1
|
Luo Y, Chen Q, Li F, Yi L, Xu P, Zhang Y. Hierarchical feature extraction on functional brain networks for autism spectrum disorder identification with resting-state fMRI data. Neural Netw 2025; 188:107450. [PMID: 40233539 DOI: 10.1016/j.neunet.2025.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/02/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Autism Spectrum Disorder (ASD) is a pervasive developmental disorder of the central nervous system, primarily manifesting in childhood. It is characterized by atypical and repetitive behaviors. Conventional diagnostic methods mainly rely on questionnaire surveys and behavioral observations, which are prone to misdiagnosis due to their subjective nature. With advancements in medical imaging, MR imaging-based diagnostics have emerged as a more objective alternative. In this paper, we propose a Hierarchical Neural Network model for ASD identification, termed ASD-HNet, which hierarchically extracts features from functional brain networks based on resting-state functional magnetic resonance imaging (rs-fMRI) data. This hierarchical approach enhances the extraction of brain representations, improving diagnostic accuracy and aiding in the identification of brain regions associated with ASD. Specifically, features are extracted at three levels, i.e., the local region of interest (ROI) scale, the community scale, and the global representation scale. At the ROI scale, graph convolution is employed to transfer features between ROIs. At the community scale, functional gradients are introduced, and a K-Means clustering algorithm is applied to group ROIs with similar functional gradients into communities. Features from ROIs within the same community are then extracted to characterize the communities. At the global representation scale, we extract global features from the whole community-scale brain networks to represent the entire brain. We validate the effectiveness of the ASD-HNet model using the publicly available Autism Brain Imaging Data Exchange I (ABIDE-I) dataset, ADHD-200,dataset and ABIDE-II dataset. Extensive experimental results demonstrate that ASD-HNet outperforms existing baseline methods. The code is available at https://github.com/LYQbyte/ASD-HNet.
Collapse
Affiliation(s)
- Yiqian Luo
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Qiurong Chen
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Fali Li
- MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yi
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Peng Xu
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China; MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yangsong Zhang
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China; MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Li W, Wang M, Liu M, Liu Q. Riemannian manifold-based disentangled representation learning for multi-site functional connectivity analysis. Neural Netw 2025; 183:106945. [PMID: 39642641 DOI: 10.1016/j.neunet.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/06/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Functional connectivity (FC), derived from resting-state functional magnetic resonance imaging (rs-fMRI), has been widely used to characterize brain abnormalities in disorders. FC is usually defined as a correlation matrix that is a symmetric positive definite (SPD) matrix lying on the Riemannian manifold. Recently, a number of learning-based methods have been proposed for FC analysis, while the geometric properties of Riemannian manifold have not yet been fully explored in previous studies. Also, most existing methods are designed to target one imaging site of fMRI data, which may result in limited training data for learning reliable and robust models. In this paper, we propose a novel Riemannian Manifold-based Disentangled Representation Learning (RM-DRL) framework which is capable of learning invariant representations from fMRI data across multiple sites for brain disorder diagnosis. In RM-DRL, we first employ an SPD-based encoder module to learn a latent unified representation of FC from different sites, which can preserve the Riemannian geometry of the SPD matrices. In latent space, a disentangled representation module is then designed to split the learned features into domain-specific and domain-invariant parts, respectively. Finally, a decoder module is introduced to ensure that sufficient information can be preserved during disentanglement learning. These designs allow us to introduce four types of training objectives to improve the disentanglement learning. Our RM-DRL method is evaluated on the public multi-site ABIDE dataset, showing superior performance compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Wenyang Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingliang Wang
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qingshan Liu
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
3
|
Dun J, Wang J, Li J, Yang Q, Hang W, Lu X, Ying S, Shi J. A Trustworthy Curriculum Learning Guided Multi-Target Domain Adaptation Network for Autism Spectrum Disorder Classification. IEEE J Biomed Health Inform 2025; 29:310-323. [PMID: 39378247 DOI: 10.1109/jbhi.2024.3476076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Domain adaptation has demonstrated success in classification of multi-center autism spectrum disorder (ASD). However, current domain adaptation methods primarily focus on classifying data in a single target domain with the assistance of one or multiple source domains, lacking the capability to address the clinical scenario of identifying ASD in multiple target domains. In response to this limitation, we propose a Trustworthy Curriculum Learning Guided Multi-Target Domain Adaptation (TCL-MTDA) network for identifying ASD in multiple target domains. To effectively handle varying degrees of data shift in multiple target domains, we propose a trustworthy curriculum learning procedure based on the Dempster-Shafer (D-S) Theory of Evidence. Additionally, a domain-contrastive adaptation method is integrated into the TCL-MTDA process to align data distributions between source and target domains, facilitating the learning of domain-invariant features. The proposed TCL-MTDA method is evaluated on 437 subjects (including 220 ASD patients and 217 NCs) from the Autism Brain Imaging Data Exchange (ABIDE). Experimental results validate the effectiveness of our proposed method in multi-target ASD classification, achieving an average accuracy of 71.46% (95% CI: 68.85% - 74.06%) across four target domains, significantly outperforming most baseline methods (p<0.05).
Collapse
|
4
|
Fang Y, Wu J, Wang Q, Qiu S, Bozoki A, Liu M. Source-free collaborative domain adaptation via multi-perspective feature enrichment for functional MRI analysis. PATTERN RECOGNITION 2025; 157:110912. [PMID: 39246820 PMCID: PMC11378862 DOI: 10.1016/j.patcog.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Resting-state functional MRI (rs-fMRI) is increasingly employed in multi-site research to analyze neurological disorders, but there exists cross-site/domain data heterogeneity caused by site effects such as differences in scanners/protocols. Existing domain adaptation methods that reduce fMRI heterogeneity generally require accessing source domain data, which is challenging due to privacy concerns and/or data storage burdens. To this end, we propose a source-free collaborative domain adaptation (SCDA) framework using only a pretrained source model and unlabeled target data. Specifically, a multi-perspective feature enrichment method (MFE) is developed to dynamically exploit target fMRIs from multiple views. To facilitate efficient source-to-target knowledge transfer without accessing source data, we initialize MFE using parameters of a pretrained source model. We also introduce an unsupervised pretraining strategy using 3,806 unlabeled fMRIs from three large-scale auxiliary databases. Experimental results on three public and one private datasets show the efficacy of our method in cross-scanner and cross-study prediction.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinjian Wu
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510130, China
| | - Qianqian Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shijun Qiu
- Department of Radiology, The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Andrea Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Orouji S, Liu MC, Korem T, Peters MAK. Domain adaptation in small-scale and heterogeneous biological datasets. SCIENCE ADVANCES 2024; 10:eadp6040. [PMID: 39705361 DOI: 10.1126/sciadv.adp6040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Machine-learning models are key to modern biology, yet models trained on one dataset are often not generalizable to other datasets from different cohorts or laboratories due to both technical and biological differences. Domain adaptation, a type of transfer learning, alleviates this problem by aligning different datasets so that models can be applied across them. However, most state-of-the-art domain adaptation methods were designed for large-scale data such as images, whereas biological datasets are smaller and have more features, and these are also complex and heterogeneous. This Review discusses domain adaptation methods in the context of such biological data to inform biologists and guide future domain adaptation research. We describe the benefits and challenges of domain adaptation in biological research and critically explore some of its objectives, strengths, and weaknesses. We argue for the incorporation of domain adaptation techniques to the computational biologist's toolkit, with further development of customized approaches.
Collapse
Affiliation(s)
- Seyedmehdi Orouji
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
| | - Martin C Liu
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
| | - Megan A K Peters
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
- CIFAR Fellow, Program in Brain, Mind, & Consciousness, CIFAR, Toronto, Canada
| |
Collapse
|
6
|
Ji Y, Silva RF, Adali T, Wen X, Zhu Q, Jiang R, Zhang D, Qi S, Calhoun VD. Joint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders. Neuroimage Clin 2024; 43:103663. [PMID: 39226701 PMCID: PMC11639356 DOI: 10.1016/j.nicl.2024.103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Identifying biomarkers for computer-aided diagnosis (CAD) is crucial for early intervention of psychiatric disorders. Multi-site data have been utilized to increase the sample size and improve statistical power, while multi-modality classification offers significant advantages over traditional single-modality based approaches for diagnosing psychiatric disorders. However, inter-site heterogeneity and intra-modality heterogeneity present challenges to multi-site and multi-modality based classification. In this paper, brain functional and structural networks (BFNs/BSNs) from multiple sites were constructed to establish a joint multi-site multi-modality framework for psychiatric diagnosis. To do this we developed a hypergraph based multi-source domain adaptation (HMSDA) which allowed us to transform source domain subjects into a target domain. A local ordinal structure based multi-task feature selection (LOSMFS) approach was developed by integrating the transformed functional and structural connections (FCs/SCs). The effectiveness of our method was validated by evaluating diagnosis of both schizophrenia (SZ) and autism spectrum disorder (ASD). The proposed method obtained accuracies of 92.2 %±2.22 % and 84.8 %±2.68 % for the diagnosis of SZ and ASD, respectively. We also compared with 6 DA, 10 multi-modality feature selection, and 8 multi-site and multi-modality methods. Results showed the proposed HMSDA+LOSMFS effectively integrated multi-site and multi-modality data to enhance psychiatric diagnosis and identify disorder-specific diagnostic brain connections.
Collapse
Affiliation(s)
- Yixin Ji
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Rogers F Silva
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Tülay Adali
- Department of CSEE, University of Maryland, USA
| | - Xuyun Wen
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Qi Zhu
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Rongtao Jiang
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Daoqiang Zhang
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Shile Qi
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Song R, Cao P, Wen G, Zhao P, Huang Z, Zhang X, Yang J, Zaiane OR. BrainDAS: Structure-aware domain adaptation network for multi-site brain network analysis. Med Image Anal 2024; 96:103211. [PMID: 38796945 DOI: 10.1016/j.media.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
In the medical field, datasets are mostly integrated across sites due to difficult data acquisition and insufficient data at a single site. The domain shift problem caused by the heterogeneous distribution among multi-site data makes autism spectrum disorder (ASD) hard to identify. Recently, domain adaptation has received considerable attention as a promising solution. However, domain adaptation on graph data like brain networks has not been fully studied. It faces two major challenges: (1) complex graph structure; and (2) multiple source domains. To overcome the issues, we propose an end-to-end structure-aware domain adaptation framework for brain network analysis (BrainDAS) using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed approach contains two stages: supervision-guided multi-site graph domain adaptation with dynamic kernel generation and graph classification with attention-based graph pooling. We evaluate our BrainDAS on a public dataset provided by Autism Brain Imaging Data Exchange (ABIDE) which includes 871 subjects from 17 different sites, surpassing state-of-the-art algorithms in several different evaluation settings. Furthermore, our promising results demonstrate the interpretability and generalization of the proposed method. Our code is available at https://github.com/songruoxian/BrainDAS.
Collapse
Affiliation(s)
- Ruoxian Song
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Peng Cao
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.
| | - Guangqi Wen
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing, China
| | - Ziheng Huang
- College of Software, Northeastern University, Shenyang, China
| | - Xizhe Zhang
- Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.
| | | |
Collapse
|
8
|
Zhang Y, Gao Y, Xu J, Zhao G, Shi L, Kong L. Unsupervised Joint Domain Adaptation for Decoding Brain Cognitive States From tfMRI Images. IEEE J Biomed Health Inform 2024; 28:1494-1503. [PMID: 38157464 DOI: 10.1109/jbhi.2023.3348130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recent advances in large model and neuroscience have enabled exploration of the mechanism of brain activity by using neuroimaging data. Brain decoding is one of the most promising researches to further understand the human cognitive function. However, current methods excessively depends on high-quality labeled data, which brings enormous expense of collection and annotation of neural images by experts. Besides, the performance of cross-individual decoding suffers from inconsistency in data distribution caused by individual variation and different collection equipments. To address mentioned above issues, a Join Domain Adapative Decoding (JDAD) framework is proposed for unsupervised decoding specific brain cognitive state related to behavioral task. Based on the volumetric feature extraction from task-based functional Magnetic Resonance Imaging (tfMRI) data, a novel objective loss function is designed by the combination of joint distribution regularizer, which aims to restrict the distance of both the conditional and marginal probability distribution of labeled and unlabeled samples. Experimental results on the public Human Connectome Project (HCP) S1200 dataset show that JDAD achieves superior performance than other prevalent methods, especially for fine-grained task with 11.5%-21.6% improvements of decoding accuracy. The learned 3D features are visualized by Grad-CAM to build a combination with brain functional regions, which provides a novel path to learn the function of brain cortex regions related to specific cognitive task in group level.
Collapse
|