1
|
Russo M, Ozeri-Engelhard N, Hupfeld K, Nettekoven C, Thibault S, Sedaghat-Nejad E, Buchwald D, Xing D, Zobeiri O, Kilteni K, Albert ST, Ariani G. Highlights from the 30th Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2021; 126:967-975. [PMID: 34406885 PMCID: PMC8560412 DOI: 10.1152/jn.00334.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marta Russo
- Department of Neurology, Tor Vergata Polyclinic, Rome, Italy
- Department of Biology, Northeastern University, Boston, Massachusetts
| | - Nofar Ozeri-Engelhard
- WM Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Kathleen Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Caroline Nettekoven
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Thibault
- ImpAct team, Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, University of Lyon 1, Lyon, France
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniela Buchwald
- Ottobock SE & Co. KGaA, Software & Electronics Engineering, Duderstadt, Germany
| | - David Xing
- Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Omid Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | | | - Scott T Albert
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Giacomo Ariani
- The Brain and Mind Institute, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Handelzalts S, Ballardini G, Avraham C, Pagano M, Casadio M, Nisky I. Integrating Tactile Feedback Technologies Into Home-Based Telerehabilitation: Opportunities and Challenges in Light of COVID-19 Pandemic. Front Neurorobot 2021; 15:617636. [PMID: 33679364 PMCID: PMC7925397 DOI: 10.3389/fnbot.2021.617636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for advancing the development and implementation of novel means for home-based telerehabilitation in order to enable remote assessment and training for individuals with disabling conditions in need of therapy. While somatosensory input is essential for motor function, to date, most telerehabilitation therapies and technologies focus on assessing and training motor impairments, while the somatosensorial aspect is largely neglected. The integration of tactile devices into home-based rehabilitation practice has the potential to enhance the recovery of sensorimotor impairments and to promote functional gains through practice in an enriched environment with augmented tactile feedback and haptic interactions. In the current review, we outline the clinical approaches for stimulating somatosensation in home-based telerehabilitation and review the existing technologies for conveying mechanical tactile feedback (i.e., vibration, stretch, pressure, and mid-air stimulations). We focus on tactile feedback technologies that can be integrated into home-based practice due to their relatively low cost, compact size, and lightweight. The advantages and opportunities, as well as the long-term challenges and gaps with regards to implementing these technologies into home-based telerehabilitation, are discussed.
Collapse
Affiliation(s)
- Shirley Handelzalts
- Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| | - Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mattia Pagano
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Ilana Nisky
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|