1
|
Liu Y, Chen J, Liu R, Chen C, Wan X, Yu W, Lu H, Ouyang J, Liu G, Qian L. High risk of falling in elderly with hallux valgus evaluated by muscle and kinematic synergistic analysis. Gait Posture 2025; 118:33-38. [PMID: 40024665 DOI: 10.1016/j.gaitpost.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 01/22/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Musculoskeletal disorders often present with abnormalities in neuromuscular control. Hallux valgus (HV) is considered a risk factor for falls in the elderly, and it is one of the foot conditions most associated with falls. The onset of falls is associated with neuromuscular modulation of the lower extremity. However, there is a lack of clarity regarding the muscle and kinematic synergy patterns i.e., neuromuscular control in elderly HV. RESEARCH QUESTION How the changes in neuromuscular control in elderly HV based on muscle and kinematic synergies analysis? METHODS The study included three groups: young controls (YC), elderly controls (EC), and elderly hallux valgus (HVE). All participants were assessed for gait at their natural walking speed. Data were analyzed using non-negative matrix factorization (NNMF) for electromyography (EMG) and joint motion to compare muscle and kinematic synergies across the groups. The center of plantar pressure (COP) was used to evaluate self-balancing ability. RESULTS The EC group demonstrated the additional activation of calf muscle groups accompanied by decreased ankle motion and increased hip abduction. Compared to the EC group, the HVE group required more thigh flexor muscle groups to compensate for the lack of function of the ankle movements during gait and showed decreased hip abduction but increased knee flexion. During gait, the COP were significantly large than YC and EC groups (P < 0.05) in the HVE group. SIGNIFICANCE Our finding indicate that the elderly individuals with hallux valgus exhibit under-activated calf muscles around foot joints, and despite compensations from thigh muscles, they maintain an imbalance and increased risk of falls. This study will help to evaluate HVE control strategies and provide personalized treatment based on these vulnerabilities to reduce the risk of HVE falls.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology (Southern Medical University) and National Experimental Education Demonstration Center for Basic Medical Sciences (Southern Medical University) and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Chen
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ruiping Liu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology (Southern Medical University) and National Experimental Education Demonstration Center for Basic Medical Sciences (Southern Medical University) and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology (Southern Medical University) and National Experimental Education Demonstration Center for Basic Medical Sciences (Southern Medical University) and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinzhu Wan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology (Southern Medical University) and National Experimental Education Demonstration Center for Basic Medical Sciences (Southern Medical University) and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanqi Yu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology (Southern Medical University) and National Experimental Education Demonstration Center for Basic Medical Sciences (Southern Medical University) and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hua Lu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology (Southern Medical University) and National Experimental Education Demonstration Center for Basic Medical Sciences (Southern Medical University) and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology (Southern Medical University) and National Experimental Education Demonstration Center for Basic Medical Sciences (Southern Medical University) and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Lei Qian
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology (Southern Medical University) and National Experimental Education Demonstration Center for Basic Medical Sciences (Southern Medical University) and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Nash L, Cheung VCK, Gupta A, Cheung RTH, He B, Liston M, Thomson D. The effects of age and physical activity status on muscle synergies when walking down slopes. Eur J Appl Physiol 2025; 125:1139-1156. [PMID: 39609289 DOI: 10.1007/s00421-024-05679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The aim of the current study was to determine whether gait control (muscle synergies) or gait stability (margin of stability (MoS)) were different between younger and older adults when walking on level or downhill slopes. Further, it sought to determine associations between either age or physical activity with muscle synergy widths. METHODS Ten healthy younger (28.1 ± 8.0 years) and ten healthy older (69.5 ± 6.3 years) adults walked at their preferred walking speed on a treadmill at different slopes (0˚, - 4˚ and - 8˚). Muscle synergies were extracted using non-negative matrix factorisation and compared between groups and walking slopes. Correlations between the full width at half maximum (FWHM) of the synergies' activations and weekly recreational physical activity minutes and age were also determined. RESULTS Younger and older adults both walked with similar muscle synergies across all tested slopes, with 4 synergies accounting for > 85% variance of overall muscle activity in both groups across all tested slopes, with high scalar products (≥ 0.86) for each synergy and slope. It was also demonstrated that physical activity and age had different associations with pooled muscle synergies across slopes, as weekly minutes spent in recreational physical activity were associated with the FWHM of a synergy activated at weight acceptance, whereas age was associated with the FWHM of synergies occurring at push off and foot clearance, respectively. CONCLUSION Our results suggest that healthy older and younger adults walk with similar muscle synergies on downhill slopes, and that physical activity and age influence different muscle synergies during walking.
Collapse
Affiliation(s)
- Laura Nash
- School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia
| | - Vincent C K Cheung
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Amitabh Gupta
- School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia
| | - Roy T H Cheung
- School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia
| | - Borong He
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Daniel Thomson
- School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia.
| |
Collapse
|
3
|
Guo X, Huang S, He B, Lan C, Xie JJ, Lau KYS, Takei T, Mak ADP, Cheung RTH, Seki K, Cheung VCK, Chan RHM. Inhibitory Components in Muscle Synergies Factorized by the Rectified Latent Variable Model From Electromyographic Data. IEEE J Biomed Health Inform 2025; 29:1049-1061. [PMID: 39383087 DOI: 10.1109/jbhi.2024.3453603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Non-negative matrix factorization (NMF), widely used in motor neuroscience for identifying muscle synergies from electromyographical signals (EMGs), extracts non-negative synergies and is yet unable to identify potential negative components (NegCps) in synergies underpinned by inhibitory spinal interneurons. To overcome this constraint, we propose to utilize rectified latent variable model (RLVM) to extract muscle synergies. RLVM uses an autoencoder neural network, and the weight matrix of its neural network could be negative, while latent variables must remain non-negative. If inputs to the model are EMGs, the weight matrix and latent variables represent muscle synergies and their temporal activation coefficients, respectively. We compared performances of NMF and RLVM in identifying muscle synergies in simulated and experimental datasets. Our simulated results showed that RLVM performed better in identifying muscle-synergy subspace and NMF had a good correlation with ground truth. Finally, we applied RLVM to a previously published experimental dataset comprising EMGs from upper-limb muscles and spike recordings of spinal premotor interneurons (PreM-INs) collected from two macaque monkeys during grasping tasks. RLVM and NMF synergies were highly similar, but a few small negative muscle components were observed in RLVM synergies. The muscles with NegCps identified by RLVM exhibited near-zero values in their corresponding synergies identified by NMF. Importantly, NegCps of RLVM synergies showed correspondence with the muscle connectivity of PreM-INs with inhibitory muscle fields, as identified by spike-triggered averaging of EMGs. Our results demonstrate the feasibility of RLVM in extracting potential inhibitory muscle-synergy components from EMGs.
Collapse
|
4
|
Lin H, Ren X, Lutter C, Liang H, Qi F, Yang Q, Kebbach M, Schlegel M, Bruhn S, Bader R, Tischer T. A Gluteus-Specific Muscle Synergy Recruited During the First Recovery Step Following a Backward Pitch Perturbation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:4033-4041. [PMID: 39527424 DOI: 10.1109/tnsre.2024.3495514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The central nervous system momentarily activates a set of specific muscle synergies to maintain balance when external mechanical perturbations induce walking instability, which is critically involved in preventing falls. The activation patterns and composition of the muscle synergies recruited in the perturbed leg have not been fully characterized, and even less so for the recovery step. Here, we addressed this research gap by measuring the surface electromyographic data of the relevant muscles during a backward-pitched perturbed walk, and then extracting muscle synergy-related parameters using a non-negative matrix factorization algorithm. Our findings indicated that 1) a common set of four muscle synergies was activated in normal, perturbated and first recovery steps; 2) a specific muscle synergy controlled hip movement was recruited in the first recovery step; and 3) the main temporal activation phases of several muscle synergies were prolonged in the perturbed or the first recovery step. These results emphasize the potential significance of exploring the neurological control strategies of muscle synergy in fall prevention.
Collapse
|
5
|
Kong L, Yang K, Li H, Wu X, Zhang Q. Comparison of Lower-Limb Muscle Synergies Between Young and Old People During Cycling Based on Electromyography Sensors-A Preliminary Cross-Sectional Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:6755. [PMID: 39460234 PMCID: PMC11511221 DOI: 10.3390/s24206755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/28/2024]
Abstract
The purpose of this study was to analyze the lower-limb muscle synergies of young and older adults during stationary cycling across various mechanical conditions to reveal adaptive strategies employed by the elderly to address various common pedaling tasks and function degradation. By comparing lower-limb muscle synergies during stationary cycling between young and old people, this study examined changes in muscle synergy patterns during exercise in older individuals. This is crucial for understanding neuromuscular degeneration and changes in movement patterns in older individuals. Sixteen young and sixteen older experienced cyclists were recruited to perform stationary cycling tasks at two levels of power (60 and 100 W) and three cadences (40, 60, and 90 rpm) in random order. The lower-limb muscle synergies and their inter- and intra-individual variability were analyzed. Three synergies were extracted in this study under all riding conditions in both groups while satisfying overall variance accounted for (VAF) > 85% and muscle VAF > 75%. The older adults exhibited lower variability in synergy vector two and a higher trend in the variability of activation coefficient three, as determined by calculating the variance ratio. Further analyses of muscle synergy structures revealed increased weighting in major contribution muscles, the forward-shifting peak activation in synergy one, and lower peak magnitude in synergy three among older adults. To produce the same cycling power and cadence as younger individuals, older adults make adaptive adjustments in muscle control-increased weighting in major contribution muscles, greater consistency in the use of primary force-producing synergies, and earlier peak activation of subsequent synergy.
Collapse
Affiliation(s)
- Li Kong
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China;
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Kun Yang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Haojie Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Xie Wu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Qiang Zhang
- Institute for Biomechanics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Zaidi KF, Wei Q. Temporal localization of upper extremity bilateral synergistic coordination using wearable accelerometers. PeerJ 2024; 12:e17858. [PMID: 39247546 PMCID: PMC11378761 DOI: 10.7717/peerj.17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
Background The human upper extremity is characterized by inherent motor abundance, allowing a diverse array of tasks with agility and adaptability. Upper extremity functional limitations are a common sequela to Stroke, resulting in pronounced motor and sensory impairments in the contralesional arm. While many therapeutic interventions focus on rehabilitating the weaker arm, it is increasingly evident that it is necessary to consider bimanual coordination and motor control. Methods Participants were recruited to two groups differing in age (Group 1 (n = 10): 23.4 ± 2.9 years, Group 2 (n = 10): 55.9 ± 10.6 years) for an exploratory study on the use of accelerometry to quantify bilateral coordination. Three tasks featuring coordinated reaching were selected to investigate the acceleration of the upper arm, forearm, and hand during activities of daily living (ADLs). Subjects were equipped with acceleration and inclination sensors on each upper arm, each forearm, and each hand. Data was segmented in MATLAB to assess inter-limb and intra-limb coordination. Inter-limb coordination was indicated through dissimilarity indices and temporal locations of congruous movement between upper arm, forearm, or hand segments of the right and left limbs. Intra-limb coordination was likewise assessed between upper arm-forearm, upper arm-hand, and forearm-hand segment pairs of the dominant limb. Findings Acceleration data revealed task-specific movement features during the three distinct tasks. Groups demonstrated diminished similarity as task complexity increased. Groups differed significantly in the hand segments during the buttoning task, with Group 1 showing no coordination in the hand segments during buttoning, and strong coordination in reaching each button with the upper arm and forearm guiding extension. Group 2's dissimilarity scores and percentages of similarity indicated longer periods of inter-limb coordination, particularly towards movement completion. Group 1's dissimilarity scores and percentages of similarity indicated longer periods of intra-limb coordination, particularly in the coordination of the upper arm and forearm segments. Interpretation The Expanding Procrustes methodology can be applied to compute objective coordination scores using accessible and highly accurate wearable acceleration sensors. The findings of task duration, angular velocity, and peak roll angle are supported by previous studies finding older individuals to present with slower movements, reduced movement stability, and a reduction of laterality between the limbs. The theory of a shift towards ambidexterity with age is supported by the finding of greater inter-limb coordination in the group of subjects above the age of thirty-five. The group below the age of thirty was found to demonstrate longer periods of intra-limb coordination, with upper arm and forearm coordination emerging as a possible explanation for the demonstrated greater stability.
Collapse
Affiliation(s)
- Khadija F Zaidi
- Department of Bioengineering, George Mason University, Fairfax, VA, United States of America
| | - Qi Wei
- Department of Bioengineering, George Mason University, Fairfax, VA, United States of America
| |
Collapse
|
7
|
Staring WHA, Zandvliet S, de Kam D, Solis-Escalante T, Geurts ACH, Weerdesteyn V. Age-related changes in muscle coordination patterns of stepping responses to recover from loss of balance. Exp Gerontol 2024; 191:112424. [PMID: 38604252 DOI: 10.1016/j.exger.2024.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Reactive stepping capacity to recover from a loss of balance declines with aging, which increases the risk of falling. To gain insight into the underlying mechanisms, we investigated whether muscle coordination patterns of reactive stepping differed between healthy young and older individuals. METHODS We performed a cross-sectional study between 15 healthy young and 14 healthy older adults. They recovered from 200 multidirectional platform translations that evoked reactive stepping responses. We determined spatiotemporal step variables and used muscle synergy analysis to characterize stance- and swing-leg muscle coordination patterns from the start of perturbation until foot landing. RESULTS We observed delayed step onsets in older individuals, without further spatiotemporal differences. Muscle synergy structure was not different between young and older individuals, but age-related differences were observed in the time-varying synergy activation patterns. In anterior-posterior directions, the older individuals demonstrated significantly enhanced early swing-leg synergy activation consistent with non-stepping behavior. In addition, around step onset they demonstrated increased levels of synergy coactivation (mainly around the ankle) in lateral and anterior directions, which did not appear to hamper foot clearance. CONCLUSION Although synergy structure was not affected by age, the delayed step onsets and the enhanced early synergy recruitment point at a relative bias towards non-stepping behavior in older adults. They may need more time for accumulating information on the direction of perturbation and making the corresponding sensorimotor transformations before initiating the step. Future work may investigate whether perturbation-based training improves these age-related deficits.
Collapse
Affiliation(s)
- Wouter H A Staring
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Sarah Zandvliet
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Digna de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Teodoro Solis-Escalante
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander C H Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Huang S, Guo X, Xie JJ, Lau KYS, Liu R, Mak ADP, Cheung VCK, Chan RHM. Rectified Latent Variable Model-Based EMG Factorization of Inhibitory Muscle Synergy Components Related to Aging, Expertise and Force-Tempo Variations. SENSORS (BASEL, SWITZERLAND) 2024; 24:2820. [PMID: 38732926 PMCID: PMC11086352 DOI: 10.3390/s24092820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate the impact of aging and motor expertise on these components, and better understand the nervous system's adaptions to varying task demands. We utilized a rectified latent variable model (RLVM) to factorize motor modules with inhibitory components from EMG signals recorded from ten expert pianists when they played scales and pieces at different tempo-force combinations. We found that older participants showed a higher proportion of inhibitory components compared with the younger group. Senior experts had a higher proportion of inhibitory components on the left hand, and most inhibitory components became less negative with increased tempo or decreased force. Our results demonstrated that the inhibitory components in muscle synergies could be shaped by aging and expertise, and also took part in motor control for adapting to different conditions in complex tasks.
Collapse
Affiliation(s)
- Subing Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.H.); (X.G.); (R.L.)
| | - Xiaoyu Guo
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.H.); (X.G.); (R.L.)
| | - Jodie J. Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.J.X.); (K.Y.S.L.); (V.C.K.C.)
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin Y. S. Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.J.X.); (K.Y.S.L.); (V.C.K.C.)
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Richard Liu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.H.); (X.G.); (R.L.)
| | - Arthur D. P. Mak
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge CB21 5EF, UK
| | - Vincent C. K. Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.J.X.); (K.Y.S.L.); (V.C.K.C.)
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Rosa H. M. Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.H.); (X.G.); (R.L.)
| |
Collapse
|
9
|
Dussault-Picard C, Havashinezhadian S, Turpin NA, Moissenet F, Turcot K, Cherni Y. Age-related modifications of muscle synergies during daily-living tasks: A scoping review. Clin Biomech (Bristol, Avon) 2024; 113:106207. [PMID: 38367481 DOI: 10.1016/j.clinbiomech.2024.106207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Aging is associated with changes in neuromuscular control that can lead to difficulties in performing daily living tasks. Muscle synergy analysis allows the assessment of neuromuscular control strategies and functional deficits. However, the age-related changes of muscle synergies during functional tasks are scattered throughout the literature. This review aimed to synthesize the existing literature on muscle synergies in elderly people during daily-living tasks and examine how they differ from those exhibited by young adults. METHODS The Medline, CINAHL and Web of Science databases were searched. Studies were included if they focused on muscle synergies in elderly people during walking, sit-to-stand or stair ascent, and if muscle synergies were obtained by a matrix factorization algorithm. FINDINGS Seventeen studies were included after the screening process. The muscle synergies of 295 elderly people and 182 young adults were reported, including 5 to 16 muscles per leg, or leg and trunk. Results suggest that: 1) elderly people and young adults retain similar muscle synergies' number, 2) elderly people have higher muscles weighting during walking, and 3) an increased inter and intra-subject temporal activation variability during specific tasks (i.e., walking and stair ascent, respectively) was reported in elderly people compared to young adults. INTERPRETATION This review gives a comprehensive understanding of age-related changes in neuromuscular control during daily living tasks. Our findings suggested that although the number of synergies remains similar, metrics such as spatial and temporal structures of synergies are more suitable to identify neuromuscular control deficits between young adults and elderly people.
Collapse
Affiliation(s)
- Cloé Dussault-Picard
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, QC, Canada; Laboratoire de Neurobiomécanique & Neuroréadaptation de la Locomotion (NNL), Centre de recherche du CHU Ste Justine, Montréal, QC, Canada
| | - Sara Havashinezhadian
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, QC, Canada
| | - Nicolas A Turpin
- IRISSE (EA 4075), UFR SHE, Département des sciences du sport (STAPS), Université de la Réunion, France
| | - Florent Moissenet
- Laboratoire de kinésiologie, Hôpitaux universitaires de Genève et Université de Genève, Genève, Switzerland; Laboratoire de biomécanique, Hôpitaux universitaires de Genève et Université de Genève, Genève, Switzerland
| | - Katia Turcot
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, QC, Canada
| | - Yosra Cherni
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, QC, Canada; Laboratoire de Neurobiomécanique & Neuroréadaptation de la Locomotion (NNL), Centre de recherche du CHU Ste Justine, Montréal, QC, Canada; Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Chen Y, Yu W, Benali A, Lu D, Kok SY, Wang R. Towards Human-like Walking with Biomechanical and Neuromuscular Control Features: Personalized Attachment Point Optimization Method of Cable-Driven Exoskeleton. Front Aging Neurosci 2024; 16:1327397. [PMID: 38371400 PMCID: PMC10870425 DOI: 10.3389/fnagi.2024.1327397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
The cable-driven exoskeleton can avoid joint misalignment, and is substantial alterations in the pattern of muscle synergy coordination, which arouse more attention in recent years to facilitate exercise for older adults and improve their overall quality of life. This study leverages principles from neuroscience and biomechanical analysis to select attachment points for cable-driven soft exoskeletons. By extracting key features of human movement, the objective is to develop a subject-specific design methodology that provides precise and personalized support in the attachment points optimization of cable-driven exoskeleton to achieve natural gait, energy efficiency, and muscle coordination controllable in the domain of human mobility and rehabilitation. To achieve this, the study first analyzes human walking experimental data and extracts biomechanical features. These features are then used to generate trajectories, allowing better natural movement under complete cable-driven exoskeleton control. Next, a genetic algorithm-based method is employed to minimize energy consumption and optimize the attachment points of the cable-driven system. This process identifies connections that are better suited for the human model, leading to improved efficiency and natural movement. By comparing the calculated elderly human model driven by exoskeleton with experimental subject in terms of joint angles, joint torques and muscle forces, the human model can successfully replicate subject movement and the cable output forces can mimic human muscle coordination. The optimized cable attachment points facilitate more natural and efficient collaboration between humans and the exoskeleton, making significant contributions to the field of assisting the elderly in rehabilitation.
Collapse
Affiliation(s)
- Yasheng Chen
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Weiwei Yu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Abderraouf Benali
- LISV, Versailles Systems Engineering Laboratory, Université de Versailles Saint Quentin en Yvelines, Paris, France
| | - Donglai Lu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Siong Yuen Kok
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Runxiao Wang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
11
|
Cheung VCK, Ha SCW, Zhang-Lea JH, Chan ZYS, Teng Y, Yeung G, Wu L, Liang D, Cheung RTH. Motor patterns of patients with spinal muscular atrophy suggestive of sensory and corticospinal contributions to the development of locomotor muscle synergies. J Neurophysiol 2024; 131:338-359. [PMID: 38230872 PMCID: PMC11321722 DOI: 10.1152/jn.00513.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Complex locomotor patterns are generated by combination of muscle synergies. How genetic processes, early sensorimotor experiences, and the developmental dynamics of neuronal circuits contribute to the expression of muscle synergies remains elusive. We shed light on the factors that influence development of muscle synergies by studying subjects with spinal muscular atrophy (SMA, types II/IIIa), a disorder associated with degeneration and deafferentation of motoneurons and possibly motor cortical and cerebellar abnormalities, from which the afflicted would have atypical sensorimotor histories around typical walking onset. Muscle synergies of children with SMA were identified from electromyographic signals recorded during active-assisted leg motions or walking, and compared with those of age-matched controls. We found that the earlier the SMA onset age, the more different the SMA synergies were from the normative. These alterations could not just be explained by the different degrees of uneven motoneuronal losses across muscles. The SMA-specific synergies had activations in muscles from multiple limb compartments, a finding reminiscent of the neonatal synergies of typically developing infants. Overall, while the synergies shared between SMA and control subjects may reflect components of a core modular infrastructure determined early in life, the SMA-specific synergies may be developmentally immature synergies that arise from inadequate activity-dependent interneuronal sculpting due to abnormal sensorimotor experience and other factors. Other mechanisms including SMA-induced intraspinal changes and altered cortical-spinal interactions may also contribute to synergy changes. Our interpretation highlights the roles of the sensory and descending systems to the typical and abnormal development of locomotor modules.NEW & NOTEWORTHY This is likely the first report of locomotor muscle synergies of children with spinal muscular atrophy (SMA), a subject group with atypical developmental sensorimotor experience. We found that the earlier the SMA onset age, the more the subjects' synergies deviated from those of age-matched controls. This result suggests contributions of the sensory/corticospinal activities to the typical expression of locomotor modules, and how their disruptions during a critical period of development may lead to abnormal motor modules.
Collapse
Affiliation(s)
- Vincent C K Cheung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong and Kunming Institute of Zoology of the Chinese Academy of Sciences, Hong Kong, China
| | - Sophia C W Ha
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China
| | - Janet H Zhang-Lea
- School of Nursing and Human Physiology, Gonzaga University, Spokane, Washington, United States
| | - Zoe Y S Chan
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Yanling Teng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Geshi Yeung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Roy T H Cheung
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| |
Collapse
|