: 38188182 PMCID: PMC10769460 DOI: 10.1117/12.2653936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Low-contrast lesions are difficult to detect in noisy low-dose CT images. Improving CT image quality for this detection task has the potential to improve diagnostic accuracy and patient outcomes. In this work, we use tunable neural networks for CT image restoration with a hyperparameter to control the variance/bias tradeoff. We use clinical images from a super-high-resolution normal-dose CT scan to synthesize low-contrast low-dose CT images for supervised training of deep learning CT reconstruction models. Those models are trained using with multiple noise realizations so that variance and bias can be penalized separately. We use a training loss function with one hyperparameter called the denoising level, which controls the variance/bias tradeoff. Finally, we evaluate the CT image quality to find the optimal denoising level for low-contrast lesion detectability. We evaluate performance using a shallow neural network model classification model to represent a suboptimal image observer. Our results indicate that the optimal networks for low-contrast lesion detectability are those that prioritize bias reduction rather than mean-squared error, which demonstrates the potential clinical benefit of our proposed tunable neural networks.
Collapse
Affiliation(s)
- Matthew Tivnan
- Department of Biomedical Engineering, Johns Hopkins University. Baltimore, MD, USA
- Canon Medical Research, USA. Vernon Hills, IL, USA
| | | | | | | | - Liang Cai
- Canon Medical Research, USA. Vernon Hills, IL, USA
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University. Baltimore, MD, USA
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University. Baltimore, MD, USA
| |
Collapse
|
24
|
Alkabbany I, Ali AM, Mohamed M, Elshazly SM, Farag A. An AI-Based Colonic Polyp Classifier for Colorectal Cancer Screening Using Low-Dose Abdominal CT. SENSORS (BASEL, SWITZERLAND) 2022; 22:9761. [PMID: 36560132 PMCID: PMC9782078 DOI: 10.3390/s22249761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Among the non-invasive Colorectal cancer (CRC) screening approaches, Computed Tomography Colonography (CTC) and Virtual Colonoscopy (VC), are much more accurate. This work proposes an AI-based polyp detection framework for virtual colonoscopy (VC). Two main steps are addressed in this work: automatic segmentation to isolate the colon region from its background, and automatic polyp detection. Moreover, we evaluate the performance of the proposed framework on low-dose Computed Tomography (CT) scans. We build on our visualization approach, Fly-In (FI), which provides "filet"-like projections of the internal surface of the colon. The performance of the Fly-In approach confirms its ability with helping gastroenterologists, and it holds a great promise for combating CRC. In this work, these 2D projections of FI are fused with the 3D colon representation to generate new synthetic images. The synthetic images are used to train a RetinaNet model to detect polyps. The trained model has a 94% f1-score and 97% sensitivity. Furthermore, we study the effect of dose variation in CT scans on the performance of the the FI approach in polyp visualization. A simulation platform is developed for CTC visualization using FI, for regular CTC and low-dose CTC. This is accomplished using a novel AI restoration algorithm that enhances the Low-Dose CT images so that a 3D colon can be successfully reconstructed and visualized using the FI approach. Three senior board-certified radiologists evaluated the framework for the peak voltages of 30 KV, and the average relative sensitivities of the platform were 92%, whereas the 60 KV peak voltage produced average relative sensitivities of 99.5%.
Collapse
Affiliation(s)
- Islam Alkabbany
- Computer Vision and Image Processing Laboratory, University of Louisville, Louisville, KY 40292, USA
| | - Asem M. Ali
- Computer Vision and Image Processing Laboratory, University of Louisville, Louisville, KY 40292, USA
| | - Mostafa Mohamed
- Computer Vision and Image Processing Laboratory, University of Louisville, Louisville, KY 40292, USA
| | | | - Aly Farag
- Computer Vision and Image Processing Laboratory, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
25
|
Zhu M, Mao Z, Li D, Wang Y, Zeng D, Bian Z, Ma J. Structure-preserved meta-learning uniting network for improving low-dose CT quality. Phys Med Biol 2022; 67. [PMID: 36351294 DOI: 10.1088/1361-6560/aca194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2022] [Indexed: 11/10/2022]
Abstract
Objective.Deep neural network (DNN) based methods have shown promising performances for low-dose computed tomography (LDCT) imaging. However, most of the DNN-based methods are trained on simulated labeled datasets, and the low-dose simulation algorithms are usually designed based on simple statistical models which deviate from the real clinical scenarios, which could lead to issues of overfitting, instability and poor robustness. To address these issues, in this work, we present a structure-preserved meta-learning uniting network (shorten as 'SMU-Net') to suppress noise-induced artifacts and preserve structure details in the unlabeled LDCT imaging task in real scenarios.Approach.Specifically, the presented SMU-Net contains two networks, i.e., teacher network and student network. The teacher network is trained on simulated labeled dataset and then helps the student network train with the unlabeled LDCT images via the meta-learning strategy. The student network is trained on real LDCT dataset with the pseudo-labels generated by the teacher network. Moreover, the student network adopts the Co-teaching strategy to improve the robustness of the presented SMU-Net.Main results.We validate the proposed SMU-Net method on three public datasets and one real low-dose dataset. The visual image results indicate that the proposed SMU-Net has superior performance on reducing noise-induced artifacts and preserving structure details. And the quantitative results exhibit that the presented SMU-Net method generally obtains the highest signal-to-noise ratio (PSNR), the highest structural similarity index measurement (SSIM), and the lowest root-mean-square error (RMSE) values or the lowest natural image quality evaluator (NIQE) scores.Significance.We propose a meta learning strategy to obtain high-quality CT images in the LDCT imaging task, which is designed to take advantage of unlabeled CT images to promote the reconstruction performance in the LDCT environments.
Collapse
Affiliation(s)
- Manman Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zerui Mao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Danyang Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yongbo Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
26
|
Liu X, Liang X, Deng L, Tan S, Xie Y. Learning low-dose CT degradation from unpaired data with flow-based model. Med Phys 2022; 49:7516-7530. [PMID: 35880375 DOI: 10.1002/mp.15886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There has been growing interest in low-dose computed tomography (LDCT) for reducing the X-ray radiation to patients. However, LDCT always suffers from complex noise in reconstructed images. Although deep learning-based methods have shown their strong performance in LDCT denoising, most of them require a large number of paired training data of normal-dose CT (NDCT) images and LDCT images, which are hard to acquire in the clinic. Lack of paired training data significantly undermines the practicability of supervised deep learning-based methods. To alleviate this problem, unsupervised or weakly supervised deep learning-based methods are required. PURPOSE We aimed to propose a method that achieves LDCT denoising without training pairs. Specifically, we first trained a neural network in a weakly supervised manner to simulate LDCT images from NDCT images. Then, simulated training pairs could be used for supervised deep denoising networks. METHODS We proposed a weakly supervised method to learn the degradation of LDCT from unpaired LDCT and NDCT images. Concretely, LDCT and normal-dose images were fed into one shared flow-based model and projected to the latent space. Then, the degradation between low-dose and normal-dose images was modeled in the latent space. Finally, the model was trained by minimizing the negative log-likelihood loss with no requirement of paired training data. After training, an NDCT image can be input to the trained flow-based model to generate the corresponding LDCT image. The simulated image pairs of NDCT and LDCT can be further used to train supervised denoising neural networks for test. RESULTS Our method achieved much better performance on LDCT image simulation compared with the most widely used image-to-image translation method, CycleGAN, according to the radial noise power spectrum. The simulated image pairs could be used for any supervised LDCT denoising neural networks. We validated the effectiveness of our generated image pairs on a classic convolutional neural network, REDCNN, and a novel transformer-based model, TransCT. Our method achieved mean peak signal-to-noise ratio (PSNR) of 24.43dB, mean structural similarity (SSIM) of 0.785 on an abdomen CT dataset, mean PSNR of 33.88dB, mean SSIM of 0.797 on a chest CT dataset, which outperformed several traditional CT denoising methods, the same network trained by CycleGAN-generated data, and a novel transfer learning method. Besides, our method was on par with the supervised networks in terms of visual effects. CONCLUSION We proposed a flow-based method to learn LDCT degradation from only unpaired training data. It achieved impressive performance on LDCT synthesis. Next, we could train neural networks with the generated paired data for LDCT denoising. The denoising results are better than traditional and weakly supervised methods, comparable to supervised deep learning methods.
Collapse
Affiliation(s)
- Xuan Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaokun Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Deng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shan Tan
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoqin Xie
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
27
|
Chi J, Sun Z, Wang H, Lyu P, Yu X, Wu C. CT image super-resolution reconstruction based on global hybrid attention. Comput Biol Med 2022; 150:106112. [PMID: 36209555 DOI: 10.1016/j.compbiomed.2022.106112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
Computer tomography (CT) has played an essential role in the field of medical diagnosis, but the blurry edges and unclear textures in traditional CT images usually interfere the subsequent judgement from radiologists or clinicians. Deep learning based image super-resolution methods have been applied for CT image restoration recently. However, different levels of information of CT image details are mixed and difficult to be mapped from deep features by traditional convolution operations. Moreover, features representing regions of interest (ROIs) in CT images are treated equally as those for background, resulting in low concentration of meaningful features and high redundancy of computation. To tackle these issues, a CT image super-resolution network is proposed based on hybrid attention mechanism and global feature fusion, which consists of the following three parts: 1) stacked Swin Transformer blocks are used as the backbone to extract initial features from the degraded CT image; 2) a multi-branch hierarchical self-attention module (MHSM) is proposed to adaptively map multi-level features representing different levels of image information from the initial features and establish the relationship between these features through a self-attention mechanism, where three branches apply different strategies of integrating convolution, down-sampling and up-sampling operations according to three different scale factors; 3) a multidimensional local topological feature enhancement module (MLTEM) is proposed and plugged into the end of the backbone to refine features in the channel and spatial dimension simultaneously, so that the features representing ROIs could be enhanced while meaningless ones eliminated. Experimental results demonstrate that our method outperform the state-of-the-art super-resolution methods on restoring CT images with respect to peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) indices.
Collapse
Affiliation(s)
- Jianning Chi
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110167, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang 110167, China.
| | - Zhiyi Sun
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110167, China.
| | - Huan Wang
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110167, China.
| | - Pengfei Lyu
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110167, China.
| | - Xiaosheng Yu
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110167, China.
| | - Chengdong Wu
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110167, China.
| |
Collapse
|
28
|
Zeng D, Zeng C, Zeng Z, Li S, Deng Z, Chen S, Bian Z, Ma J. Basis and current state of computed tomography perfusion imaging: a review. Phys Med Biol 2022; 67. [PMID: 35926503 DOI: 10.1088/1361-6560/ac8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Computed tomography perfusion (CTP) is a functional imaging that allows for providing capillary-level hemodynamics information of the desired tissue in clinics. In this paper, we aim to offer insight into CTP imaging which covers the basics and current state of CTP imaging, then summarize the technical applications in the CTP imaging as well as the future technological potential. At first, we focus on the fundamentals of CTP imaging including systematically summarized CTP image acquisition and hemodynamic parameter map estimation techniques. A short assessment is presented to outline the clinical applications with CTP imaging, and then a review of radiation dose effect of the CTP imaging on the different applications is presented. We present a categorized methodology review on known and potential solvable challenges of radiation dose reduction in CTP imaging. To evaluate the quality of CTP images, we list various standardized performance metrics. Moreover, we present a review on the determination of infarct and penumbra. Finally, we reveal the popularity and future trend of CTP imaging.
Collapse
Affiliation(s)
- Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Cuidie Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhixiong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhen Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| |
Collapse
|
29
|
Shibata H, Hanaoka S, Nomura Y, Nakao T, Takenaga T, Hayashi N, Abe O. On the Simulation of Ultra-Sparse-View and Ultra-Low-Dose Computed Tomography with Maximum a Posteriori Reconstruction Using a Progressive Flow-Based Deep Generative Model. Tomography 2022; 8:2129-2152. [PMID: 36136875 PMCID: PMC9498355 DOI: 10.3390/tomography8050179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Ultra-sparse-view computed tomography (CT) algorithms can reduce radiation exposure for patients, but these algorithms lack an explicit cycle consistency loss minimization and an explicit log-likelihood maximization in testing. Here, we propose X2CT-FLOW for the maximum a posteriori (MAP) reconstruction of a three-dimensional (3D) chest CT image from a single or a few two-dimensional (2D) projection images using a progressive flow-based deep generative model, especially for ultra-low-dose protocols. The MAP reconstruction can simultaneously optimize the cycle consistency loss and the log-likelihood. We applied X2CT-FLOW for the reconstruction of 3D chest CT images from biplanar projection images without noise contamination (assuming a standard-dose protocol) and with strong noise contamination (assuming an ultra-low-dose protocol). We simulated an ultra-low-dose protocol. With the standard-dose protocol, our images reconstructed from 2D projected images and 3D ground-truth CT images showed good agreement in terms of structural similarity (SSIM, 0.7675 on average), peak signal-to-noise ratio (PSNR, 25.89 dB on average), mean absolute error (MAE, 0.02364 on average), and normalized root mean square error (NRMSE, 0.05731 on average). Moreover, with the ultra-low-dose protocol, our images reconstructed from 2D projected images and the 3D ground-truth CT images also showed good agreement in terms of SSIM (0.7008 on average), PSNR (23.58 dB on average), MAE (0.02991 on average), and NRMSE (0.07349 on average).
Collapse
Affiliation(s)
- Hisaichi Shibata
- The Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Correspondence:
| | - Shouhei Hanaoka
- The Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukihiro Nomura
- The Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- The Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takahiro Nakao
- The Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomomi Takenaga
- The Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Naoto Hayashi
- The Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Abe
- The Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
30
|
Shanker RRBJ, Zhang MH, Ginat DT. Semantic Segmentation of Extraocular Muscles on Computed Tomography Images Using Convolutional Neural Networks. Diagnostics (Basel) 2022; 12:1553. [PMID: 35885459 PMCID: PMC9325103 DOI: 10.3390/diagnostics12071553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
Computed tomography (CT) imaging of the orbit with measurement of extraocular muscle size can be useful for diagnosing and monitoring conditions that affect extraocular muscles. However, the manual measurement of extraocular muscle size can be time-consuming and tedious. The purpose of this study is to evaluate the effectiveness of deep learning algorithms in segmenting extraocular muscles and measuring muscle sizes from CT images. Consecutive CT scans of orbits from 210 patients between 1 January 2010 and 31 December 2019 were used. Extraocular muscles were manually annotated in the studies, which were then used to train the deep learning algorithms. The proposed U-net algorithm can segment extraocular muscles on coronal slices of 32 test samples with an average dice score of 0.92. The thickness and area measurements from predicted segmentations had a mean absolute error (MAE) of 0.35 mm and 3.87 mm2, respectively, with a corresponding mean absolute percentage error (MAPE) of 7 and 9%, respectively. On qualitative analysis of 32 test samples, 30 predicted segmentations from the U-net algorithm were accepted while 2 were rejected. Based on the results from quantitative and qualitative evaluation, this study demonstrates that CNN-based deep learning algorithms are effective at segmenting extraocular muscles and measuring muscles sizes.
Collapse
Affiliation(s)
| | - Michael H. Zhang
- Department of Radiology, University of Chicago, Chicago, IL 60615, USA; (R.R.B.J.S.); (M.H.Z.)
| | - Daniel T. Ginat
- Department of Radiology, Section of Neuroradiology, University of Chicago, Chicago, IL 60615, USA
| |
Collapse
|
31
|
Li S, Zeng D, Bian Z, Ma J. Noise modelling of perfusion CT images for robust hemodynamic parameter estimations. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6d9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The radiation dose of cerebral perfusion computed tomography (CPCT) imaging can be reduced by lowering the milliampere-second or kilovoltage peak. However, dose reduction can decrease image quality due to excessive x-ray quanta fluctuation and reduced detector signal relative to system electronic noise, thereby influencing the accuracy of hemodynamic parameters for patients with acute stroke. Existing low-dose CPCT denoising methods, which mainly focus on specific temporal and spatial prior knowledge in low-dose CPCT images, not take the noise distribution characteristics of low-dose CPCT images into consideration. In practice, the noise of low-dose CPCT images can be much more complicated. This study first investigates the noise properties in low-dose CPCT images and proposes a perfusion deconvolution model based on the noise properties. Approach. To characterize the noise distribution in CPCT images properly, we analyze noise properties in low-dose CPCT images and find that the intra-frame noise distribution may vary in the different areas and the inter-frame noise also may vary in low-dose CPCT images. Thus, we attempt the first-ever effort to model CPCT noise with a non-independent and identical distribution (i.i.d.) mixture-of-Gaussians (MoG) model for noise assumption. Furthermore, we integrate the noise modeling strategy into a perfusion deconvolution model and present a novel perfusion deconvolution method by using self-relative structural similarity information and MoG model (named as SR-MoG) to estimate the hemodynamic parameters accurately. In the presented SR-MoG method, the self-relative structural similarity information is obtained from preprocessed low-dose CPCT images. Main results. The results show that the presented SR-MoG method can achieve promising gains over the existing deconvolution approaches. In particular, the average root-mean-square error (RMSE) of cerebral blood flow (CBF), cerebral blood volume, and mean transit time was improved by 40.3%, 69.1%, and 40.8% in the digital phantom study, and the average RMSE of CBF can be improved by 81.0% in the clinical data study, compared with tensor total variation regularization deconvolution method. Significance. The presented SR-MoG method can estimate high-accuracy hemodynamic parameters andachieve promising gains over the existing deconvolution approaches.
Collapse
|
32
|
He L, Lu W, Wang Z, Wang S, Xue M. CTSim: a numerical simulator of computed tomography for high-quality radiological education. Int J Comput Assist Radiol Surg 2022; 17:1257-1269. [PMID: 35622202 DOI: 10.1007/s11548-022-02656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Computer-based simulation offers radiological students the possibility to experiment with computed tomography in a way not possible in class or in clinical practice. The aim of this study was to design a computed tomography numerical simulator (CTSim) for high-quality radiological education. METHODS In this study, a CTSim is designed based on the mathematical and physical principles of CT imaging. The proposed CTSim includes pen-beam module, fan-beam module, and clinical CT module. The core design of the software includes four parts: the construction of sample models, construction of imaging parameters and artifact parameters, design of data acquisition models under different scanning modes, and design of image reconstruction algorithm. After the design of the CTSim, the proposed CTSim was tested in every step of CT imaging. RESULTS Systematic verification demonstrated that the proposed CTSim can not only perform raw CT data acquisition, image reconstruction, basic image processing, and image quality analysis like a real CT scanner, but can also simulate the formation of artifacts. The CTSim can completely get rid of the hardware and achieve the same experimental results as the hardware instrument. CONCLUSION The proposed CTSim software shows several advantages such as low cost, less room accommodation, and no ionizing radiation damage and can be used as a virtual experimental training platform to enhance teaching and learning for general X-ray CT courses or for self-study of CT practitioners.
Collapse
Affiliation(s)
- Lemin He
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Weizhao Lu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Zhihong Wang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Shigang Wang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Mei Xue
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| |
Collapse
|
33
|
Wang H, Zhao X, Liu W, Li LC, Ma J, Guo L. Texture-Aware Dual Domain Mapping Model for Low Dose CT Reconstruction. Med Phys 2022; 49:3860-3873. [PMID: 35297051 DOI: 10.1002/mp.15607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Remarkable progress has been made for low-dose CT reconstruction tasks by applying deep learning techniques. However, establishing an intrinsic link between deep learning techniques and CT texture preservation is still one of the significant challenges for researchers to further improve the effect of low dose CT reconstruction. Purpose Most of the existing deep learning-based low dose CT reconstruction methods are derived from popular frameworks, and most models focus on the image domain. Even few existing methods start with dual domains (sinogram and image) by considering the processing of the data itself, the final performances are limited due to the lack of perception of textures. With this in mind, we propose a method for texture perception on dual domains, so that the reconstruction process can be uniformly driven by visual effects. METHODS The proposed method involves the processing of two domains: the sinogram domain and the image domain. For the sinogram domain, we have designed a novel dilated residual network (S-DRN) which aims to increase the receptive field to obtain multi-scale information. For the image domain, we propose a self attention (SA) residual encoder&decoder network (SRED-Net) as the denoising network for obtaining much acceptable edges and textures. In addition, the composite loss function composed of the feature loss constructed by the proposed boundary and texture feature aware network (BTFAN) and the mean square error (MSE) can obtain a higher image quality while retaining more details and fewer artifacts, thereby obtaining better visual image quality. RESULTS The proposed method was validated using both the AAPM-Mayo clinic low-dose CT datasets and a real clinic data. Experimental results demonstrated that the new method has achieved the state-of-the-art performance on objective indicators and visual metrics in terms of denoising and texture restoration. CONCLUSIONS Compared with single-domain or existing dual-domain processing strategies, the proposed texture-aware dual domain mapping network(TADDM-Net) can much better improve the visual effect of reconstructed CT images. Meantime, we also provide much intuitive evidence in terms of model interpretability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huafeng Wang
- North China University of Technology, Department of Radiology, Stony Brook University, Rm 067,HSC, T8, New York, 11790, China
| | - Xuemei Zhao
- School of Information Technology, North China University of Technology, Beijing, 100041, China
| | - Wanquan Liu
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, 510335, China
| | - Lihong C Li
- City University of New York at College of Staten Island, Engineering and Environmental Science, Room 1N-225, 2800 Victory Blvd, Staten Island, New York, NY, 10314, USA
| | - Jianhua Ma
- Southern Medical University, Department of Biomedical Engineering, Shatai Road 1023, BAIYUN, Tonghe 1838, Guangzhou, Guangdong, 510515, China
| | - Lei Guo
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
34
|
符 帅, 李 明, 边 兆, 马 建. [Performance of low-dose CT image reconstruction for detecting intracerebral hemorrhage: selection of dose, algorithms and their combinations]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:223-231. [PMID: 35365446 PMCID: PMC8983357 DOI: 10.12122/j.issn.1673-4254.2022.02.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the performance of different low-dose CT image reconstruction algorithms for detecting intracerebral hemorrhage. METHODS Low-dose CT imaging simulation was performed on CT images of intracerebral hemorrhage at 30%, 25% and 20% of normal dose level (defined as 100% dose). Seven algorithms were tested to reconstruct low-dose CT images for noise suppression, including filtered back projection algorithm (FBP), penalized weighted least squares-total variation (PWLS-TV), non-local mean filter (NLM), block matching 3D (BM3D), residual encoding-decoding convolutional neural network (REDCNN), the FBP convolutional neural network (FBPConvNet) and image restoration iterative residual convolutional network (IRLNet). A deep learning-based model (CNN-LSTM) was used to detect intracerebral hemorrhage on normal dose CT images and low-dose CT images reconstructed using the 7 algorithms. The performance of different reconstruction algorithms for detecting intracerebral hemorrhage was evaluated by comparing the results between normal dose CT images and low-dose CT images. RESULTS At different dose levels, the low-dose CT images reconstructed by FBP had accuracies of detecting intracerebral hemorrhage of 82.21%, 74.61% and 65.55% at 30%, 25% and 20% dose levels, respectively. At the same dose level (30% dose), the images reconstructed by FBP, PWLS-TV, NLM, BM3D, REDCNN, FBPConvNet and IRLNet algorithms had accuracies for detecting intracerebral hemorrhage of 82.21%, 86.80%, 89.37%, 81.43%, 90.05%, 90.72% and 93.51%, respectively. The images reconstructed by IRLNet at 30%, 25% and 20% dose levels had accuracies for detecting intracerebral hemorrhage of 93.51%, 93.51% and 93.06%, respectively. CONCLUSION The performance of reconstructed low-dose CT images for detecting intracerebral hemorrhage is significantly affected by both dose and reconstruction algorithms. In clinical practice, choosing appropriate dose level and reconstruction algorithm can greatly reduce the radiation dose and ensure the detection performance of CT imaging for intracerebral hemorrhage.
Collapse
Affiliation(s)
- 帅 符
- 南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- 广州市医用放射成像与检测技术重点实验室,广东 广州 510515Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| | - 明强 李
- 琶洲实验室,广东 广州 510515Pazhou Lab, Guangzhou 510515, China
| | - 兆英 边
- 南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- 广州市医用放射成像与检测技术重点实验室,广东 广州 510515Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| | - 建华 马
- 南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- 广州市医用放射成像与检测技术重点实验室,广东 广州 510515Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| |
Collapse
|
35
|
Tivnan M, Wang W, Gang G, Noël P, Stayman JW. Control of Variance and Bias in CT Image Processing with Variational Training of Deep Neural Networks. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12031:120310P. [PMID: 35656120 PMCID: PMC9157378 DOI: 10.1117/12.2612417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optimization of CT image quality typically involves balancing noise and bias. In filtered back-projection, this trade-off is controlled by the particular filter and cutoff frequency. In penalized-likelihood iterative reconstruction, the penalty weight serves the same function. Deep neural networks typically do not provide this tuneable control over output image properties. Models are often trained to minimize mean squared error which penalizes both variance and bias in image outputs but does not offer any control over the trade-off between the two. In this work, we propose a method for controlling the output image properties of neural networks with a new loss function called weighted covariance and bias (WCB). Our proposed method includes separate weighting parameters to control the relative importance of noise or bias reduction. Moreover, we show that tuning these weights enables targeted penalization of specific image features (e.g. spatial frequencies). To evaluate our method, we present a simulation study using digital anthropormorphic phantoms, physical simulation of non-ideal CT data, and image formation with various algorithms. We show that WCB offers a greater degree of control over trade-offs between variance and bias whereas MSE has only one configuration. We also show that WCB can be used to control specific image properties including variance, bias, spatial resolution, and the noise correlation of neural network outputs. Finally, we present a method to optimize the proposed weights for stimulus detectability. Our results demonstrate the potential for this new capability to control the image properties of DNN outputs and optimize image quality for the task-specific applications.
Collapse
Affiliation(s)
- Matthew Tivnan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Wenying Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Grace Gang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Peter Noël
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
36
|
Zeng D, Wang L, Geng M, Li S, Deng Y, Xie Q, Li D, Zhang H, Li Y, Xu Z, Meng D, Ma J. Noise-Generating-Mechanism-Driven Unsupervised Learning for Low-Dose CT Sinogram Recovery. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3083361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Tao X, Wang Y, Lin L, Hong Z, Ma J. Learning to Reconstruct CT Images From the VVBP-Tensor. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3030-3041. [PMID: 34138703 DOI: 10.1109/tmi.2021.3090257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep learning (DL) is bringing a big movement in the field of computed tomography (CT) imaging. In general, DL for CT imaging can be applied by processing the projection or the image data with trained deep neural networks (DNNs), unrolling the iterative reconstruction as a DNN for training, or training a well-designed DNN to directly reconstruct the image from the projection. In all of these applications, the whole or part of the DNNs work in the projection or image domain alone or in combination. In this study, instead of focusing on the projection or image, we train DNNs to reconstruct CT images from the view-by-view backprojection tensor (VVBP-Tensor). The VVBP-Tensor is the 3D data before summation in backprojection. It contains structures of the scanned object after applying a sorting operation. Unlike the image or projection that provides compressed information due to the integration/summation step in forward or back projection, the VVBP-Tensor provides lossless information for processing, allowing the trained DNNs to preserve fine details of the image. We develop a learning strategy by inputting slices of the VVBP-Tensor as feature maps and outputting the image. Such strategy can be viewed as a generalization of the summation step in conventional filtered backprojection reconstruction. Numerous experiments reveal that the proposed VVBP-Tensor domain learning framework obtains significant improvement over the image, projection, and hybrid projection-image domain learning frameworks. We hope the VVBP-Tensor domain learning framework could inspire algorithm development for DL-based CT imaging.
Collapse
|
38
|
|
39
|
Deep Learning for Low-Dose CT Denoising Using Perceptual Loss and Edge Detection Layer. J Digit Imaging 2021; 33:504-515. [PMID: 31515756 DOI: 10.1007/s10278-019-00274-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Low-dose CT denoising is a challenging task that has been studied by many researchers. Some studies have used deep neural networks to improve the quality of low-dose CT images and achieved fruitful results. In this paper, we propose a deep neural network that uses dilated convolutions with different dilation rates instead of standard convolution helping to capture more contextual information in fewer layers. Also, we have employed residual learning by creating shortcut connections to transmit image information from the early layers to later ones. To further improve the performance of the network, we have introduced a non-trainable edge detection layer that extracts edges in horizontal, vertical, and diagonal directions. Finally, we demonstrate that optimizing the network by a combination of mean-square error loss and perceptual loss preserves many structural details in the CT image. This objective function does not suffer from over smoothing and blurring effects causing by per-pixel loss and grid-like artifacts resulting from perceptual loss. The experiments show that each modification to the network improves the outcome while changing the complexity of the network, minimally.
Collapse
|
40
|
Kulathilake KASH, Abdullah NA, Sabri AQM, Lai KW. A review on Deep Learning approaches for low-dose Computed Tomography restoration. COMPLEX INTELL SYST 2021; 9:2713-2745. [PMID: 34777967 PMCID: PMC8164834 DOI: 10.1007/s40747-021-00405-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
Computed Tomography (CT) is a widely use medical image modality in clinical medicine, because it produces excellent visualizations of fine structural details of the human body. In clinical procedures, it is desirable to acquire CT scans by minimizing the X-ray flux to prevent patients from being exposed to high radiation. However, these Low-Dose CT (LDCT) scanning protocols compromise the signal-to-noise ratio of the CT images because of noise and artifacts over the image space. Thus, various restoration methods have been published over the past 3 decades to produce high-quality CT images from these LDCT images. More recently, as opposed to conventional LDCT restoration methods, Deep Learning (DL)-based LDCT restoration approaches have been rather common due to their characteristics of being data-driven, high-performance, and fast execution. Thus, this study aims to elaborate on the role of DL techniques in LDCT restoration and critically review the applications of DL-based approaches for LDCT restoration. To achieve this aim, different aspects of DL-based LDCT restoration applications were analyzed. These include DL architectures, performance gains, functional requirements, and the diversity of objective functions. The outcome of the study highlights the existing limitations and future directions for DL-based LDCT restoration. To the best of our knowledge, there have been no previous reviews, which specifically address this topic.
Collapse
Affiliation(s)
- K. A. Saneera Hemantha Kulathilake
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nor Aniza Abdullah
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aznul Qalid Md Sabri
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Li S, Zeng D, Bian Z, Li D, Zhu M, Huang J, Ma J. Learning non-local perfusion textures for high-quality computed tomography perfusion imaging. Phys Med Biol 2021; 66. [PMID: 33910178 DOI: 10.1088/1361-6560/abfc90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/28/2021] [Indexed: 11/11/2022]
Abstract
Background. Computed tomography perfusion (CTP) imaging plays a critical role in the acute stroke syndrome assessment due to its widespread availability, speed of image acquisition, and relatively low cost. However, due to its repeated scanning protocol, CTP imaging involves a substantial radiation dose, which might increase potential cancer risks.Methods. In this work, we present a novel deep learning model called non-local perfusion texture learning network (NPTN) for high-quality CTP imaging at low-dose cases. Specifically, considering abundant similarities in the CTP images, i.e. latent self-similarities within the non-local region in the CTP images, we firstly search the most similar pixels from the adjacent frames within a fixed search window to obtain the non-local similarities and to construct non-local textures vector. Then, both the low-dose frame and these non-local textures from adjacent frames are fed into a convolution neural network to predict high-quality CTP images, which can help better characterize the structure details and contrast variants in the targeted CTP image rather than simply utilizing the targeted frame itself. The residual learning strategy and batch normalization are utilized to boost the performance of the convolution neural network. In the experiment, the CTP images of 31 patients with suspected stroke disease are collected to demonstrate the performance of the presented NPTN method.Results. The results show the presented NPTN method obtains superior performance compared with the competing methods. From numerical value, at all dose levels, the presented NPTN method has achieved around 3.0 dB improvement of average PSNR, an increase of around 1.4% of average SSIM, and a decrease of around 4.8% of average RMSE in the low-dose CTP reconstruction task, and also has achieved an increase of around 3.4% of average SSIM and a decrease of around 61.1% of average RMSE in the cerebral blood flow (CBF) estimation task.Conclusions. The presented NPTN method can obtain high-quality CTP images and estimate high-accuracy CBF map by characterizing more structure details and contrast variants in the CTP image and outperform the competing methods at low-dose cases.
Collapse
Affiliation(s)
- Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Dong Zeng
- College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Danyang Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Manman Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048, People's Republic of China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, People's Republic of China
| |
Collapse
|
42
|
Weakly-supervised progressive denoising with unpaired CT images. Med Image Anal 2021; 71:102065. [PMID: 33915472 DOI: 10.1016/j.media.2021.102065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Although low-dose CT imaging has attracted a great interest due to its reduced radiation risk to the patients, it suffers from severe and complex noise. Recent fully-supervised methods have shown impressive performances on CT denoising task. However, they require a huge amount of paired normal-dose and low-dose CT images, which is generally unavailable in real clinical practice. To address this problem, we propose a weakly-supervised denoising framework that generates paired original and noisier CT images from unpaired CT images using a physics-based noise model. Our denoising framework also includes a progressive denoising module that bypasses the challenges of mapping from low-dose to normal-dose CT images directly via progressively compensating the small noise gap. To quantitatively evaluate diagnostic image quality, we present the noise power spectrum and signal detection accuracy, which are well correlated with the visual inspection. The experimental results demonstrate that our method achieves remarkable performances, even superior to fully-supervised CT denoising with respect to the signal detectability. Moreover, our framework increases the flexibility in data collection, allowing us to utilize any unpaired data at any dose levels.
Collapse
|
43
|
Shiri I, Akhavanallaf A, Sanaat A, Salimi Y, Askari D, Mansouri Z, Shayesteh SP, Hasanian M, Rezaei-Kalantari K, Salahshour A, Sandoughdaran S, Abdollahi H, Arabi H, Zaidi H. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network. Eur Radiol 2021; 31:1420-1431. [PMID: 32879987 PMCID: PMC7467843 DOI: 10.1007/s00330-020-07225-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning approach suitable for clinical diagnosis of COVID-19 patients. METHODS In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as input/output as training, test, and external validation set, respectively, to implement the full-dose prediction technique. A residual convolutional neural network was applied to generate full-dose from ultra-low-dose CT images. The quality of predicted CT images was assessed using root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Scores ranging from 1 to 5 were assigned reflecting subjective assessment of image quality and related COVID-19 features, including ground glass opacities (GGO), crazy paving (CP), consolidation (CS), nodular infiltrates (NI), bronchovascular thickening (BVT), and pleural effusion (PE). RESULTS The radiation dose in terms of CT dose index (CTDIvol) was reduced by up to 89%. The RMSE decreased from 0.16 ± 0.05 to 0.09 ± 0.02 and from 0.16 ± 0.06 to 0.08 ± 0.02 for the predicted compared with ultra-low-dose CT images in the test and external validation set, respectively. The overall scoring assigned by radiologists showed an acceptance rate of 4.72 ± 0.57 out of 5 for reference full-dose CT images, while ultra-low-dose CT images rated 2.78 ± 0.9. The predicted CT images using the deep learning algorithm achieved a score of 4.42 ± 0.8. CONCLUSIONS The results demonstrated that the deep learning algorithm is capable of predicting standard full-dose CT images with acceptable quality for the clinical diagnosis of COVID-19 positive patients with substantial radiation dose reduction. KEY POINTS • Ultra-low-dose CT imaging of COVID-19 patients would result in the loss of critical information about lesion types, which could potentially affect clinical diagnosis. • Deep learning-based prediction of full-dose from ultra-low-dose CT images for the diagnosis of COVID-19 could reduce the radiation dose by up to 89%. • Deep learning algorithms failed to recover the correct lesion structure/density for a number of patients considered outliers, and as such, further research and development is warranted to address these limitations.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Azadeh Akhavanallaf
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Dariush Askari
- Department of Radiology Technology, Shahid Beheshti University of Medical, Tehran, Iran
| | - Zahra Mansouri
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad P Shayesteh
- Department of Physiology, Pharmacology and Medical Physics, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hasanian
- Department of Radiology, Arak University of Medical Sciences, Arak, Iran
| | - Kiara Rezaei-Kalantari
- Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ali Salahshour
- Department of Radiology, Alborz University of Medical Sciences, Karaj, Iran
| | - Saleh Sandoughdaran
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical sciences, Kerman, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Geneva University Neurocenter, Geneva University, CH-1205, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
44
|
高 琦, 朱 曼, 李 丹, 边 兆, 马 建. [CT image quality assessment based on prior information of pre-restored images]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:230-237. [PMID: 33624596 PMCID: PMC7905247 DOI: 10.12122/j.issn.1673-4254.2021.02.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We propose a CT IQA strategy based on the prior information of pre-restored images (PR-IQA) to improve the performance of IQA models. OBJECTIVE We propose a CNN-based no-reference CT IQA strategy using the prior information of image quality features in the image restoration algorithm, which is combined with the original distorted image information into the two CNNs through the pre-restored image and the residual image. Multi-information fusion was used to improve the feature extraction ability and prediction performance of CNN. We built a CT IQA dataset based on spiral CT data published by Mayo Clinic. The performance of PR- IQA was evaluated by calculating the quantitative metrics and statistical tests. The influence of different hyperparameter settings for PR-IQA was analyzed. We then compared PR-IQA with the BASELINE model based on the single CNN to evaluate the original distorted image without reference image and other eight IQA algorithms. OBJECTIVE The comparative experiment results showed that the PR-IQA model based on the prior information of 3 different image restoration algorithms (BF, NLM and BM3D) was better than all the tested IQA algorithms. Compared with the BASELINE method, the proposed method showed significantly improved performance, and the mean PLCC was increased by 12.56% and SROCC by 19.95%, and RMSE was decreased by 22.77%. OBJECTIVE The proposed PR-IQA method can make full use of the prior information of the image restoration algorithm to effectively predict the quality of CT images.
Collapse
Affiliation(s)
- 琦 高
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University; Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| | - 曼曼 朱
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University; Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| | - 丹阳 李
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University; Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| | - 兆英 边
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University; Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| | - 建华 马
- />南方医科大学生物医学工程学院//广州市医用放射成像与检测技术重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University; Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| |
Collapse
|
45
|
Zhang H, Liu B, Yu H, Dong B. MetaInv-Net: Meta Inversion Network for Sparse View CT Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:621-634. [PMID: 33104506 DOI: 10.1109/tmi.2020.3033541] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
X-ray Computed Tomography (CT) is widely used in clinical applications such as diagnosis and image-guided interventions. In this paper, we propose a new deep learning based model for CT image reconstruction with the backbone network architecture built by unrolling an iterative algorithm. However, unlike the existing strategy to include as many data-adaptive components in the unrolled dynamics model as possible, we find that it is enough to only learn the parts where traditional designs mostly rely on intuitions and experience. More specifically, we propose to learn an initializer for the conjugate gradient (CG) algorithm that involved in one of the subproblems of the backbone model. Other components, such as image priors and hyperparameters, are kept as the original design. Since a hypernetwork is introduced to inference on the initialization of the CG module, it makes the proposed model a certain meta-learning model. Therefore, we shall call the proposed model the meta-inversion network (MetaInv-Net). The proposed MetaInv-Net can be designed with much less trainable parameters while still preserves its superior image reconstruction performance than some state-of-the-art deep models in CT imaging. In simulated and real data experiments, MetaInv-Net performs very well and can be generalized beyond the training setting, i.e., to other scanning settings, noise levels, and data sets.
Collapse
|
46
|
Li D, Zeng D, Li S, Ge Y, Bian Z, Huang J, Ma J. MDM-PCCT: Multiple Dynamic Modulations for High-Performance Spectral PCCT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3630-3642. [PMID: 32746110 DOI: 10.1109/tmi.2020.3001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photon counting computed tomography (PCCT) has the ability to identify individual photons, resulting in quantitative material identification. Meanwhile, several technical challenges still exist in current PCCT imaging systems, including increased noise and suboptimal bin selection. These nonideal effects can substantially degrade the reconstruction performance and material estimation accuracy. To address these issues, in this work, we present a novel system for high-performance spectral PCCT imaging, which is a combination of multiple dynamic modulations, interpolation-based measurements processing strategy and advanced reconstruction method. For simplicity, this new PCCT imaging system is referred to as "MDM-PCCT". Specifically, the multiple dynamic modulations consist of dynamic kVp modulation, dynamic spectrum modulation and dynamic energy threshold modulation. In the dynamic kVp modulation, three kVp values, i.e., 80, 110 and 140, are included, and the tube voltage waveform follows a sinusoidal curve which is more practical than the rectangular curve in the fast kV switching mode. In the dynamic spectrum modulation, the X-ray spectra are processed by selective spatial-spectral filters to balance the X-ray fluxes and increase the spectral separation. In the dynamic energy threshold modulation, the energy threshold is adaptively changed to determine the optimal bin selection. Furthermore, we propose an energy threshold determination method and interpolation-based measurements processing strategy to address the issue of non-uniform and sparse-view PCCT measurements, respectively. In addition, by considering the intrinsic characteristics of the MDM-PCCT images, we utilize an enhanced total variation regularized model for images reconstruction. Finally, numerical and preclinical studies demonstrate that the presented MDM-PCCT imaging system is capable of yielding uniform and high-fidelity PCCT measurements with noise consistency, and the presented reconstruction method further improves the image quality and material decomposition accuracy.
Collapse
|
47
|
Sheng J, Chen B, Ma Y, Shi Y. A novel reconstruction approach combining OSEM and split Bregman method for low dose CT. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Zeng D, Yao L, Ge Y, Li S, Xie Q, Zhang H, Bian Z, Zhao Q, Li Y, Xu Z, Meng D, Ma J. Full-Spectrum-Knowledge-Aware Tensor Model for Energy-Resolved CT Iterative Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2831-2843. [PMID: 32112677 DOI: 10.1109/tmi.2020.2976692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Energy-resolved computed tomography (ErCT) with a photon counting detector concurrently produces multiple CT images corresponding to different photon energy ranges. It has the potential to generate energy-dependent images with improved contrast-to-noise ratio and sufficient material-specific information. Since the number of detected photons in one energy bin in ErCT is smaller than that in conventional energy-integrating CT (EiCT), ErCT images are inherently more noisy than EiCT images, which leads to increased noise and bias in the subsequent material estimation. In this work, we first deeply analyze the intrinsic tensor properties of two-dimensional (2D) ErCT images acquired in different energy bins and then present a F ull- S pectrum-knowledge-aware Tensor analysis and processing (FSTensor) method for ErCT reconstruction to suppress noise-induced artifacts to obtain high-quality ErCT images and high-accuracy material images. The presented method is based on three considerations: (1) 2D ErCT images obtained in different energy bins can be treated as a 3-order tensor with three modes, i.e., width, height and energy bin, and a rich global correlation exists among the three modes, which can be characterized by tensor decomposition. (2) There is a locally piecewise smooth property in the 3-order ErCT images, and it can be captured by a tensor total variation regularization. (3) The images from the full spectrum are much better than the ErCT images with respect to noise variance and structural details and serve as external information to improve the reconstruction performance. We then develop an alternating direction method of multipliers algorithm to numerically solve the presented FSTensor method. We further utilize a genetic algorithm to tackle the parameter selection in ErCT reconstruction, instead of manually determining parameters. Simulation, preclinical and synthesized clinical ErCT results demonstrate that the presented FSTensor method leads to significant improvements over the filtered back-projection, robust principal component analysis, tensor-based dictionary learning and low-rank tensor decomposition with spatial-temporal total variation methods.
Collapse
|
49
|
Gao Y, Liang Z, Xing Y, Zhang H, Pomeroy M, Lu S, Ma J, Lu H, Moore W. Characterization of tissue-specific pre-log Bayesian CT reconstruction by texture-dose relationship. Med Phys 2020; 47:5032-5047. [PMID: 32786070 DOI: 10.1002/mp.14449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/21/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Tissue textures have been recognized as biomarkers for various clinical tasks. In computed tomography (CT) image reconstruction, it is important but challenging to preserve the texture when lowering x-ray exposure from full- toward low-/ultra-low dose level. Therefore, this paper aims to explore the texture-dose relationship within one tissue-specific pre-log Bayesian CT reconstruction algorithm. METHODS To enhance the texture in ultra-low dose CT (ULdCT) reconstruction, this paper presents a Bayesian type algorithm. A shifted Poisson model is adapted to describe the statistical properties of pre-log data, and a tissue-specific Markov random field prior (MRFt) is used to incorporate tissue texture from previous full-dose CT, thus called SP-MRFt algorithm. Utilizing the SP-MRFt algorithm, we investigated tissue texture degradation as a function of x-ray dose levels from full dose (100 mAs/120 kVp) to ultralow dose (1 mAs/120 kVp) by using quantitative texture-based evaluation metrics. RESULTS Experimental results show the SP-MRFt algorithm outperforms conventional filtered back projection (FBP) and post-log domain penalized weighted least square MRFt (PWLS-MRFt) in terms of noise suppression and texture preservation. Comparable results are also obtained with shifted Poisson model with 7 × 7 Huber MRF weights (SP-Huber7). The investigation on texture-dose relationship shows that the quantified texture measures drop monotonically as dose level decreases, and interestingly a turning point is observed on the texture-dose response curve. CONCLUSIONS This important observation implies that there exists a minimum dose level, at which a given CT scanner (hardware configuration and image reconstruction software) can achieve without compromising clinical tasks. Moreover, the experiment results show that the variance of electronic noise has higher impact than the mean to the texture-dose relationship.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Radiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Zhengrong Liang
- Departments of Radiology, Biomedical Engineering, Computer Science, and Electrical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yuxiang Xing
- Department of Engineering Physics, Tsinghua University, Beijing, 100871, China
| | - Hao Zhang
- Departments of Radiology and Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Pomeroy
- Departments of Radiology and Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, 11794, USA
| | - Siming Lu
- Departments of Radiology and Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, 11794, USA
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Hongbing Lu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - William Moore
- Department of Radiology, New York University, New York, NY, 10016, USA
| |
Collapse
|
50
|
Elhamiasl M, Nuyts J. Low-dose x-ray CT simulation from an available higher-dose scan. ACTA ACUST UNITED AC 2020; 65:135010. [DOI: 10.1088/1361-6560/ab8953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|