1
|
Mohd Nazri AK, Yahya N, Khan DM, Mohd Radzi NZ, Badruddin N, Abdul Latiff AH, Abdulaal MJ. Partial directed coherence analysis of resting-state EEG signals for alcohol use disorder detection using machine learning. Front Neurosci 2025; 18:1524513. [PMID: 39867451 PMCID: PMC11757881 DOI: 10.3389/fnins.2024.1524513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Excessive alcohol consumption negatively impacts physical and psychiatric health, lifestyle, and societal interactions. Chronic alcohol abuse alters brain structure, leading to alcohol use disorder (AUD), a condition requiring early diagnosis for effective management. Current diagnostic methods, primarily reliant on subjective questionnaires, could benefit from objective measures. Method The study proposes a novel EEG-based classification approach, focusing on effective connectivity (EC) derived from resting-state EEG signals in combination with support vector machine (SVM) algorithms. EC estimation is performed using the partial directed coherence (PDC) technique. The analysis is conducted on an EEG dataset comprising 35 individuals with AUD and 35 healthy controls (HCs). The methodology evaluates the efficacy of connectivity features in distinguishing between AUD and HC and subsequently develops and assesses an EEG classification technique using EC matrices and SVM. Result The proposed methodology demonstrated promising performance, achieving a peak accuracy of 94.5% and an area under the curve (AUC) of 0.988, specifically using frequency bands 29, 36, 45, 46, and 52. Additionally, feature reduction techniques applied to the PDC adjacency matrices in the gamma band further improved classification outcomes. The SVM-based classification achieved an accuracy of 96.37 ± 0.45%, showcasing enhanced performance through the utilization of reduced PDC adjacency matrices. Discussion These results highlight the potential of the developed algorithm as a robust diagnostic tool for AUD detection, enhancing precision beyond subjective methods. Incorporating EC features derived from EEG signals can inform tailored treatment strategies, contributing to improved management of AUD.
Collapse
Affiliation(s)
| | - Norashikin Yahya
- Centre for Intelligent Signal and Imaging Research (CISIR), Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Danish M. Khan
- Department of Data Science and Artificial Intelligence, School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
| | - Noor'Izni Zafirah Mohd Radzi
- Centre for Intelligent Signal and Imaging Research (CISIR), Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Nasreen Badruddin
- Centre for Intelligent Signal and Imaging Research (CISIR), Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Abdul Halim Abdul Latiff
- Centre for Subsurface Imaging, Department of Geosciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Mohammed J. Abdulaal
- Center of Excellence in Intelligent Engineering Systems (CEIES), Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Huang F, Huang Y, Guo S, Chang X, Chen Y, Wang M, Wang Y, Ren S. A review of studies on constructing classification models to identify mental illness using brain effective connectivity. Psychiatry Res Neuroimaging 2025; 346:111928. [PMID: 39626592 DOI: 10.1016/j.pscychresns.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Brain effective connectivity (EC) is a functional measurement that reflects the causal effects and topological relationships of neural activities. Recent research has increasingly focused on the classification for mental illnesses and healthy controls using brain EC; however, no comprehensive reviews have synthesized these studies. Therefore, the aim of this review is to thoroughly examine the existing literature on constructing diagnosis model for mental illnesses using brain EC. We first conducted a systematical literature search and thirty-five papers met the inclusion criteria. Subsequently, we summarized the approaches for estimating EC, the classification and validation methods used, the accuracies of models, and the main findings. Finally, we discussed the limitations of current research and the challenges in future research. These summaries and discussion provide references for future research on mental illnesses identification based on brain EC.
Collapse
Affiliation(s)
- Fangfang Huang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China.
| | - Yuan Huang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Siying Guo
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoyi Chang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yuqi Chen
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Mingzhu Wang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yingfang Wang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuai Ren
- Luoyang Fifth People's Hospital, Luoyang 471027, China
| |
Collapse
|
3
|
Huda S, Khan DM, Masroor K, Warda, Rashid A, Shabbir M. Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional mri biomarkers: a systematic review. Cogn Neurodyn 2024; 18:3585-3601. [PMID: 39712105 PMCID: PMC11656001 DOI: 10.1007/s11571-024-10176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 12/24/2024] Open
Abstract
Autism Spectrum Disorder(ASD) is a type of neurological disorder that is common among children. The diagnosis of this disorder at an early stage is the key to reducing its effects. The major symptoms include anxiety, lack of communication, and less social interaction. This paper presents a systematic review conducted based on PRISMA guidelines for automated diagnosis of ASD. With rapid development in the field of Data Science, numerous methods have been proposed that can diagnose the disease at an early stage which can minimize the effects of the disorder. Machine learning and deep learning have proven suitable techniques for the automated diagnosis of ASD. These models have been developed on various datasets such as ABIDE I and ABIDE II, a frequently used dataset based on rs-fMRI images. Approximately 26 articles have been reviewed after the screening process. The paper highlights a comparison between different algorithms used and their accuracy as well. It was observed that most researchers used DL algorithms to develop the ASD detection model. Different accuracies were recorded with a maximum accuracy close to 0.99. Recommendations for future work have also been discussed in a later section. This analysis derived a conclusion that AI-emerged DL and ML technologies can diagnose ASD through rs-fMRI images with maximum accuracy. The comparative analysis has been included to show the accuracy range.
Collapse
Affiliation(s)
- Shiza Huda
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Danish Mahmood Khan
- Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, 47500 Petaling Jaya, Selangor Malaysia
- Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Komal Masroor
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Warda
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Ayesha Rashid
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Mariam Shabbir
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| |
Collapse
|
4
|
Torabi A, Reilly J, MacCrimmon D. Diagnosis of schizophrenia using an extended multivariate autoregressive model for EEGs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-6. [PMID: 40039033 DOI: 10.1109/embc53108.2024.10782941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Schizophrenia is a complex brain disorder that leads to an abnormal interpretation of reality. One of its reliable biological markers is the auditory evoked potential P300. The aim of the current paper is to classify healthy-control subjects from schizophrenic patients using EEG signals collected during an auditory oddball paradigm. The electroencephalogram (EEG) is modeled by a multivariate autoregressive (MVAR) model that takes into account the instantaneous causality between the EEG channels. After preprocessing, 19 channels of the recorded signals were divided into seven clusters based on their location. Next, the PCA technique was employed to obtain the first principal component inside each cluster. By imposing realistic constraints to estimate instantaneous effects between the variables, the instantaneous interactions matrix and, consequently, the extended multivariate autoregressive (eMVAR) model were estimated. Then, extended partial directed coherences (ePDCs) were extracted as connectivity features. The mRMR algorithm was utilized to reduce the feature dimension, and finally, the selected features were imported into a deep neural network for classification between healthy and schizophrenic states. The results showed that the eMVAR model outperformed the strictly causal model in classifying schizophrenic patients. With eMVAR modeling, an accuracy of 91.11% was obtained by using only four features. Furthermore, the most discriminative connectivity feature was ePDC from left posterior (LP) to (LP), and the most informative frequency band was the gamma sub-band. We have therefore presented evidence that the proposed approach enhances the characterization and diagnosis of schizophrenia.
Collapse
|
5
|
Sadiq MT, Siuly S, Almogren A, Li Y, Wen P. Efficient novel network and index for alcoholism detection from EEGs. Health Inf Sci Syst 2023; 11:27. [PMID: 37337563 PMCID: PMC10276798 DOI: 10.1007/s13755-023-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023] Open
Abstract
Background Alcoholism is a catastrophic condition that causes brain damage as well as neurological, social, and behavioral difficulties. Limitations This illness is often assessed using the Cut down, Annoyed, Guilty, and Eye-opener examination technique, which assesses the intensity of an alcohol problem. This technique is protracted, arduous, error-prone, and errant. Method As a result, the intention of this paper is to design a cutting-edge system for automatically identifying alcoholism utilizing electroencephalography (EEG) signals, that can alleviate these problems and aid practitioners and investigators. First, we investigate the feasibility of using the Fast Walsh-Hadamard transform of EEG signals to explore the unpredictable essence and variability of EEG indicators in the suggested framework. Second, thirty-six linear and nonlinear features for deciphering the dynamic pattern of healthy and alcoholic EEG signals are discovered. Subsequently, we suggested a strategy for selecting powerful features. Finally, nineteen machine learning algorithms and five neural network classifiers are used to assess the overall performance of selected attributes. Results The extensive experiments show that the suggested method provides the best classification efficiency, with 97.5% accuracy, 96.7% sensitivity, and 98.3% specificity for the features chosen using the correlation-based FS approach with Recurrent Neural Networks. With recently introduced matrix determinant features, a classification accuracy of 93.3% is also attained. Moreover, we developed a novel index that uses clinically meaningful features to differentiate between healthy and alcoholic categories with a unique integer. This index can assist health care workers, commercial companies, and design engineers in developing a real-time system with 100% classification results for the computerized framework.
Collapse
Affiliation(s)
- Muhammad Tariq Sadiq
- Advanced Engineering Centre, School of Architecture, Technology and Engineering, University of Brighton, Brighton, BN2 4AT UK
| | - Siuly Siuly
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, 3011 Australia
| | - Ahmad Almogren
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11633 Riyadh, Saudi Arabia
| | - Yan Li
- School of Mathematics Physics and Computing, University of Southern Queensland, Toowoomba Campus, Toowoomba, 4350 Australia
| | - Paul Wen
- School of Engineering, University of Southern Queensland, Toowoomba Campus, Toowoomba, 4350 Australia
| |
Collapse
|
6
|
Parsa M, Rad HY, Vaezi H, Hossein-Zadeh GA, Setarehdan SK, Rostami R, Rostami H, Vahabie AH. EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107683. [PMID: 37406421 DOI: 10.1016/j.cmpb.2023.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/23/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023]
Abstract
The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.
Collapse
Affiliation(s)
- Mohsen Parsa
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Habib Yousefi Rad
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Hadi Vaezi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Gholam-Ali Hossein-Zadeh
- Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
| | - Seyed Kamaledin Setarehdan
- Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
| | - Reza Rostami
- Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran
| | - Hana Rostami
- ACNC, Atieh Clinical Neuroscience Center, Valiasr St., P.O. Box 19697-13663, Tehran, Iran
| | - Abdol-Hossein Vahabie
- Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran; Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| |
Collapse
|
7
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Shen M, Wen P, Song B, Li Y. Automatic identification of schizophrenia based on EEG signals using dynamic functional connectivity analysis and 3D convolutional neural network. Comput Biol Med 2023; 160:107022. [PMID: 37187135 DOI: 10.1016/j.compbiomed.2023.107022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.
Collapse
Affiliation(s)
- Mingkan Shen
- School of Engineering, University of Southern Queensland, Toowoomba, Australia.
| | - Peng Wen
- School of Engineering, University of Southern Queensland, Toowoomba, Australia
| | - Bo Song
- School of Engineering, University of Southern Queensland, Toowoomba, Australia
| | - Yan Li
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia
| |
Collapse
|
9
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Shen M, Wen P, Song B, Li Y. Detection of alcoholic EEG signals based on whole brain connectivity and convolution neural networks. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Khan DM, Yahya N, Kamel N, Faye I. A novel method for efficient estimation of brain effective connectivity in EEG. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 228:107242. [PMID: 36423484 DOI: 10.1016/j.cmpb.2022.107242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Brain connectivity plays a pivotal role in understanding the brain's information processing functions by providing various details including magnitude, direction, and temporal dynamics of inter-neuron connections. While the connectivity may be classified as structural, functional and causal, a complete in-vivo directional analysis is guaranteed by the latter and is referred to as Effective Connectivity (EC). Two most widely used EC techniques are Directed Transfer Function (DTF) and Partial Directed Coherence (PDC) which are based on multivariate autoregressive models. The drawbacks of these techniques include poor frequency resolution and the requirement for experimental approach to determine signal normalization and thresholding techniques in identifying significant connectivities between multivariate sources. METHODS In this study, the drawbacks of DTF and PDC are addressed by proposing a novel technique, termed as Efficient Effective Connectivity (EEC), for the estimation of EC between multivariate sources using AR spectral estimation and Granger causality principle. In EEC, a linear predictive filter with AR coefficients obtained via multivariate EEG is used for signal prediction. This leads to the estimation of full-length signals which are then transformed into frequency domain by using Burg spectral estimation method. Furthermore, the newly proposed normalization method addressed the effect on each source in EEC using the sum of maximum connectivity values over the entire frequency range. Lastly, the proposed dynamic thresholding works by subtracting the first moment of causal effects of all the sources on one source from individual connections present for that source. RESULTS The proposed method is evaluated using synthetic and real resting-state EEG of 46 healthy controls. A 3D-Convolutional Neural Network is trained and tested using the PDC and EEC samples. The result indicates that compared to PDC, EEC improves the EEG eye-state classification accuracy, sensitivity and specificity by 5.57%, 3.15% and 8.74%, respectively. CONCLUSION Correct identification of all connections in synthetic data and improved resting-state classification performance using EEC proved that EEC gives better estimation of directed causality and indicates that it can be used for reliable understanding of brain mechanisms. Conclusively, the proposed technique may open up new research dimensions for clinical diagnosis of mental disorders.
Collapse
Affiliation(s)
- Danish M Khan
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia; Department of Telecommunications Engineering, NED University of Engineering & Technology, University Road, Karachi 75270, Pakistan.
| | - Norashikin Yahya
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
| | - Nidal Kamel
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia; VinUniversity, College of Engineering and Computer Science, Vinhomes Ocean Park, Gia Lam District, Hanoi, Vietnam
| | - Ibrahima Faye
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| |
Collapse
|
12
|
Duan R, Li Y, Jing L, Zhang T, Yao Y, Gong Z, Shao Y, Song Y, Wang W, Zhang Y, Cheng J, Zhu X, Peng Y, Jia Y. The altered functional connectivity density related to cognitive impairment in alcoholics. Front Psychol 2022; 13:973654. [PMID: 36092050 PMCID: PMC9453650 DOI: 10.3389/fpsyg.2022.973654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol use disorder (AUD) is one of the most common substance use disorders contributing to both behavioral and cognitive impairments in patients with AUD. Recent neuroimaging studies point out that AUD is a typical disorder featured by altered functional connectivity. However, the details about how voxel-wise functional coordination remain unknown. Here, we adopted a newly proposed method named functional connectivity density (FCD) to depict altered voxel-wise functional coordination in AUD. The novel functional imaging technique, FCD, provides a comprehensive analytical method for brain's “scale-free” networks. We applied resting-state functional MRI (rs-fMRI) toward subjects to obtain their FCD, including global FCD (gFCD), local FCD (lFCD), and long-range FCD (lrFCD). Sixty-one patients with AUD and 29 healthy controls (HC) were recruited, and patients with AUD were further divided into alcohol-related cognitive impairment group (ARCI, n = 11) and non-cognitive impairment group (AUD-NCI, n = 50). All subjects were asked to stay stationary during the scan in order to calculate the resting-state gFCD, lFCD, and lrFCD values, and further investigate the abnormal connectivity alterations among AUD-NCI, ARCI, and HC. Compared to HC, both AUD groups exhibited significantly altered gFCD in the left inferior occipital lobe, left calcarine, altered lFCD in right lingual, and altered lrFCD in ventromedial frontal gyrus (VMPFC). It is notable that gFCD of the ARCI group was found to be significantly deviated from AUD-NCI and HC in left medial frontal gyrus, which changes probably contributed by the impairment in cognition. In addition, no significant differences in gFCD were found between ARCI and HC in left parahippocampal, while ARCI and HC were profoundly deviated from AUD-NCI, possibly reflecting a compensation of cognition impairment. Further analysis showed that within patients with AUD, gFCD values in left medial frontal gyrus are negatively correlated with MMSE scores, while lFCD values in left inferior occipital lobe are positively related to ADS scores. In conclusion, patients with AUD exhibited significantly altered functional connectivity patterns mainly in several left hemisphere brain regions, while patients with AUD with or without cognitive impairment also demonstrated intergroup FCD differences which correlated with symptom severity, and patients with AUD cognitive impairment would suffer less severe alcohol dependence. This difference in symptom severity probably served as a compensation for cognitive impairment, suggesting a difference in pathological pathways. These findings assisted future AUD studies by providing insight into possible pathological mechanisms.
Collapse
Affiliation(s)
- Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingzhe Shao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Zhu
- Mudanjiang Medical University, Mudanjiang, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanjie Jia
| |
Collapse
|
13
|
Awais MA, Yusoff MZ, Khan DM, Yahya N, Kamel N, Ebrahim M. Effective Connectivity for Decoding Electroencephalographic Motor Imagery Using a Probabilistic Neural Network. SENSORS (BASEL, SWITZERLAND) 2021; 21:6570. [PMID: 34640888 PMCID: PMC8512774 DOI: 10.3390/s21196570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
Motor imagery (MI)-based brain-computer interfaces have gained much attention in the last few years. They provide the ability to control external devices, such as prosthetic arms and wheelchairs, by using brain activities. Several researchers have reported the inter-communication of multiple brain regions during motor tasks, thus making it difficult to isolate one or two brain regions in which motor activities take place. Therefore, a deeper understanding of the brain's neural patterns is important for BCI in order to provide more useful and insightful features. Thus, brain connectivity provides a promising approach to solving the stated shortcomings by considering inter-channel/region relationships during motor imagination. This study used effective connectivity in the brain in terms of the partial directed coherence (PDC) and directed transfer function (DTF) as intensively unconventional feature sets for motor imagery (MI) classification. MANOVA-based analysis was performed to identify statistically significant connectivity pairs. Furthermore, the study sought to predict MI patterns by using four classification algorithms-an SVM, KNN, decision tree, and probabilistic neural network. The study provides a comparative analysis of all of the classification methods using two-class MI data extracted from the PhysioNet EEG database. The proposed techniques based on a probabilistic neural network (PNN) as a classifier and PDC as a feature set outperformed the other classification and feature extraction techniques with a superior classification accuracy and a lower error rate. The research findings indicate that when the PDC was used as a feature set, the PNN attained the greatest overall average accuracy of 98.65%, whereas the same classifier was used to attain the greatest accuracy of 82.81% with the DTF. This study validates the activation of multiple brain regions during a motor task by achieving better classification outcomes through brain connectivity as compared to conventional features. Since the PDC outperformed the DTF as a feature set with its superior classification accuracy and low error rate, it has great potential for application in MI-based brain-computer interfaces.
Collapse
Affiliation(s)
- Muhammad Ahsan Awais
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (M.Z.Y.); (D.M.K.); (N.Y.); (N.K.)
| | - Mohd Zuki Yusoff
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (M.Z.Y.); (D.M.K.); (N.Y.); (N.K.)
| | - Danish M. Khan
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (M.Z.Y.); (D.M.K.); (N.Y.); (N.K.)
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Norashikin Yahya
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (M.Z.Y.); (D.M.K.); (N.Y.); (N.K.)
| | - Nidal Kamel
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (M.Z.Y.); (D.M.K.); (N.Y.); (N.K.)
| | - Mansoor Ebrahim
- Faculty of Engineering, Sciences, and Technology, Iqra University, Karachi 75500, Pakistan;
| |
Collapse
|