1
|
Li X, Yang Z, Tu X, Wang J, Huang J. MFRC-Net: Multi-Scale Feature Residual Convolutional Neural Network for Motor Imagery Decoding. IEEE J Biomed Health Inform 2025; 29:224-234. [PMID: 39316474 DOI: 10.1109/jbhi.2024.3467090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Motor imagery (MI) decoding is the basis of external device control via electroencephalogram (EEG). However, the majority of studies prioritize enhancing the accuracy of decoding methods, often overlooking the magnitude and computational resource demands of deep learning models. In this study, we propose a novel lightweight Multi-Scale Feature Residual Convolutional Neural Network (MFRC-Net). MFRC-Net primarily consists of two blocks: temporal multi-scale residual convolution blocks and cross-domain dual-stream spatial convolution blocks. The former captures dynamic changes in EEG signals across various time scales through multi-scale grouped convolution and backbone temporal convolution skip connections; the latter improves local spatial feature extraction and calibrates feature mapping through the introduction of cross-domain spatial filtering layers. Furthermore, by specifically optimizing the loss function, MFRC-Net effectively reduces sensitivity to outliers. Experiment results on the BCI Competition IV 2a dataset and the SHU dataset demonstrate that, with a parameter size of only 13 K, MFRC-Net achieves accuracy of 85.1% and 69.3%, respectively, surpassing current state-of-the-art models. The integration of temporal multi-scale residual convolution blocks and cross-domain dual-stream spatial convolution blocks in lightweight models significantly boosts performance, as evidenced by ablation studies and visualizations.
Collapse
|
2
|
Kumari A, Edla DR, Reddy RR, Jannu S, Vidyarthi A, Alkhayyat A, de Marin MSG. EEG-based motor imagery channel selection and classification using hybrid optimization and two-tier deep learning. J Neurosci Methods 2024; 409:110215. [PMID: 38968976 DOI: 10.1016/j.jneumeth.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Brain-computer interface (BCI) technology holds promise for individuals with profound motor impairments, offering the potential for communication and control. Motor imagery (MI)-based BCI systems are particularly relevant in this context. Despite their potential, achieving accurate and robust classification of MI tasks using electroencephalography (EEG) data remains a significant challenge. In this paper, we employed the Minimum Redundancy Maximum Relevance (MRMR) algorithm to optimize channel selection. Furthermore, we introduced a hybrid optimization approach that combines the War Strategy Optimization (WSO) and Chimp Optimization Algorithm (ChOA). This hybridization significantly enhances the classification model's overall performance and adaptability. A two-tier deep learning architecture is proposed for classification, consisting of a Convolutional Neural Network (CNN) and a modified Deep Neural Network (M-DNN). The CNN focuses on capturing temporal correlations within EEG data, while the M-DNN is designed to extract high-level spatial characteristics from selected EEG channels. Integrating optimal channel selection, hybrid optimization, and the two-tier deep learning methodology in our BCI framework presents an enhanced approach for precise and effective BCI control. Our model got 95.06% accuracy with high precision. This advancement has the potential to significantly impact neurorehabilitation and assistive technology applications, facilitating improved communication and control for individuals with motor impairments.
Collapse
Affiliation(s)
- Annu Kumari
- Department of Computer Science and Engineering, National Institute of Technology Goa, Cuncolim, South Goa, 403 703, Goa, India.
| | - Damodar Reddy Edla
- Department of Computer Science and Engineering, National Institute of Technology Goa, Cuncolim, South Goa, 403 703, Goa, India.
| | - R Ravinder Reddy
- Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad, 500 075, India.
| | - Srikanth Jannu
- Department of Computer Science and Engineering, Vaagdevi Engineering College, Warangal, Telangana, 506 005, India.
| | - Ankit Vidyarthi
- Department of CSE&IT, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | | | - Mirtha Silvana Garat de Marin
- Engineering Research & Innovation Group, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain; Department of Project Management, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA; Department of Project Management, Universidade Internacional do Cuanza, Estrada Nacional 250, Bairro Kaluapanda, Cuito-Bié, Angola.
| |
Collapse
|
3
|
Martinez-Peon D, Garcia-Hernandez NV, Benavides-Bravo FG, Parra-Vega V. Characterization and classification of kinesthetic motor imagery levels. J Neural Eng 2024; 21:046024. [PMID: 38963179 DOI: 10.1088/1741-2552/ad5f27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Objective.Kinesthetic Motor Imagery (KMI) represents a robust brain paradigm intended for electroencephalography (EEG)-based commands in brain-computer interfaces (BCIs). However, ensuring high accuracy in multi-command execution remains challenging, with data from C3 and C4 electrodes reaching up to 92% accuracy. This paper aims to characterize and classify EEG-based KMI of multilevel muscle contraction without relying on primary motor cortex signals.Approach.A new method based on Hurst exponents is introduced to characterize EEG signals of multilevel KMI of muscle contraction from electrodes placed on the premotor, dorsolateral prefrontal, and inferior parietal cortices. EEG signals were recorded during a hand-grip task at four levels of muscle contraction (0%, 10%, 40%, and 70% of the maximal isometric voluntary contraction). The task was executed under two conditions: first, physically, to train subjects in achieving muscle contraction at each level, followed by mental imagery under the KMI paradigm for each contraction level. EMG signals were recorded in both conditions to correlate muscle contraction execution, whether correct or null accurately. Independent component analysis (ICA) maps EEG signals from the sensor to the source space for preprocessing. For characterization, three algorithms based on Hurst exponents were used: the original (HO), using partitions (HRS), and applying semivariogram (HV). Finally, seven classifiers were used: Bayes network (BN), naive Bayes (NB), support vector machine (SVM), random forest (RF), random tree (RT), multilayer perceptron (MP), and k-nearest neighbors (kNN).Main results.A combination of the three Hurst characterization algorithms produced the highest average accuracy of 96.42% from kNN, followed by MP (92.85%), SVM (92.85%), NB (91.07%), RF (91.07%), BN (91.07%), and RT (80.35%). of 96.42% for kNN.Significance.Results show the feasibility of KMI multilevel muscle contraction detection and, thus, the viability of non-binary EEG-based BCI applications without using signals from the motor cortex.
Collapse
Affiliation(s)
- D Martinez-Peon
- Department of Electrical and Electronic Engineering, National Technological Institute of Mexico (TecNM)- IT Nuevo Leon, Guadalupe, Mexico
| | - N V Garcia-Hernandez
- National Council on Science and Technology, Saltillo, Mexico
- Robotics and Advanced Manufacturing, Research Center for Advanced Studies (Cinvestav), Saltillo, Mexico
| | - F G Benavides-Bravo
- Department of Basic Sciences, National Technological Institute of Mexico (TecNM)- IT Nuevo Leon, Guadalupe, Mexico
| | - V Parra-Vega
- Robotics and Advanced Manufacturing, Research Center for Advanced Studies (Cinvestav), Saltillo, Mexico
| |
Collapse
|
4
|
Amrani H, Micucci D, Nalin M, Napoletano P, Rizzi I. EEG Acquisition and Motor Imagery Classification for Robotic Control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039126 DOI: 10.1109/embc53108.2024.10782723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The adoption of brain-computer interfaces (BCIs) has significantly increased in various application domains, particularly in the field of controlling robotic systems through motor imagery. The article contributes in two primary ways: 1) validating the effectiveness of using a minimally invasive electroencephalography (EEG) device combined with machine learning techniques to control fundamental movements in a robotic setting, and 2) demonstrating these findings practically through the construction of a robotic vehicle. In this vehicle, tasks involving motor imagery align directly with control commands for the vehicle. To validate our approach, we identified four-class and two-class classification tasks. The signals have been acquired from a portable EEG device equipped with eight dry electrodes. We employed sliding window strategies to segment the data, along with feature extraction using the Common Spatial Pattern (CSP) method. Classification modules were implemented based on Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) models. The experimentation involved five participants, each with their own personalized model. While the accuracy of results in the four-class tasks is not notably high, the outcomes in binary classification tasks are promising, boasting an average accuracy of approximately 61%. Results suggest a promising potential for this approach in the realm of robot control, particularly when employing dry-electrode EEG devices.
Collapse
|
5
|
Wang F, Chen D, Yao W, Fu R. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network. J Neurosci Methods 2023; 400:109983. [PMID: 37838152 DOI: 10.1016/j.jneumeth.2023.109983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Driving fatigue is one of the main factors leading to traffic accidents. So, it is necessary to detect driver fatigue accurately and quickly. NEW METHOD To precisely detect driving fatigue in a real driving environment, this paper adopts a classification method for driving fatigue based on the wavelet scattering network (WSN). Firstly, electroencephalogram (EEG) signals of 12 subjects in the real driving environment are collected and categorized into two states: fatigue and awake. Secondly, the WSN algorithm extracts wavelet scattering coefficients of EEG signals, and these coefficients are used as input in support vector machine (SVM) as feature vectors for classification. RESULTS The results showed that the average classification accuracy of 12 subjects reached 99.33%; the average precision rate reached 99.28%; the average recall rate reached 98.27%; the average F1 score reached 98.74%; and the average classification accuracy of the public data set SEED-VIG reached 99.39%. The average precision, recall rate and F1 score reached 99.27%, 98.41% and 98.83% respectively. COMPARISON WITH EXISTING METHODS In addition, the WSN algorithm is compared with traditional convolutional neural network (CNN), Sparse-deep belief networks (SDBN), Spatio-temporal convolutional neural networks (STCNN), Long short-term memory (LSTM), and other methods, and it is found that WSN has higher classification accuracy. CONCLUSION Furthermore, this method has good versatility, providing excellent recognition effect on small sample data sets, and fast running time, making it convenient for real-time online monitoring of driver fatigue. Therefore, the WSN algorithm is promising in efficiently detecting driving fatigue state of drivers in real environments, contributing to improved traffic safety.
Collapse
Affiliation(s)
- Fuwang Wang
- Northeast Electric Power University, School of Mechanic Engineering, Jilin 132012, China.
| | - Daping Chen
- Northeast Electric Power University, School of Mechanic Engineering, Jilin 132012, China
| | - Wanchao Yao
- Northeast Electric Power University, School of Mechanic Engineering, Jilin 132012, China
| | - Rongrong Fu
- Yanshan University, College of Electrical Engineering, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Xu J, Li D, Zhou P, Li C, Wang Z, Tong S. A multi-band centroid contrastive reconstruction fusion network for motor imagery electroencephalogram signal decoding. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:20624-20647. [PMID: 38124568 DOI: 10.3934/mbe.2023912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Motor imagery (MI) brain-computer interface (BCI) assist users in establishing direct communication between their brain and external devices by decoding the movement intention of human electroencephalogram (EEG) signals. However, cerebral cortical potentials are highly rhythmic and sub-band features, different experimental situations and subjects have different categories of semantic information in specific sample target spaces. Feature fusion can lead to more discriminative features, but simple fusion of features from different embedding spaces leading to the model global loss is not easily convergent and ignores the complementarity of features. Considering the similarity and category contribution of different sub-band features, we propose a multi-band centroid contrastive reconstruction fusion network (MB-CCRF). We obtain multi-band spatio-temporal features by frequency division, preserving the task-related rhythmic features of different EEG signals; use a multi-stream cross-layer connected convolutional network to perform a deep feature representation for each sub-band separately; propose a centroid contrastive reconstruction fusion module, which maps different sub-band and category features into the same shared embedding space by comparing with category prototypes, reconstructing the feature semantic structure to ensure that the global loss of the fused features converges more easily. Finally, we use a learning mechanism to model the similarity between channel features and use it as the weight of fused sub-band features, thus enhancing the more discriminative features, suppressing the useless features. The experimental accuracy is 79.96% in the BCI competition Ⅳ-Ⅱa dataset. Moreover, the classification effect of sub-band features of different subjects is verified by comparison tests, the category propensity of different sub-band features is verified by confusion matrix tests and the distribution in different classes of each sub-band feature and fused feature are showed by visual analysis, revealing the importance of different sub-band features for the EEG-based MI classification task.
Collapse
Affiliation(s)
- Jiacan Xu
- The College of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang 110000, China
| | - Donglin Li
- The College of Electrical Engineering, Shenyang University of Technology, Shenyang 110000, China
| | - Peng Zhou
- The College of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang 110000, China
| | - Chunsheng Li
- The College of Electrical Engineering, Shenyang University of Technology, Shenyang 110000, China
| | - Zinan Wang
- The College of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang 110000, China
| | - Shenghao Tong
- The College of Engineering Training and Innovation, Shenyang Jianzhu University, Shenyang 110000, China
| |
Collapse
|
7
|
Siviero I, Menegaz G, Storti SF. Functional Connectivity and Feature Fusion Enhance Multiclass Motor-Imagery Brain-Computer Interface Performance. SENSORS (BASEL, SWITZERLAND) 2023; 23:7520. [PMID: 37687976 PMCID: PMC10490741 DOI: 10.3390/s23177520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
(1) Background: in the field of motor-imagery brain-computer interfaces (MI-BCIs), obtaining discriminative features among multiple MI tasks poses a significant challenge. Typically, features are extracted from single electroencephalography (EEG) channels, neglecting their interconnections, which leads to limited results. To address this limitation, there has been growing interest in leveraging functional brain connectivity (FC) as a feature in MI-BCIs. However, the high inter- and intra-subject variability has so far limited its effectiveness in this domain. (2) Methods: we propose a novel signal processing framework that addresses this challenge. We extracted translation-invariant features (TIFs) obtained from a scattering convolution network (SCN) and brain connectivity features (BCFs). Through a feature fusion approach, we combined features extracted from selected channels and functional connectivity features, capitalizing on the strength of each component. Moreover, we employed a multiclass support vector machine (SVM) model to classify the extracted features. (3) Results: using a public dataset (IIa of the BCI Competition IV), we demonstrated that the feature fusion approach outperformed existing state-of-the-art methods. Notably, we found that the best results were achieved by merging TIFs with BCFs, rather than considering TIFs alone. (4) Conclusions: our proposed framework could be the key for improving the performance of a multiclass MI-BCI system.
Collapse
Affiliation(s)
- Ilaria Siviero
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Silvia Francesca Storti
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| |
Collapse
|