1
|
Hamdan PNF, Hamzaid NA, Hasnan N, Abd Razak NA, Razman R, Usman J. Effects of releasing ankle joint during electrically evoked cycling in persons with motor complete spinal cord injury. Sci Rep 2024; 14:6451. [PMID: 38499594 PMCID: PMC10948841 DOI: 10.1038/s41598-024-56955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Literature has shown that simulated power production during conventional functional electrical stimulation (FES) cycling was improved by 14% by releasing the ankle joint from a fixed ankle setup and with the stimulation of the tibialis anterior and triceps surae. This study aims to investigate the effect of releasing the ankle joint on the pedal power production during FES cycling in persons with spinal cord injury (SCI). Seven persons with motor complete SCI participated in this study. All participants performed 1 min of fixed-ankle and 1 min of free-ankle FES cycling with two stimulation modes. In mode 1 participants performed FES-evoked cycling with the stimulation of quadriceps and hamstring muscles only (QH stimulation), while Mode 2 had stimulation of quadriceps, hamstring, tibialis anterior, and triceps surae muscles (QHT stimulation). The order of each trial was randomized in each participant. Free-ankle FES cycling offered greater ankle plantar- and dorsiflexion movement at specific slices of 20° crank angle intervals compared to fixed-ankle. There were significant differences in the mean and peak normalized pedal power outputs (POs) [F(1,500) = 14.03, p < 0.01 and F(1,500) = 7.111, p = 0.008, respectively] between fixed- and free-ankle QH stimulation, and fixed- and free-ankle QHT stimulation. Fixed-ankle QHT stimulation elevated the peak normalized pedal PO by 14.5% more than free-ankle QH stimulation. Releasing the ankle joint while providing no stimulation to the triceps surae and tibialis anterior reduces power output. The findings of this study suggest that QHT stimulation is necessary during free-ankle FES cycling to maintain power production as fixed-ankle.
Collapse
Affiliation(s)
- Puteri Nur Farhana Hamdan
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biomedical Engineering, Faculty of Engineering, Centre of Applied Biomechanics, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nasrul Anuar Abd Razak
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rizal Razman
- Centre for Sport & Exercise Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Juliana Usman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Centre of Applied Biomechanics, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Displacement Mechanomyography Reflects Mechanical Pedaling Force of Muscle Associated with Changes in Cadence and Work Rate During Pedaling. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
FUKUHARA S, OKA H. Pedaling stroke length effects on the muscle mechanical and electrical activity during recumbent cycling. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.20.04516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Fujita K, Kobayashi Y, Miaki H, Hori H, Tsushima Y, Sakai R, Nomura T, Ogawa T, Kinoshita H, Nishida T, Hitosugi M. Pedaling improves gait ability of hemiparetic patients with stiff-knee gait: fall prevention during gait. J Stroke Cerebrovasc Dis 2020; 29:105035. [PMID: 32807447 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Stiff-knee gait, which is a gait abnormality observed after stroke, is characterized by decreased knee flexion angles during the swing phase, and it contributes to a decline in gait ability. This study aimed to identify the immediate effects of pedaling exercises on stiff-knee gait from a kinesiophysiological perspective. METHODS Twenty-one patients with chronic post-stroke hemiparesis and stiff-knee gait were randomly assigned to a pedaling group and a walking group. An ergometer was set at a load of 5 Nm and rotation speed of 40 rpm, and gait was performed at a comfortable speed; both the groups performed the intervention for 10 min. Kinematic and electromyographical data while walking on flat surfaces were immediately measured before and after the intervention. RESULTS In the pedaling group, activity of the rectus femoris significantly decreased from the pre-swing phase to the early swing phase during gait after the intervention. Flexion angles and flexion angular velocities of the knee and hip joints significantly increased during the same period. The pedaling group showed increased step length on the paralyzed side and gait velocity. CONCLUSIONS Pedaling increases knee flexion during the swing phase in hemiparetic patients with stiff-knee gait and improves gait ability.
Collapse
Affiliation(s)
- Kazuki Fujita
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Yasutaka Kobayashi
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Hiroichi Miaki
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa-city, Ishikawa, Japan.
| | - Hideaki Hori
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Yuichi Tsushima
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Ryo Sakai
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Tomomi Nomura
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Tomoki Ogawa
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Hirotaka Kinoshita
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Tomoko Nishida
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Masahito Hitosugi
- Department of Legal Medicine, Shiga University of Medical Science, Otsu-city, Shiga, Japan.
| |
Collapse
|
5
|
Omar VC, Rafael D, Vinicius C, Alexandre B. Complete factorial design experiment for 3D load cell instrumented crank validation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:3655-3658. [PMID: 26737085 DOI: 10.1109/embc.2015.7319185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Developing of instrumentation systems for sport medicine is a promising area, that's why this research evaluates the design of a new instrumented crank arm prototype for a race bicycle projecting an experiment for indoor - outdoor comparison. This study investigated the viability of an instrumentation 3D load cell for force measurement crank, implementing a design of experiment. A Complete factorial design experiment was developed for data validation, with an Analysis of Variance (ANOVA) throwing significant results for controlled factors with response variables rms, mean and variance. A software routine allowed to obtained system variables metrics for Symmetry and Cadence analysis, which came out from Effective force bilateral comparing and speed computation. Characterization allowed achieving calibration curves that were used for data conversion in force projection channels with a linearity error of 0.29% (perpendicular), 0.55% (parallel) and 0.10% (lateral). Interactions of factors resulted significant mainly for indoor tests in symmetry and cadence was significant in interactions generally for outdoor tests. Implemented system was able to generate Effective Force graph for 3D plot symmetry analysis, torque and power symmetry for specialist's analysis.
Collapse
|
6
|
Hakansson NA, Hull ML. Can the efficacy of electrically stimulated pedaling using a commercially available ergometer BE improved by minimizing the muscle stress-time integral? Muscle Nerve 2012; 45:393-402. [PMID: 22334174 DOI: 10.1002/mus.22302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The cardiorespiratory and muscular strength benefits of functional electrical stimulation (FES) pedaling for spinal cord injury (SCI) subjects are limited because the endurance of electrically stimulated muscle is low. METHODS We tested new electrical stimulation timing patterns (Stim3, designed using a forward dynamic simulation to minimize the muscle stress-time integral) to determine whether SCI subjects could increase work and metabolic responses when pedaling a commercial FES ergometer. Work, rate of oxygen uptake (VO(2)), and blood lactate data were taken from 11 subjects (injury level T4-T12) on repeated trials. RESULTS Subjects performed 11% more work pedaling with Stim3 than with existing stimulation patterns (StimErg) (P = 0.043). Average (VO(2)) and blood lactate concentrations were not significantly different between Stim3 (442 ml/min, 5.9 mmol/L) and StimErg (417 ml/min, 5.9 mmol/L). CONCLUSION The increased mechanical work performed with Stim3 supports the use of patterns that minimize the muscle stress-time integral to prolong FES pedaling.
Collapse
Affiliation(s)
- Nils A Hakansson
- Mechanical Engineering Department, University of Delaware, 126 Spencer Laboratory, Newark, Delaware 19711, USA.
| | | |
Collapse
|
7
|
Hakansson NA, Hull ML. The effects of stimulating lower leg muscles on the mechanical work and metabolic response in functional electrically stimulated pedaling. IEEE Trans Neural Syst Rehabil Eng 2010; 18:498-504. [PMID: 20529755 DOI: 10.1109/tnsre.2010.2052132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional electrical stimulation (FES) pedaling with the muscles of the upper leg has been shown to provide benefit to spinal cord injured (SCI) individuals. FES pedaling with electrical stimulation timing patterns that minimize the stress-time integral of activated muscles has been shown to increase the work individuals can perform during the exercise compared to existing FES stimulation timing patterns. Activation of the lower leg muscles could further enhance the benefit of FES pedaling by increasing the metabolic response to the exercise. For SCI individuals, the objectives of this study were to experimentally determine whether FES pedaling with the upper and lower leg muscles would affect the work generated and increase the physiological responses compared to pedaling with the upper leg muscles alone. Work, rate of oxygen consumption ·VO₂, and blood lactate data were measured from nine SCI subjects (injury level T4-T12) as they pedaled using upper leg and upper and lower leg muscle groups on repeated trials. The subjects performed 6% more work with the upper and lower legs than with the upper legs alone, but the difference was not significant (p = 0.2433). The average rate of oxygen consumption associated with the upper leg muscles (441 ±231 mL/min) was not significantly different from the corresponding average for the upper and lower legs (473 ±213 mL/min) (p = 0.1176). The blood lactate concentration associated with the upper leg muscles (5.9 ±2.3 mmoles/L) was significantly lower than the corresponding average for the upper and lower legs (6.8 ±2.3 mmoles/L) (p = 0.0049). The results indicate that electrical stimulation timing patterns that incorporate the lower leg muscles do increase the blood lactate concentrations. However, there was not enough evidence to reject the null hypothesis that stimulating the lower leg muscles affected the work accomplished or increased the rate of oxygen consumption. In conclusion, incorporating the lower leg muscles in the exercise does not lead to negative effects and could result in enhanced exercise outcomes in the long term.
Collapse
Affiliation(s)
- Nils A Hakansson
- Biomedical Engineering Program, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
8
|
Koehle MJ, Hull ML. The effect of knee model on estimates of muscle and joint forces in recumbent pedaling. J Biomech Eng 2010; 132:011007. [PMID: 20524745 DOI: 10.1115/1.3148192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The usefulness of forward dynamic simulations to studies of human motion is well known. Although the musculoskeletal models used in these studies are generic, the modeling of specific components, such as the knee joint, may vary. Our two objectives were (1) to investigate the effects of three commonly used knee models on forward dynamic simulation results, and (2) to study the sensitivity of simulation results to variations in kinematics for the most commonly used knee model. To satisfy the first objective, three different tibiofemoral models were incorporated into an existing forward dynamic simulation of recumbent pedaling, and the resulting kinematics, pedal forces, muscle forces, and joint reaction forces were compared. Two of these models replicated the rolling and sliding motion of the tibia on the femur, while the third was a simple pin joint. To satisfy the second objective, variations in the most widely used of the three knee models were created by adjusting the experimental data used in the development of this model. These variations were incorporated into the pedaling simulation, and the resulting data were compared with the unaltered model. Differences between the two rolling-sliding models were smaller than differences between the pin-joint model and the rolling-sliding models. Joint reactions forces, particularly at the knee, were highly sensitive to changes in knee joint model kinematics, as high as 61% root mean squared difference, normalized by the corresponding peak force of the unaltered reference model. Muscle forces were also sensitive, as high as 30% root mean squared difference. Muscle excitations were less sensitive. The observed changes in muscle force and joint reaction forces were caused primarily by changes in the moment arms and musculotendon lengths of the quadriceps. Although some level of inaccuracy in the knee model may be acceptable for calculations of muscle excitation timing, a representative model of knee kinematics is necessary for accurate calculation of muscle and joint reaction forces.
Collapse
Affiliation(s)
- Michael J Koehle
- Biomedical Engineering Program and Department of Mechanical Engineering, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
9
|
Hakansson NA, Hull ML. Muscle stimulation waveform timing patterns for upper and lower leg muscle groups to increase muscular endurance in functional electrical stimulation pedaling using a forward dynamic model. IEEE Trans Biomed Eng 2009; 56:2263-70. [PMID: 19380265 DOI: 10.1109/tbme.2009.2020175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional electrical stimulation (FES) of pedaling provides a means by which individuals with spinal cord injury can obtain cardiorespiratory exercise. However, the early onset of muscle fatigue is a limiting factor in the cardiorespiratory exercise obtained while pedaling an FES ergometer. One objective of this study was to determine muscle excitation timing patterns to increase muscle endurance in FES pedaling for three upper leg muscle groups and to compare these timing patterns to those used in a commercially available FES ergometer. The second objective was to determine excitation timing patterns for a lower leg muscle group in conjunction with the three upper leg muscle groups. The final objective was to determine the mechanical energy contributions of each of the muscle groups to drive the crank. To fulfill these objectives, we developed a forward dynamic simulation of FES pedaling to determine electrical stimulation on and off times that minimize the muscle stress-time integral of the stimulated muscles. The computed electrical stimulation on and off times differed from those utilized by a commercially available FES ergometer and resulted in 17% and 11% decrease in the muscle stress-time integral for the three upper leg muscle groups and four upper and lower leg muscle groups, respectively. Also, the duration of muscle activation by the hamstrings increased by 5% over a crank cycle for the computed stimulation on and off times, and the mechanical energy generated by the hamstrings increased by 20%. The lower leg muscle group did not generate sufficient mechanical energy to reduce the energy contributions of the upper leg muscle groups. The computed stimulation on and off times could prolong FES pedaling, and thereby provide improved cardiorespiratory and muscle training outcomes for individuals with spinal cord injury. Including the lower leg muscle group in FES pedaling could increase cardiorespiratory demand while not affecting the endurance of the muscles involved in the pedaling task.
Collapse
Affiliation(s)
- Nils A Hakansson
- Biomedical Engineering Program, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|