1
|
Manaf H, Hamzaid NA, Hasnan N, Yiwei C, Mohafez H, Hisham H, Davis G. High-intensity interval training with functional electrical stimulation cycling for incomplete spinal cord injury patients: A pilot feasibility study. Artif Organs 2024; 48:1449-1457. [PMID: 39041394 DOI: 10.1111/aor.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Consequences of spinal cord injury (SCI) with a sedentary lifestyle will progress to muscle weakness and muscle atrophy, leading to muscle fatigue. This study aimed to determine the feasibility and preliminary effects of high-intensity interval training (HIIT) using functional electrical stimulation (FES) cycling on changes in thigh muscle volume and muscle strength, in patients with incomplete SCI. METHODS Eight incomplete SCI patients (mean age 50 years; 6 women) with stable SCI paraplegia (mean 6.75 years since injury) participated in the HIIT FES cycling (85%-90% peak Watts; 4 × 4-min intervals) three times a week (over 6 weeks). The main outcomes were adherence, participant acceptability, and adverse events. Secondary outcomes were muscle strength (peak torque) and leg volume changes. RESULTS Our findings revealed that the program was well-received by participants, with high levels of adherence, positive feedback, and satisfaction, suggesting that it could be a promising option for individuals seeking to enhance their lower body strength and muscle mass. Additionally, all participants successfully completed the training without any serious adverse events, indicating that the program is safe for use. Finally, we found that the 6-week HIIT FES leg cycling exercise program resulted in notable improvements in isometric peak torque of the quadriceps (range 13.9%-25.6%), hamstring muscle (18.2%-23.3%), and leg volume (1.7%-18.2%). CONCLUSIONS This study highlights HIIT FES leg cycling exercise program potential as an effective intervention for improving lower limb muscle function.
Collapse
Affiliation(s)
- Haidzir Manaf
- Centre for Physiotherapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chen Yiwei
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hamidreza Mohafez
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hafifi Hisham
- Physiotherapy Program, Center for Rehabilitation and Special Needs Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Glen Davis
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Figueiredo T, Frazão M, Werlang LA, Kunz A, Peltz M, Furtado VC, Júnior EB, Júnior JM, Silva RM, Sobral Filho DC. Safety and feasibility of a functional electrical stimulation cycling-based muscular dysfunction diagnostic method in mechanically ventilated patients. Artif Organs 2024; 48:713-722. [PMID: 38400618 DOI: 10.1111/aor.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND A nonvolitional diagnostic method based on FES-Cycling technology has recently been demonstrated for mechanically ventilated patients. This method presents good sensitivity and specificity for detecting muscle dysfunction and survival prognosis, even in unconscious patients. As the clinical relevance of this method has already been reported, we aimed to evaluate its safety and feasibility. METHODS An observational prospective study was carried out with 20 critically ill, mechanically ventilated patients. The FES-cycling equipment was set in a specific diagnostic mode. For safety determination, hemodynamic parameters and peripheral oxygen saturation were measured before and immediately after the diagnostic protocol, as well as venous oxygen saturation and blood lactate. The creatine phosphokinase level (CPK) was measured before and 24, 48, and 72 h after the test. The time taken to carry out the entire diagnostic protocol and the number of patients with visible muscle contraction (capacity of perceptive muscular recruitment) were recorded to assess feasibility. RESULTS Heart rate [91 ± 23 vs. 94 ± 23 bpm (p = 0.0837)], systolic [122 ± 19 vs. 124 ± 19 mm Hg (p = 0.4261)] and diastolic blood pressure [68 ± 13 vs. 70 ± 15 mm Hg (p = 0.3462)], and peripheral [98 (96-99) vs. 98 (95-99) % (p = 0.6353)] and venous oxygen saturation [71 ± 14 vs. 69 ± 14% (p = 0.1317)] did not change after the diagnostic protocol. Moreover, blood lactate [1.48 ± 0.65 vs. 1.53 ± 0.71 mmol/L (p = 0.2320)] did not change. CPK did not change up to 72 h after the test [99 (59-422) vs. 125 (66-674) (p = 0.2799) vs. 161 (66-352) (p > 0.999) vs. 100 (33-409) (p = 0.5901)]. The time taken to perform the diagnostic assessment was 11.3 ± 1.1 min. In addition, 75% of the patients presented very visible muscle contractions, and 25% of them presented barely visible muscle contractions. CONCLUSIONS The FES cycling-based muscular dysfunction diagnostic method is safe and feasible. Hemodynamic parameters, peripheral oxygen saturation, venous oxygen saturation, and blood lactate did not change after the diagnostic protocol. The muscle damage marker (CPK) did not increase up to 72 h after the diagnostic protocol.
Collapse
Affiliation(s)
- Thainá Figueiredo
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Murillo Frazão
- Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Brazil
- CLINAR Exercise Physiology, João Pessoa, Brazil
| | - Luís A Werlang
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Adelar Kunz
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Maikel Peltz
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Veridiana C Furtado
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Edgar B Júnior
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Júlio M Júnior
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Rosane M Silva
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
3
|
de Gomes Figueiredo T, Frazão M, Werlang LA, Peltz M, Sobral Filho DC. Functional electrical stimulation cycling-based muscular evaluation method in mechanically ventilated patients. Artif Organs 2024; 48:254-262. [PMID: 37930042 DOI: 10.1111/aor.14677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Intensive care acquired muscle weakness is a common feature in critically ill patients. Beyond the therapeutic uses, FES-cycling could represent a promising nonvolitional evaluation method for detecting acquired muscle weakness. OBJECTIVES To assess whether FES-cycling is able to identify muscle dysfunctions, and to evaluate the survival rate in patients with detected muscle dysfunction. METHODS A prospective observational study was carried out, with 29 critically ill patients and 20 healthy subjects. Maximum torque and power achieved were recorded, in addition to the stimulation cost, and patients were followed up for six months. RESULTS Torque (2.64 [1.53 to 4.81] vs 6.03 [4.56 to 6.73] Nm) and power (3.31 [2.33 to 6.37] vs 6.35 [5.22 to 10.70] watts) were lower and stimulation cost (22 915 [5069 to 37 750] vs 3411 [2080 to 4024] μC/W) was higher in patients compared to healthy people (p < 0.05). Surviving patients showed a nonsignificant difference in power and torque in relation to nonsurvivors (p > 0.05), but they had a lower stimulation cost (4462 [3598 to 11 788] vs 23 538 [10 164 to 39 836] μC/W) (p < 0.05). In total, 34% of all patients survived during the six months of follow-up. Furthermore, 62% of patients with a stimulation cost below 15 371 μC/W and 7% of patients with a stimulation cost above 15 371 μC/W survived. CONCLUSIONS FES-cycling has good sensitivity and specificity for detecting muscle disorders. Critical patients have low torque and power and a high stimulation cost. Stimulation cost is related to survival. A low stimulation cost was related to a 3 times greater chance of survival.
Collapse
Affiliation(s)
| | - Murillo Frazão
- Lauro Wanderley University Hospital, João Pessoa, Brazil
- CLINAR Exercise Physiology, João Pessoa, Brazil
| | | | - Maikel Peltz
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | | |
Collapse
|
4
|
Gordon DFN, Christou A, Stouraitis T, Gienger M, Vijayakumar S. Adaptive assistive robotics: a framework for triadic collaboration between humans and robots. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221617. [PMID: 37388317 PMCID: PMC10300679 DOI: 10.1098/rsos.221617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
Robots and other assistive technologies have a huge potential to help society in domains ranging from factory work to healthcare. However, safe and effective control of robotic agents in these environments is complex, especially when it involves close interactions and multiple actors. We propose an effective framework for optimizing the behaviour of robots and complementary assistive technologies in systems comprising a mix of human and technological agents with numerous high-level goals. The framework uses a combination of detailed biomechanical modelling and weighted multi-objective optimization to allow for the fine tuning of robot behaviours depending on the specification of the task at hand. We illustrate our framework via two case studies across assisted living and rehabilitation scenarios, and conduct simulations and experiments of triadic collaboration in practice. Our results indicate a marked benefit to the triadic approach, showing the potential to improve outcome measures for human agents in robot-assisted tasks.
Collapse
Affiliation(s)
- Daniel F. N. Gordon
- The University of Edinburgh, Edinburgh, UK
- The Alan Turing Institute, London, UK
| | | | | | | | - Sethu Vijayakumar
- The University of Edinburgh, Edinburgh, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
5
|
Jafari E, Erfanian A. A Distributed Automatic Control Framework for Simultaneous Control of Torque and Cadence in Functional Electrical Stimulation Cycling. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1908-1919. [PMID: 35793297 DOI: 10.1109/tnsre.2022.3188735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the major challenges facing functional electrical stimulation (FES) cycling is the design of an automatic control system that addresses the problem of disturbance with unknown bound and time-varying behavior of the muscular system. The previous methods for FES-cycling are based on the system modeling and require pre-adjustment of the control parameters which are based on the model parameters. These will degrade the FES-cycling performance and limit the clinical application of the methods. In this paper, a distributed cooperative control framework, which is based on an adaptive higher-order sliding mode (AHOSM) controller, is proposed for simultaneous control of torque and cadence in FES-cycling. The proposed control system is free-model which does not require any pre-adjustment of the control parameters and does not need the boundary of the disturbance to be known. Another major issue in FES-cycling is the stimulation pattern. In the paper, an automatic pattern generator is proposed which is capable of providing not only the regions of the crank angle in which each muscle group should be stimulated but also a specific gain for each muscle group. The results of the simulation studies and experiments on three spinal cord injuries showed that the proposed control strategy significantly increases the efficiency and tracking accuracy of motor-assisted FES-cycling in paraplegic patients and decreases the power consumption compared to HOSM controller with the fixed stimulation pattern. Reducing power consumption can slow down muscle fatigue and consequently increase cycling endurance. The average of cadence and torque tracking errors over three subjects using the proposed method are 5.77± 0.5% and 5.23± 0.8%, respectively.
Collapse
|
6
|
Jafari E, Aksoez EA, Kajganic P, Metani A, Popovic-Maneski L, Bergeron V. Optimization of Seating Position and Stimulation Pattern in Functional Electrical Stimulation Cycling: Simulation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:725-731. [PMID: 36085773 DOI: 10.1109/embc48229.2022.9871339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two significant challenges facing functional electrical stimulation (FES) cycling are the low power output and early onset of muscle fatigue, mainly due to the non-physiological and superficial recruitment of motor units and weakness of the antagonistic muscles. Thus optimization of the cycling biomechanical properties and stimulation pattern to achieve maximum output power with minimum applied electrical stimulus is of great importance. To find the optimal seating position and stimulation pattern, the previous works either ignored the muscle's force-velocity and force-length properties or employed complicated muscle models which was a massive barrier to clinical experiments. In this work, an easy-to-use and precise muscle model in conjunction with Jacobian-based torque transfer functions were adopted to determine the optimal seating position, trunk angle, crank arm length, and stimulation intervals. Furthermore, the impact of muscle force-velocity factor in finding the optimal seating position and stimulation intervals was investigated. The simulation models showed the trivial effect of the force-velocity factor on the resulting optimal seating position of six healthy simulated subjects. This method can enhance the FES-cycling performance and shorten the time-consuming process of muscle model identification for optimization purposes.
Collapse
|
7
|
Six-Bar Linkage Models of a Recumbent Tricycle Mechanism to Increase Power Throughput in FES Cycling. ROBOTICS 2022. [DOI: 10.3390/robotics11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper presents the kinematic and static analysis of two mechanisms to improve power throughput for persons with tetra- or paraplegia pedaling a performance tricycle via FES. FES, or functional electrical stimulation, activates muscles by passing small electrical currents through the muscle creating a contraction. The use of FES can build muscle in patients, relieve soreness, and promote cardiovascular health. Compared to an able-bodied rider, a cyclist stimulated via FES produces an order of magnitude less power creating some notable pedaling difficulties especially pertaining to inactive zones. An inactive zone occurs when the leg position is unable to produce enough power to propel the tricycle via muscle stimulation. An inactive zone is typically present when one leg is fully bent and the other leg is fully extended. Altering the motion of a cyclist’s legs relative to the crank position can potentially reduce inactive zones and increase power throughput. Some recently marketed bicycles showcase pedal mechanisms utilizing alternate leg motions. This work considers performance tricycle designs based on the Stephenson III and Watt II six-bar mechanisms where the legs define two of the system’s links. The architecture based on the Stephenson III is referred to throughout as the CDT due to the legs’ push acting to coupler-drive the four-bar component of the system. The architecture based on the Watt II is referred to throughout as the CRT due to the legs’ push acting to drive the rocker link of the four-bar component of the system. The unmodified or traditional recumbent tricycle (TRT) provides a benchmarks by which the designs proposed herein may be evaluated. Using knee and hip torques and angular velocities consistent with a previous study, this numerical study using a quasi-static power model of the CRT suggests a roughly 50% increase and the CDT suggests roughly a doubling in average crank power, respectively, for a typical FES cyclist.
Collapse
|
8
|
A Novel Framework for Quantifying Accuracy and Precision of Event Detection Algorithms in FES-Cycling. SENSORS 2021; 21:s21134571. [PMID: 34283104 PMCID: PMC8272114 DOI: 10.3390/s21134571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Functional electrical stimulation (FES) is a technique used in rehabilitation, allowing the recreation or facilitation of a movement or function, by electrically inducing the activation of targeted muscles. FES during cycling often uses activation patterns which are based on the crank angle of the pedals. Dynamic changes in their underlying predefined geometrical models (e.g., change in seating position) can lead to desynchronised contractions. Adaptive algorithms with a real-time interpretation of anatomical segments can avoid this and open new possibilities for the automatic design of stimulation patterns. However, their ability to accurately and precisely detect stimulation triggering events has to be evaluated in order to ensure their adaptability to real-case applications in various conditions. In this study, three algorithms (Hilbert, BSgonio, and Gait Cycle Index (GCI) Observer) were evaluated on passive cycling inertial data of six participants with spinal cord injury (SCI). For standardised comparison, a linear phase reference baseline was used to define target events (i.e., 10%, 40%, 60%, and 90% of the cycle’s progress). Limits of agreement (LoA) of ±10% of the cycle’s duration and Lin’s concordance correlation coefficient (CCC) were used to evaluate the accuracy and precision of the algorithm’s event detections. The delays in the detection were determined for each algorithm over 780 events. Analysis showed that the Hilbert and BSgonio algorithms validated the selected criteria (LoA: +5.17/−6.34% and +2.25/−2.51%, respectively), while the GCI Observer did not (LoA: +8.59/−27.89%). When evaluating control algorithms, it is paramount to define appropriate criteria in the context of the targeted practical application. To this end, normalising delays in event detection to the cycle’s duration enables the use of a criterion that stays invariable to changes in cadence. Lin’s CCC, comparing both linear correlation and strength of agreement between methods, also provides a reliable way of confirming comparisons between new control methods and an existing reference.
Collapse
|
9
|
Estimating total maximum isometric force output of trunk and hip muscles after spinal cord injury. Med Biol Eng Comput 2020; 58:739-751. [PMID: 31974873 DOI: 10.1007/s11517-020-02120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Functional neuromuscular stimulation (FNS) can be used to restore seated trunk function in individuals paralyzed due to spinal cord injury (SCI). Musculoskeletal models allow for the design and tuning of controllers for use with FNS; however, these models often use aggregated estimates for parameters of the musculotendon elements, the most significant of which is maximum isometric force (MIF). Stimulated MIF for individuals with SCI is typically assumed to be approximately 50% of the values exhibited by able-bodied muscles, which itself varies between studies and individuals. A method for estimating subject-specific MIF during dynamic motions in individuals with SCI produced by electrical stimulation has been developed to test this assumption and obtained more accurate estimates for biomechanical analysis and controller design. A simple on-off controller was applied to individuals with SCI seated in the workspace of a motion capture system to record joint angles of three types of trunk motions: forward flexion, left and right lateral bending followed by returning, un-aided, to upright posture via neural stimulation delivered to activate the muscles of the hips and trunk. System identification was used with a musculoskeletal model to find the optimal MIF values that reproduced the experimentally observed motions. Experiments with five volunteers with SCI indicate that an MIF of the 50% able-bodied values commonly used is significantly lower than the identified estimates in 33 of 44 muscle groups tested. This suggests that the strengths of paralyzed muscles when stimulated with FNS have been underestimated in many situations and their true force outputs may be higher than the values suggested for use in simulation studies with musculoskeletal models. These findings indicate that subject-specific musculoskeletal models can more closely mimic the motions of subjects by using individualized estimates of MIF, which may allow the design and tuning of controllers while reducing the time spent with subjects in the loop.
Collapse
|
10
|
Laubacher M, Aksöz AE, Riener R, Binder-Macleod S, Hunt KJ. Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task. Eur J Appl Physiol 2017; 117:1787-1798. [PMID: 28674921 PMCID: PMC5556133 DOI: 10.1007/s00421-017-3675-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/28/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional single electrode stimulation (SES) in an isokinetic knee extension task simulating knee movement during recumbent cycling. METHODS M. vastus lateralis and m. vastus medialis of eight able-bodied subjects were stimulated for 6 min on both legs with both setups. In the SES setup, target muscles were each stimulated by a pair of electrodes. In SDSS, four small electrodes replaced the SES active electrodes, but reference electrodes were the same. Torque was measured during knee extension movement by a dynamometer at an angular velocity of 110°/s. Mean power (P mean) was calculated from stimulated extensions for the first 10 extensions, the final 20 extensions and overall. Fatigue is presented as an index, calculated as the decrease with respect to initial power. RESULTS P mean was significantly higher for SDSS than for SES in the final phase (9.9 ± 4.0 vs. 7.4 ± 4.3 W, p = 0.035) and overall (11.5 ± 4.0 vs. 9.2 ± 4.5 W, p = 0.037). With SDSS, the reduction in P mean was significantly smaller compared to SES (from 14.9 to 9.9 vs. 14.6 to 7.4 W, p = 0.024). The absolute mean pulse width was substantially lower with SDSS (62.5 vs. 90.0 µs). CONCLUSION Although less stimulation was applied, SDSS showed a significantly higher mean power output than SES. SDSS also had improved fatigue resistance when compared to conventional stimulation. The SDSS approach may provide substantial performance benefits for cyclical FES applications.
Collapse
Affiliation(s)
- Marco Laubacher
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland.
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Anil Efe Aksöz
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Kenneth J Hunt
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
| |
Collapse
|
11
|
Laubacher M, Aksöz EA, Binder-Macleod S, Hunt KJ. Comparison of Proximally Versus Distally Placed Spatially Distributed Sequential Stimulation Electrodes in a Dynamic Knee Extension Task. Eur J Transl Myol 2016; 26:6016. [PMID: 27478563 PMCID: PMC4942706 DOI: 10.4081/ejtm.2016.6016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Spatially distributed sequential stimulation (SDSS) has demonstrated substantial power output and fatigue benefits compared to single electrode stimulation (SES) in the application of functional electrical stimulation (FES). This asymmetric electrode setup brings new possibilities but also new questions since precise placement of the electrodes is one critical factor for good muscle activation. The aim of this study was to compare the power output, fatigue and activation properties of proximally versus distally placed SDSS electrodes in an isokinetic knee extension task simulating knee movement during recumbent cycling. M. vastus lateralis and medialis of seven able-bodied subjects were stimulated with rectangular bi-phasic pulses of constant amplitude of 40 mA and at an SDSS frequency of 35 Hz for 6 min on both legs with both setups (i.e. n=14). Torque was measured during knee-extension movement by a dynamometer at an angular velocity of 110 deg/s. Mean power, peak power and activation time were calculated and compared for the initial and final stimulation phases, together with an overall fatigue index. Power output values (Pmean, Ppeak) were scaled to a standardised reference input pulse width of 100 μs (Pmean,s, Ppeak,s). The initial evaluation phase showed no significant differences between the two setups for all outcome measures. Ppeak and Ppeak,s were both significantly higher in the final phase for the distal setup (25.4 ± 8.1 W vs. 28.2 ± 6.2 W, p=0.0062 and 34.8 ± 9.5 W vs. 38.9 ± 6.7 W, p=0.021, respectively). With distal SDSS, there was modest evidence of higher Pmean and Pmean,s (p=0.071, p=0.14, respectively) but of longer activation time (p=0.096). The rate of fatigue was similar for both setups. For practical FES applications, distal placement of the SDSS electrodes is preferable.
Collapse
Affiliation(s)
- Marco Laubacher
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland; Sensory Motor Systems Lab, ETH Zurich, Zürich, Switzerland
| | - Efe A Aksöz
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland; Sensory Motor Systems Lab, ETH Zurich, Zürich, Switzerland
| | - Stuart Binder-Macleod
- Department of Physical Therapy, University of Delaware , Newark, United States of America
| | - Kenneth J Hunt
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences , Burgdorf, Switzerland
| |
Collapse
|
12
|
Bellman MJ, Cheng TH, Downey RJ, Hass CJ, Dixon WE. Switched Control of Cadence During Stationary Cycling Induced by Functional Electrical Stimulation. IEEE Trans Neural Syst Rehabil Eng 2015; 24:1373-1383. [PMID: 26584496 DOI: 10.1109/tnsre.2015.2500180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional electrical stimulation (FES) can be used to activate the dysfunctional lower limb muscles of individuals with neurological disorders to produce cycling as a means of rehabilitation. However, previous literature suggests that poor muscle control and nonphysiological muscle fiber recruitment during FES-cycling causes lower efficiency and power output at the cycle crank than able-bodied cycling, thus motivating the investigation of improved control methods for FES-cycling. In this paper, a stimulation pattern is designed based on the kinematic effectiveness of the rider's hip and knee joints to produce a forward torque about the cycle crank. A robust controller is designed for the uncertain, nonlinear cycle-rider system with autonomous, state-dependent switching. Provided sufficient conditions are satisfied, the switched controller yields ultimately bounded tracking of a desired cadence. Experimental results on four able-bodied subjects demonstrate cadence tracking errors of 0.05 ±1.59 and 5.27 ±2.14 revolutions per minute during volitional and FES-induced cycling, respectively. To establish feasibility of FES-assisted cycling in subjects with Parkinson's disease, experimental results with one subject demonstrate tracking errors of 0.43 ± 4.06 and 0.17 ±3.11 revolutions per minute during volitional and FES-induced cycling, respectively.
Collapse
|
13
|
Ambrosini E, Ferrante S, Schauer T, Ferrigno G, Molteni F, Pedrocchi A. An automatic identification procedure to promote the use of FES-cycling training for hemiparetic patients. JOURNAL OF HEALTHCARE ENGINEERING 2015; 5:275-91. [PMID: 25193368 DOI: 10.1260/2040-2295.5.3.275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cycling induced by Functional Electrical Stimulation (FES) training currently requires a manual setting of different parameters, which is a time-consuming and scarcely repeatable procedure. We proposed an automatic procedure for setting session-specific parameters optimized for hemiparetic patients. This procedure consisted of the identification of the stimulation strategy as the angular ranges during which FES drove the motion, the comparison between the identified strategy and the physiological muscular activation strategy, and the setting of the pulse amplitude and duration of each stimulated muscle. Preliminary trials on 10 healthy volunteers helped define the procedure. Feasibility tests on 8 hemiparetic patients (5 stroke, 3 traumatic brain injury) were performed. The procedure maximized the motor output within the tolerance constraint, identified a biomimetic strategy in 6 patients, and always lasted less than 5 minutes. Its reasonable duration and automatic nature make the procedure usable at the beginning of every training session, potentially enhancing the performance of FES-cycling training.
Collapse
Affiliation(s)
- Emilia Ambrosini
- NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, NeuroEngineering and Medical Robotics Laboratory, Piazza Leonardo da Vinci 32, 20133, Milano, Italy Physical Medicine and Rehabilitation Unit, Scientific Institute of Lissone, Institute of Care and Research, Salvatore Maugeri Foundation IRCCS, Lissone, Italy
| | - Simona Ferrante
- NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, NeuroEngineering and Medical Robotics Laboratory, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Thomas Schauer
- Control Systems Group, Technische Universität Berlin, Einsteinufer 17, D-10587 Berlin, Germany
| | - Giancarlo Ferrigno
- NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, NeuroEngineering and Medical Robotics Laboratory, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via Nazario Sauro 17, 23845 Costa Masnaga, Lecco, Italy
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, NeuroEngineering and Medical Robotics Laboratory, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
14
|
Hakansson NA, Hull ML. Can the efficacy of electrically stimulated pedaling using a commercially available ergometer BE improved by minimizing the muscle stress-time integral? Muscle Nerve 2012; 45:393-402. [PMID: 22334174 DOI: 10.1002/mus.22302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The cardiorespiratory and muscular strength benefits of functional electrical stimulation (FES) pedaling for spinal cord injury (SCI) subjects are limited because the endurance of electrically stimulated muscle is low. METHODS We tested new electrical stimulation timing patterns (Stim3, designed using a forward dynamic simulation to minimize the muscle stress-time integral) to determine whether SCI subjects could increase work and metabolic responses when pedaling a commercial FES ergometer. Work, rate of oxygen uptake (VO(2)), and blood lactate data were taken from 11 subjects (injury level T4-T12) on repeated trials. RESULTS Subjects performed 11% more work pedaling with Stim3 than with existing stimulation patterns (StimErg) (P = 0.043). Average (VO(2)) and blood lactate concentrations were not significantly different between Stim3 (442 ml/min, 5.9 mmol/L) and StimErg (417 ml/min, 5.9 mmol/L). CONCLUSION The increased mechanical work performed with Stim3 supports the use of patterns that minimize the muscle stress-time integral to prolong FES pedaling.
Collapse
Affiliation(s)
- Nils A Hakansson
- Mechanical Engineering Department, University of Delaware, 126 Spencer Laboratory, Newark, Delaware 19711, USA.
| | | |
Collapse
|
15
|
Koehle MJ, Hull ML. The effect of knee model on estimates of muscle and joint forces in recumbent pedaling. J Biomech Eng 2010; 132:011007. [PMID: 20524745 DOI: 10.1115/1.3148192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The usefulness of forward dynamic simulations to studies of human motion is well known. Although the musculoskeletal models used in these studies are generic, the modeling of specific components, such as the knee joint, may vary. Our two objectives were (1) to investigate the effects of three commonly used knee models on forward dynamic simulation results, and (2) to study the sensitivity of simulation results to variations in kinematics for the most commonly used knee model. To satisfy the first objective, three different tibiofemoral models were incorporated into an existing forward dynamic simulation of recumbent pedaling, and the resulting kinematics, pedal forces, muscle forces, and joint reaction forces were compared. Two of these models replicated the rolling and sliding motion of the tibia on the femur, while the third was a simple pin joint. To satisfy the second objective, variations in the most widely used of the three knee models were created by adjusting the experimental data used in the development of this model. These variations were incorporated into the pedaling simulation, and the resulting data were compared with the unaltered model. Differences between the two rolling-sliding models were smaller than differences between the pin-joint model and the rolling-sliding models. Joint reactions forces, particularly at the knee, were highly sensitive to changes in knee joint model kinematics, as high as 61% root mean squared difference, normalized by the corresponding peak force of the unaltered reference model. Muscle forces were also sensitive, as high as 30% root mean squared difference. Muscle excitations were less sensitive. The observed changes in muscle force and joint reaction forces were caused primarily by changes in the moment arms and musculotendon lengths of the quadriceps. Although some level of inaccuracy in the knee model may be acceptable for calculations of muscle excitation timing, a representative model of knee kinematics is necessary for accurate calculation of muscle and joint reaction forces.
Collapse
Affiliation(s)
- Michael J Koehle
- Biomedical Engineering Program and Department of Mechanical Engineering, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
16
|
Li PF, Hou ZG, Zhang F, Tan M, Wang HB, Hong Y, Zhang JW. An FES cycling control system based on CPG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:1569-72. [PMID: 19963512 DOI: 10.1109/iembs.2009.5332393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper presents a scientific strategy for cycling induced by the functional electrical stimulation. In order to simulate the FES-cycling movement produced by human body, a neuro-musculo-skeletal model containing 16 segments and 186 muscles is developed, which can simulate human movements precisely. This model contains mathematical model of electrically stimulated skeletal muscles. Having known the kinematics and dynamics of the model, we design an FES-cycling control system based on the central pattern generator (CPG), which can produce rhythm stimulus to produce desired torque and generate rhythm cycling movements. And an approach to control multiple muscles is proposed. In the end of this paper, the simulation results are provided.
Collapse
Affiliation(s)
- Peng-Feng Li
- Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, P.O. Box 2728, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Schauer T, Salbert RC, Negård NO, Hunt KJ, Raisch J. Belastungsregelung bei der Elektrostimulationsergometrie (Power Control of Electrical Stimulation Induced Cycle Ergometry). ACTA ACUST UNITED AC 2009. [DOI: 10.1524/auto.2005.53.12.607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Für querschnittgelähmte Menschen stellt das Herz-Kreislauf-Training an Fahrradergometern mit Funktioneller Elektrischer Stimulation (FES) der gelähmten unteren Extremitäten eine sich zunehmend etablierende Rehabilitationsmaßnahme dar. Diese Arbeit stellt ein neues Ergometersystem mit Elektrostimulation vor, bei dem die Beine zusätzlich durch einen Hilfsmotor unterstützt werden. Durch den Motor kann ein isokinetisches Training realisiert werden. Der Patient arbeitet in diesem Fall mit den elektrisch stimulierten Muskeln gegen den Motor, der die Trittgeschwindigkeit konstant hält. Für die gezielte Anpassung der Belastung durch die Elektrostimulation wurde ein sich selbst einstellender Momentenregler entwickelt. Der Reglerentwurf erfolgt anhand der online identifizierten linearen Übertragungsfunktion zwischen Stimulationsintensität und gemitteltem muskulären Antriebsmoment. Erste experimentelle Ergebnisse mit einem neurologisch intakten Probanden werden vorgestellt.
Collapse
|
18
|
Duffell LD, de N Donaldson N, Newham DJ. Why is the metabolic efficiency of FES cycling low? IEEE Trans Neural Syst Rehabil Eng 2009; 17:263-9. [PMID: 19258202 DOI: 10.1109/tnsre.2009.2016199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential benefits of functional electrically stimulated (FES) cycling for people with spinal cord injury (SCI) are limited by the power output (PO) attainable. To understand why PO and metabolic efficiency are low, it is helpful to distinguish the effect of the SCI from the effects of electrical stimulation. The purpose of this study was to determine the performance of electrically stimulated (ES) muscle under simpler conditions and in able-bodied people in order to answer two questions about the causes of the poor efficiency in FES cycling. Fifteen able-bodied subjects (26.6 years, six male) performed 5 min of intermittent isometric quadriceps contractions at 40% maximum voluntary contraction during both voluntary and ES activation. Subsequently, nine of them performed 5 min of ES intermittent concentric contractions at the same intensity. This intermittent quadriceps activation imitated the muscles' activity during FES cycling at 35 rpm. Metabolic measurements were recorded. Input power relative to the integral of torque produced (W/Nm x s) was significantly higher during ES than voluntary isometric contractions. Efficiency of ES concentric contractions was 29.6 +/-2.9%. Respiratory exchange ratio was high during ES (1.00-1.01) compared with voluntary (0.91) contractions. ES is less economic than voluntary exercise during isometric contractions, probably due to the greater activation of fast muscle fibres. However, during ES concentric contractions, efficiency is near to the expected values for the velocity chosen. Thus there are additional factors that affect the inefficiency observed during FES cycling.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Division of Applied Biomedical Research, King's College London, SE1 1UL London, UK.
| | | | | |
Collapse
|
19
|
Hakansson NA, Hull ML. Influence of Pedaling Rate on Muscle Mechanical Energy in Low Power Recumbent Pedaling Using Forward Dynamic Simulations. IEEE Trans Neural Syst Rehabil Eng 2007; 15:509-16. [DOI: 10.1109/tnsre.2007.906959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Hunt KJ, Ferrario C, Grant S, Stone B, McLean AN, Fraser MH, Allan DB. Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost. Med Eng Phys 2005; 28:710-8. [PMID: 16298543 DOI: 10.1016/j.medengphy.2005.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/30/2005] [Accepted: 10/06/2005] [Indexed: 11/19/2022]
Abstract
AIM The energy efficiency of FES-cycling in spinal cord injured subjects is very much lower than that of normal cycling, and efficiency is dependent upon the parameters of muscle stimulation. We investigated measures which can be used to evaluate the effect on cycling performance of changes in stimulation parameters, and which might therefore be used to optimise them. We aimed to determine whether oxygen cost and stimulation cost measurements are sensitive enough to allow discrimination between the efficacy of different activation ranges for stimulation of each muscle group during constant-power cycling. METHODS We employed a custom FES-cycling ergometer system, with accurate control of cadence and stimulated exercise workrate. Two sets of muscle activation angles ("stimulation patterns"), denoted "P1" and "P2", were applied repeatedly (eight times each) during constant-power cycling, in a repeated measures design with a single paraplegic subject. Pulmonary oxygen uptake was measured in real time and used to determine the oxygen cost of the exercise. A new measure of stimulation cost of the exercise is proposed, which represents the total rate of stimulation charge applied to the stimulated muscle groups during cycling. A number of energy-efficiency measures were also estimated. RESULTS Average oxygen cost and stimulation cost of P1 were found to be significantly lower than those for P2 (paired t-test, p<0.05): oxygen costs were 0.56+/-0.03l min-1 and 0.61+/-0.04l min-1 (mean+/-S.D.), respectively; stimulation costs were 74.91+/-12.15 mC min-1 and 100.30+/-14.78 mC min-1 (mean+/-S.D.), respectively. Correspondingly, all efficiency estimates for P1 were greater than those for P2. CONCLUSION Oxygen cost and stimulation cost measures both allow discrimination between the efficacy of different muscle activation patterns during constant-power FES-cycling. However, stimulation cost is more easily determined in real time, and responds more rapidly and with greatly improved signal-to-noise properties than the ventilatory oxygen uptake measurements required for estimation of oxygen cost. These measures may find utility in the adjustment of stimulation patterns for achievement of optimal cycling performance.
Collapse
Affiliation(s)
- K J Hunt
- Centre for Rehabilitation Engineering, Department of Mechanical Engineering, University of Glasgow, and Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF, UK.
| | | | | | | | | | | | | |
Collapse
|