1
|
Zhang L, Wu J, Wang L, Wang L, Steffens DC, Qiu S, Potter GG, Liu M. Brain Anatomy Prior Modeling to Forecast Clinical Progression of Cognitive Impairment with Structural MRI. PATTERN RECOGNITION 2025; 165:111603. [PMID: 40290575 PMCID: PMC12021437 DOI: 10.1016/j.patcog.2025.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Brain structural MRI has been widely used to assess the future progression of cognitive impairment (CI). Previous learning-based studies usually suffer from the issue of small-sized labeled training data, while a huge amount of structural MRIs exist in large-scale public databases. Intuitively, brain anatomical structures derived from these public MRIs (even without task-specific label information) can boost CI progression trajectory prediction. However, previous studies seldom use such brain anatomy structure information as priors. To this end, this paper proposes a brain anatomy prior modeling (BAPM) framework to forecast the clinical progression of cognitive impairment with small-sized target MRIs by exploring anatomical brain structures. Specifically, the BAPM consists of a pretext model and a downstream model, with a shared brain anatomy-guided encoder to model brain anatomy prior using auxiliary tasks explicitly. Besides the encoder, the pretext model also contains two decoders for two auxiliary tasks (i.e., MRI reconstruction and brain tissue segmentation), while the downstream model relies on a predictor for classification. The brain anatomy-guided encoder is pre-trained with the pretext model on 9,344 auxiliary MRIs without diagnostic labels for anatomy prior modeling. With this encoder frozen, the downstream model is then fine-tuned on limited target MRIs for prediction. We validate BAPM on two CI-related studies with T1-weighted MRIs from 448 subjects. Experimental results suggest the effectiveness of BAPM in (1) four CI progression prediction tasks, (2) MR image reconstruction, and (3) brain tissue segmentation, compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Lintao Zhang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinjian Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510031, China
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David C. Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Shijun Qiu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510031, China
| | - Guy G. Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Yan F, Peng L, Dong F, Hirota K. MCNEL: A multi-scale convolutional network and ensemble learning for Alzheimer's disease diagnosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 264:108703. [PMID: 40081198 DOI: 10.1016/j.cmpb.2025.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) significantly threatens community well-being and healthcare resource allocation due to its high incidence and mortality. Therefore, early detection and intervention are crucial for reducing AD-related fatalities. However, the existing deep learning-based approaches often struggle to capture complex structural features of magnetic resonance imaging (MRI) data effectively. Common techniques for multi-scale feature fusion, such as direct summation and concatenation methods, often introduce redundant noise that can negatively affect model performance. These challenges highlight the need for developing more advanced methods to improve feature extraction and fusion, aiming to enhance diagnostic accuracy. METHODS This study proposes a multi-scale convolutional network and ensemble learning (MCNEL) framework for early and accurate AD diagnosis. The framework adopts enhanced versions of the EfficientNet-B0 and MobileNetV2 models, which are subsequently integrated with the DenseNet121 model to create a hybrid feature extraction tool capable of extracting features from multi-view slices. Additionally, a SimAM-based feature fusion method is developed to synthesize key feature information derived from multi-scale images. To ensure classification accuracy in distinguishing AD from multiple stages of cognitive impairment, this study designs an ensemble learning classifier model using multiple classifiers and a self-adaptive weight adjustment strategy. RESULTS Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset validate the effectiveness of our solution, which achieves average accuracies of 96.67% for ADNI-1 and 96.20% for ADNI-2, respectively. The results indicate that the MCNEL outperforms recent comparable algorithms in terms of various evaluation metrics, demonstrating superior performance and robustness in AD diagnosis. CONCLUSIONS This study markedly enhances the diagnostic capabilities for AD, allowing patients to receive timely treatments that can slow down disease progression and improve their quality of life.
Collapse
Affiliation(s)
- Fei Yan
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Lixing Peng
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Fangyan Dong
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China.
| | - Kaoru Hirota
- School of Computing, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| |
Collapse
|
3
|
Malhi BS, Lo J, Toto-Brocchi M, Avval AH, Ma Y, Du J. Quantitative magnetic resonance imaging in Alzheimer's disease: a narrative review. Quant Imaging Med Surg 2025; 15:3641-3664. [PMID: 40235823 PMCID: PMC11994541 DOI: 10.21037/qims-24-1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/25/2025] [Indexed: 04/17/2025]
Abstract
Background and Objective Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and is traditionally associated with grey matter pathology. Recent research highlights the significance of white matter and myelin damage in AD, presenting a paradigm shift in understanding the disease. The aim of this study was to summarize current advancements in magnetic resonance imaging (MRI) techniques and their applications in assessing myelin and brain pathology in AD with a special focus on ultrashort echo time (UTE) based techniques, alongside the role of artificial intelligence (AI) in enhancing diagnostic accuracy. Methods Between April and May 2024, we conducted a literature search using Google Scholar, Web of Science, and PubMed, focusing on publications from 1990 to 2024. Search terms included "Quantitative imaging", "Alzheimer's MRI", "T1ρ Alzheimer's", "MT imaging Alzheimer's", and "myelin water fraction Alzheimer's". We included quantitative MRI studies involving AD brains and excluded volumetric analyses, non-quantitative studies, non-English reports, non-peer-reviewed studies, and animal research. Key Content and Findings Quantitative MRI techniques, including T1, T1ρ, magnetization transfer ratio (MTR), T2, T2*, susceptibility, myelin water fraction (MWF), and non-aqueous myelin proton density (PD) were described. These biomarkers represent different pathophysiological elements of brain damage and may have distinct functions at different phases of the disease. The role of AI in enhancing diagnostic accuracy is also discussed. Conclusions In conclusion, integrating advanced MRI techniques and AI offers promising avenues for understanding and diagnosing AD. The focus on myelin damage and white matter integrity underscores the importance of comprehensive imaging approaches. Continued research and development are essential to address current challenges and improve clinical practice in AD diagnostics.
Collapse
Affiliation(s)
| | - James Lo
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Marco Toto-Brocchi
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Fleck L, Buss C, Bauer M, Stein M, Mekle R, Kock L, Klawitter H, Godara M, Ramler J, Entringer S, Endres M, Heim C. Early-Life Adversity Predicts Markers of Aging-Related Neuroinflammation, Neurodegeneration, and Cognitive Impairment in Women. Ann Neurol 2025; 97:642-656. [PMID: 39786167 PMCID: PMC11889533 DOI: 10.1002/ana.27161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Despite the overwhelming evidence for profound and longstanding effects of early-life stress (ELS) on inflammation, brain structure, and molecular aging, its impact on human brain aging and risk for neurodegenerative disease is poorly understood. We examined the impact of ELS severity in interaction with age on blood-based markers of neuroinflammation and neurodegeneration, brain volumes, and cognitive function in middle-aged women. METHODS We recruited 179 women (aged 30-60 years) with and without ELS exposure before the onset of puberty. Using Simoa technology, we assessed blood-based markers of neuroinflammation and neurodegeneration, including serum concentrations of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL). We further obtained T1-weighted and T2-weighted magnetic resonance images to assess brain volumes and we assessed cognitive performance sensitive to early impairments associated with the development of dementia, using the Cambridge Neuropsychological Automated Test Battery. We used generalized additive models to examine nonlinear interaction effects of ELS severity and age on these outcomes. RESULTS Analyses revealed significant nonlinear interaction effects of ELS severity and age on NfL and GFAP serum concentrations, total and subcortical gray matter volume loss, increased third ventricular volume, and cognitive impairment. INTERPRETATION These findings suggest that ELS profoundly exacerbates peripheral, neurostructural, and cognitive markers of brain aging. Our results are critical for the development of novel early prevention strategies that target the impact of developmental stress on the brain to mitigate aging-related neurological diseases. ANN NEUROL 2025;97:642-656.
Collapse
Affiliation(s)
- Lara Fleck
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
| | - Claudia Buss
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
- Development, Health, and Disease Research ProgramUniversity of California, IrvineOrangeCA
- German Center for Mental HealthBerlinGermany
- German Center for Child and Adolescent HealthBerlinGermany
| | - Martin Bauer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
| | - Maike Stein
- Department of Neurology with Experimental NeurologyCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of Neurology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
- Berlin Institute of Health at Charité—Universitätsmedizin BerlinDigital Health CenterBerlinGermany
- Center for Stroke Research BerlinCharité—Universitätsmedizin BerlinBerlinGermany
| | - Ralf Mekle
- Center for Stroke Research BerlinCharité—Universitätsmedizin BerlinBerlinGermany
| | - Lena Kock
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
| | - Heiko Klawitter
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
| | - Malvika Godara
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
| | - Judith Ramler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
| | - Sonja Entringer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
- Development, Health, and Disease Research ProgramUniversity of California, IrvineOrangeCA
- German Center for Mental HealthBerlinGermany
- German Center for Child and Adolescent HealthBerlinGermany
| | - Matthias Endres
- German Center for Mental HealthBerlinGermany
- Department of Neurology with Experimental NeurologyCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Center for Stroke Research BerlinCharité—Universitätsmedizin BerlinBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, NeuroCure Cluster of ExcellenceBerlinGermany
- German Center for Neurodegenerative DiseasesBerlinGermany
- German Centre for Cardiovascular ResearchBerlinGermany
| | - Christine Heim
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Medical PsychologyBerlinGermany
- German Center for Mental HealthBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, NeuroCure Cluster of ExcellenceBerlinGermany
| |
Collapse
|
5
|
Jabason E, Ahmad MO, Swamy MNS. A Lightweight Deep Convolutional Neural Network Extracting Local and Global Contextual Features for the Classification of Alzheimer's Disease Using Structural MRI. IEEE J Biomed Health Inform 2025; 29:2061-2073. [PMID: 40030424 DOI: 10.1109/jbhi.2024.3512417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Recent advancements in the classification of Alzheimer's disease have leveraged the automatic feature generation capability of convolutional neural networks (CNNs) using neuroimaging biomarkers. However, most of the existing CNN-based methods often disregard the local features of the brain data, which leads to a loss of subtle fine-grained features in the brain imaging data. Moreover, the existing CNN architectures, which mainly rely on global features, do not pay much attention to the discriminability of the extracted features for the task of classification of Alzheimer's disease. Moreover, the existing architectures often end up using a large number of parameters to enhance the richness of the extracted features. This paper proposes a novel lightweight deep CNN, which extracts local and global contextual features from the sagittal slices of structural MRI data and uses both of these two types of features for the classification of the disease. The main idea used in designing the proposed network is to process separately the local and global features by using modules that pay a special attention to extract local and global contextual features. The fused local and global contextual features are then used for the classification of Alzheimer's disease. The proposed network is tested for the binary and multiclass classifications of the disease using the MR images taken from the ADNI database. The proposed network is shown to provide a performance that is significantly higher than that provided by other existing state-of-the-art networks, yet using a number of parameters that is a small fraction of that used by the other schemes.
Collapse
|
6
|
Liu J, Yu X, Fukuyama H, Murai T, Wu J, Li Q, Zhang Z. CSEPC: a deep learning framework for classifying small-sample multimodal medical image data in Alzheimer's disease. BMC Geriatr 2025; 25:130. [PMID: 40011826 DOI: 10.1186/s12877-025-05771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impacts health care worldwide, particularly among the elderly population. The accurate classification of AD stages is essential for slowing disease progression and guiding effective interventions. However, limited sample sizes continue to present a significant challenge in classifying the stages of AD progression. Addressing this obstacle is crucial for improving diagnostic accuracy and optimizing treatment strategies for those affected by AD. METHODS In this study, we proposed cross-scale equilibrium pyramid coupling (CSEPC), which is a novel diagnostic algorithm designed for small-sample multimodal medical imaging data. CSEPC leverages scale equilibrium theory and modal coupling properties to integrate semantic features from different imaging modalities and across multiple scales within each modality. The architecture first extracts balanced multiscale features from structural MRI (sMRI) data and functional MRI (fMRI) data using a cross-scale pyramid module. These features are then combined through a contrastive learning-based cosine similarity coupling mechanism to capture intermodality associations effectively. This approach enhances the representation of both inter- and intramodal features while significantly reducing the number of learning parameters, making it highly suitable for small sample environments. We validated the effectiveness of the CSEPC model through experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and demonstrated its superior performance in diagnosing and staging AD. RESULTS Our experimental results demonstrate that the proposed model matches or exceeds the performance of models used in previous studies in AD classification. Specifically, the model achieved an accuracy of 85.67% and an area under the curve (AUC) of 0.98 in classifying the progression from mild cognitive impairment (MCI) to AD. To further validate its effectiveness, we used our method to diagnose different stages of AD. In both classification tasks, our approach delivered superior performance. CONCLUSIONS In conclusion, the performance of our model in various tasks has demonstrated its significant potential in the field of small-sample multimodal medical imaging classification, particularly AD classification. This advancement could significantly assist clinicians in effectively managing and intervening in the disease progression of patients with early-stage AD.
Collapse
Affiliation(s)
- Jingyuan Liu
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojie Yu
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hidenao Fukuyama
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.
- Jilin Provincial International Joint Research Center of Brain Informatics and Intelligence Science, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China.
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
7
|
曾 安, 帅 志, 潘 丹, 林 劲. [Classification of Alzheimer's disease based on multi-example learning and multi-scale feature fusion]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2025; 42:132-139. [PMID: 40000185 PMCID: PMC11955345 DOI: 10.7507/1001-5515.202405035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) classification models usually segment the entire brain image into voxel blocks and assign them labels consistent with the entire image, but not every voxel block is closely related to the disease. To this end, an AD auxiliary diagnosis framework based on weakly supervised multi-instance learning (MIL) and multi-scale feature fusion is proposed, and the framework is designed from three aspects: within the voxel block, between voxel blocks, and high-confidence voxel blocks. First, a three-dimensional convolutional neural network was used to extract deep features within the voxel block; then the spatial correlation information between voxel blocks was captured through position encoding and attention mechanism; finally, high-confidence voxel blocks were selected and combined with multi-scale information fusion strategy to integrate key features for classification decision. The performance of the model was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets. Experimental results showed that the proposed framework improved ACC and AUC by 3% and 4% on average compared with other mainstream frameworks in the two tasks of AD classification and mild cognitive impairment conversion classification, and could find the key voxel blocks that trigger the disease, providing an effective basis for AD auxiliary diagnosis.
Collapse
Affiliation(s)
- 安 曾
- 广东工业大学 计算机学院(广州 510006)School of Computer Science, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 志富 帅
- 广东工业大学 计算机学院(广州 510006)School of Computer Science, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 丹 潘
- 广东工业大学 计算机学院(广州 510006)School of Computer Science, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 劲芝 林
- 广东工业大学 计算机学院(广州 510006)School of Computer Science, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Song S, Li T, Lin W, Liu R, Zhang Y. Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis. Front Neurosci 2025; 19:1511350. [PMID: 40027465 PMCID: PMC11868282 DOI: 10.3389/fnins.2025.1511350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Background Understanding how artificial intelligence (AI) is employed to predict, diagnose, and perform relevant analyses in Alzheimer's disease research is a rapidly evolving field. This study integrated and analyzed the relevant literature from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) on the application of AI in Alzheimer's disease (AD), covering publications from 2004 to 2023. Objective This study aims to identify the key research hotspots and trends of the application of AI in AD over the past 20 years through a bibliometric analysis. Methods Using the Web of Science Core Collection database, we conducted a comprehensive visual analysis of literature on AI and AD published between January 1, 2004, and December 31, 2023. The study utilized Excel, Scimago Graphica, VOSviewer, and CiteSpace software to visualize trends in annual publications and the distribution of research by countries, institutions, journals, references, authors, and keywords related to this topic. Results A total of 2,316 papers were obtained through the research process, with a significant increase in publications observed since 2018, signaling notable growth in this field. The United States, China, and the United Kingdom made notable contributions to this research area. The University of London led in institutional productivity with 80 publications, followed by the University of California System with 74 publications. Regarding total publications, the Journal of Alzheimer's Disease was the most prolific while Neuroimage ranked as the most cited journal. Shen Dinggang was the top author in both total publications and average citations. Analysis of reference and keyword highlighted research hotspots, including the identification of various stages of AD, early diagnostic screening, risk prediction, and prediction of disease progression. The "task analysis" keyword emerged as a research frontier from 2021 to 2023. Conclusion Research on AI applications in AD holds significant potential for practical advancements, attracting increasing attention from scholars. Deep learning (DL) techniques have emerged as a key research focus for AD diagnosis. Future research will explore AI methods, particularly task analysis, emphasizing integrating multimodal data and utilizing deep neural networks. These approaches aim to identify emerging risk factors, such as environmental influences on AD onset, predict disease progression with high accuracy, and support the development of prevention strategies. Ultimately, AI-driven innovations will transform AD management from a progressive, incurable state to a more manageable and potentially reversible condition, thereby improving healthcare, rehabilitation, and long-term care solutions.
Collapse
Affiliation(s)
- Sijia Song
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Li
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yujie Zhang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Aslan E, Özüpak Y. Comparison of machine learning algorithms for automatic prediction of Alzheimer disease. J Chin Med Assoc 2025; 88:98-107. [PMID: 39965789 DOI: 10.1097/jcma.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Alzheimer disease is a progressive neurological disorder marked by irreversible memory loss and cognitive decline. Traditional diagnostic tools, such as intracranial volume assessments, electroencephalography (EEG) signals, and brain magnetic resonance imaging (MRI), have shown utility in detecting the disease. However, artificial intelligence (AI) offers promise for automating this process, potentially enhancing diagnostic accuracy and accessibility. METHODS In this study, various machine learning models were used to detect Alzheimer disease, including K-nearest neighbor regression, support vector machines (SVM), AdaBoost regression, and logistic regression. A neural network was constructed and validated using data from 150 participants in the University of Washington's Alzheimer's Disease Research Center (Open Access Imaging Studies Series [OASIS] dataset). Cross-validation was also performed on the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset to assess the robustness of the models. RESULTS Among the models tested, K-nearest neighbor regression achieved the highest accuracy, reaching 97.33%. The cross-validation on the ADNI dataset further confirmed the effectiveness of the models, demonstrating satisfactory results in screening and diagnosing Alzheimer disease in a community-based sample. CONCLUSION The findings indicate that AI-based models, particularly K-nearest neighbor regression, provide promising accuracy for the early detection of Alzheimer disease. This approach has potential for further development into practical diagnostic tools that could be applied in clinical and community settings.
Collapse
Affiliation(s)
- Emrah Aslan
- Faculty of Engineering and Architecture, Mardin Artuklu University, Mardin, Turkey
| | - Yildirim Özüpak
- Department of Electricity and Energy, Silvan Vocational School, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
10
|
Zhou M, Zheng T, Wu Z, Wan N, Cheng M. DAMNet: Dynamic mobile architectures for Alzheimer's disease. Comput Biol Med 2025; 185:109517. [PMID: 39709868 DOI: 10.1016/j.compbiomed.2024.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data.
Collapse
Affiliation(s)
| | | | - Zhihua Wu
- Xiamen University of Technology, China
| | - Nan Wan
- Wannan Medical College, China.
| | - Min Cheng
- Wuhu Hospital of Beijing Anding Hospital, Capital Medical University, China.
| |
Collapse
|
11
|
Shou Y, Gao L, Zhang Z, Han J, Dai J, Pan H, Zhao Z, Weng Y, Chen C, Wang J. Disentangling normal and pathological brain atrophy for the diagnosis of mild cognitive impairment and Alzheimer’s disease. Biomed Signal Process Control 2025; 100:106955. [DOI: 10.1016/j.bspc.2024.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Bi XA, Chen K, Jiang S, Luo S, Zhou W, Xing Z, Xu L, Liu Z, Liu T. Community Graph Convolution Neural Network for Alzheimer's Disease Classification and Pathogenetic Factors Identification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:1959-1973. [PMID: 37204952 DOI: 10.1109/tnnls.2023.3269446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As a complex neural network system, the brain regions and genes collaborate to effectively store and transmit information. We abstract the collaboration correlations as the brain region gene community network (BG-CN) and present a new deep learning approach, such as the community graph convolutional neural network (Com-GCN), for investigating the transmission of information within and between communities. The results can be used for diagnosing and extracting causal factors for Alzheimer's disease (AD). First, an affinity aggregation model for BG-CN is developed to describe intercommunity and intracommunity information transmission. Second, we design the Com-GCN architecture with intercommunity convolution and intracommunity convolution operations based on the affinity aggregation model. Through sufficient experimental validation on the AD neuroimaging initiative (ADNI) dataset, the design of Com-GCN matches the physiological mechanism better and improves the interpretability and classification performance. Furthermore, Com-GCN can identify lesioned brain regions and disease-causing genes, which may assist precision medicine and drug design in AD and serve as a valuable reference for other neurological disorders.
Collapse
|
13
|
Wang H, Yang T, Fan J, Zhang H, Zhang W, Ji M, Miao J. DML-MFCM: A multimodal fine-grained classification model based on deep metric learning for Alzheimer's disease diagnosis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2025; 33:211-228. [PMID: 39973767 DOI: 10.1177/08953996241300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder. There are no drugs and methods for the treatment of AD, but early intervention can delay the deterioration of the disease. Therefore, the early diagnosis of AD and mild cognitive impairment (MCI) is significant. Structural magnetic resonance imaging (sMRI) is widely used to present structural changes in the subject's brain tissue. The relatively mild structural changes in the brain with MCI have led to ongoing challenges in the task of conversion prediction in MCI. Moreover, many multimodal AD diagnostic models proposed in recent years ignore the potential relationship between multimodal information. OBJECTIVE To solve these problems, we propose a multimodal fine-grained classification model based on deep metric learning for AD diagnosis (DML-MFCM), which can fully exploit the fine-grained feature information of sMRI and learn the potential relationships between multimodal feature information. METHODS First, we propose a fine-grained feature extraction module that can effectively capture the fine-grained feature information of the lesion area. Then, we introduce a multimodal cross-attention module to learn the potential relationships between multimodal data. In addition, we design a hybrid loss function based on deep metric learning. It can guide the model to learn the feature representation method between samples, which improves the model's performance in disease diagnosis. RESULTS We have extensively evaluated the proposed models on the ADNI and AIBL datasets. The ACC of AD vs. NC, MCI vs. NC, and sMCI vs. pMCI tasks in the ADNI dataset are 98.75%, 95.88%, and 88.00%, respectively. The ACC on the AD vs. NC and MCI vs. NC tasks in the AIBL dataset are 94.33% and 91.67%. CONCLUSIONS The results demonstrate that our method has excellent performance in AD diagnosis.
Collapse
Affiliation(s)
- Heng Wang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, China
| | - Jiacheng Fan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Huiyao Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Wenjie Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Mingzhu Ji
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jianyu Miao
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
14
|
Wang Y, Zhang H, Yue Y, Song S, Deng C, Feng J, Huang G. Uni-AdaFocus: Spatial-Temporal Dynamic Computation for Video Recognition. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; PP:1782-1799. [PMID: 40030449 DOI: 10.1109/tpami.2024.3514654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This paper presents a comprehensive exploration of the phenomenon of data redundancy in video understanding, with the aim to improve computational efficiency. Our investigation commences with an examination of spatial redundancy, which refers to the observation that the most informative region in each video frame usually corresponds to a small image patch, whose shape, size and location shift smoothly across frames. Motivated by this phenomenon, we formulate the patch localization problem as a dynamic decision task, and introduce a spatially adaptive video recognition approach, termed AdaFocus. In specific, a lightweight encoder is first employed to quickly process the full video sequence, whose features are then utilized by a policy network to identify the most task-relevant regions. Subsequently, the selected patches are inferred by a high-capacity deep network for the final prediction. The complete model can be trained conveniently in an end-to-end manner. During inference, once the informative patch sequence has been generated, the bulk of computation can be executed in parallel, rendering it efficient on modern GPU devices. Furthermore, we demonstrate that AdaFocus can be easily extended by further considering the temporal and sample- wise redundancies, i.e., allocating the majority of computation to the most task-relevant video frames, and minimizing the computation spent on relatively "easier" videos. Our resulting algorithm, Uni-AdaFocus, establishes a comprehensive framework that seamlessly integrates spatial, temporal, and sample- wise dynamic computation, while it preserves the merits of AdaFocus in terms of efficient end-to-end training and hardware friendliness. In addition, Uni-AdaFocus is general and flexible as it is compatible with off-the-shelf backbone models (e.g., TSM and X3D), which can be readily deployed as our feature extractor, yielding a significantly improved computational efficiency. Empirically, extensive experiments based on seven widely-used benchmark datasets (i.e., ActivityNet, FCVID, Mini-Kinetics, Something-Something V1&V2, Jester, and Kinetics-400) and three real-world application scenarios (i.e., fine-grained diving action classification, Alzheimer's and Parkinson's diseases diagnosis with brain magnetic resonance images (MRI), and violence recognition for online videos) substantiate that Uni-AdaFocus is considerably more efficient than the competitive baselines. Code and pre-trained models are available at https://github.com/blackfeather-wang/AdaFocus and https://github.com/LeapLabTHU/AdaFocusV2.
Collapse
|
15
|
Zong Y, Zuo Q, Ng MKP, Lei B, Wang S. A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:10389-10403. [PMID: 39137077 DOI: 10.1109/tpami.2024.3442811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.
Collapse
|
16
|
Tascedda S, Sarti P, Rivi V, Guerrera CS, Platania GA, Santagati M, Caraci F, Blom JMC. Advanced AI techniques for classifying Alzheimer's disease and mild cognitive impairment. Front Aging Neurosci 2024; 16:1488050. [PMID: 39679258 PMCID: PMC11638155 DOI: 10.3389/fnagi.2024.1488050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Background Alzheimer's disease and mild cognitive impairment are often difficult to differentiate due to their progressive nature and overlapping symptoms. The lack of reliable biomarkers further complicates early diagnosis. As the global population ages, the incidence of cognitive disorders increases, making the need for accurate diagnosis critical. Timely and precise diagnosis is essential for the effective treatment and intervention of these conditions. However, existing diagnostic methods frequently lead to a significant rate of misdiagnosis. This issue underscores the necessity for improved diagnostic techniques to better identify cognitive disorders in the aging population. Methods We used Graph Neural Networks, Multi-Layer Perceptrons, and Graph Attention Networks. GNNs map patient data into a graph structure, with nodes representing patients and edges shared clinical features, capturing key relationships. MLPs and GATs are used to analyse discrete data points for tasks such as classification and regression. Each model was evaluated on accuracy, precision, and recall. Results The AI models provide an objective basis for comparing patient data with reference populations. This approach enhances the ability to accurately distinguish between AD and MCI, offering more precise risk stratification and aiding in the development of personalized treatment strategies. Conclusion The incorporation of AI methodologies such as GNNs and MLPs into clinical settings holds promise for enhancing the diagnosis and management of Alzheimer's disease and mild cognitive impairment. By deploying these advanced computational techniques, clinicians could see a reduction in diagnostic errors, facilitating earlier, more precise interventions, and likely to lead to significantly improved outcomes for patients.
Collapse
Affiliation(s)
- Sophie Tascedda
- Plateforme de Bioinformatique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Service de Chimie Clinique CHUV, Lausanne, Switzerland
- Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Pierfrancesco Sarti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Adult Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Mario Santagati
- ASP3 Catania, Department of Mental Health, Alzheimer Psychogeriatric Centre, Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translation Neurosciences, Oasi Research Institute – IRCCS, Troina, Italy
| | - Johanna M. C. Blom
- Service de Chimie Clinique CHUV, Lausanne, Switzerland
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Tan TWK, Nguyen KN, Zhang C, Kong R, Cheng SF, Ji F, Chong JSX, Yi Chong EJ, Venketasubramanian N, Orban C, Chee MWL, Chen C, Zhou JH, Yeo BTT. Evaluation of Brain Age as a Specific Marker of Brain Health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623903. [PMID: 39605400 PMCID: PMC11601463 DOI: 10.1101/2024.11.16.623903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brain age is a powerful marker of general brain health. Furthermore, brain age models are trained on large datasets, thus giving them a potential advantage in predicting specific outcomes - much like the success of finetuning large language models for specific applications. However, it is also well-accepted in machine learning that models trained to directly predict specific outcomes (i.e., direct models) often perform better than those trained on surrogate outcomes. Therefore, despite their much larger training data, it is unclear whether brain age models outperform direct models in predicting specific brain health outcomes. Here, we compare large-scale brain age models and direct models for predicting specific health outcomes in the context of Alzheimer's Disease (AD) dementia. Using anatomical T1 scans from three continents (N = 1,848), we find that direct models outperform brain age models without finetuning. Finetuned brain age models yielded similar performance as direct models, but importantly, did not outperform direct models although the brain age models were pretrained on 1000 times more data than the direct models: N = 53,542 vs N = 50. Overall, our results do not discount brain age as a useful marker of general brain health. However, in this era of large-scale brain age models, our results suggest that small-scale, targeted approaches for extracting specific brain health markers still hold significant value.
Collapse
Affiliation(s)
- Trevor Wei Kiat Tan
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Kim-Ngan Nguyen
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chen Zhang
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Susan F Cheng
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Fang Ji
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Eddie Jun Yi Chong
- Memory, Aging and Cognition Centre, National University Health System, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Csaba Orban
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Chen
- Memory, Aging and Cognition Centre, National University Health System, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
18
|
Luo M, He Z, Cui H, Ward P, Chen YPP. Dual attention based fusion network for MCI Conversion Prediction. Comput Biol Med 2024; 182:109039. [PMID: 39232405 DOI: 10.1016/j.compbiomed.2024.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Alzheimer's disease (AD) severely impacts the lives of many patients and their families. Predicting the progression of the disease from the early stage of mild cognitive impairment (MCI) is of substantial value for treatment, medical research and clinical trials. In this paper, we propose a novel dual attention network to classify progressive MCI (pMCI) and stable MCI (sMCI) using both magnetic resonance imaging (MRI) and neurocognitive metadata. A 3D CNN ShuffleNet V2 model is used as the network backbone to extract MRI image features. Then, neurocognitive metadata is used to guide the spatial attention mechanism to steer the model to focus attention on the most discriminative regions of the brain. In contrast to traditional fusion methods, we propose a ViT based self attention fusion mechanism to fuse the neurocognitive metadata with the 3D CNN feature maps. The experimental results show that our proposed model achieves an accuracy, AUC, and sensitivity of 81.34%, 0.874, and 0.85 respectively using 5-fold cross validation evaluation. A comprehensive experimental study shows our proposed approach significantly outperforms all previous methods for MCI progression classification. In addition, an ablation study shows both fusion methods contribute to the high final performance.
Collapse
Affiliation(s)
- Min Luo
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia
| | - Zhen He
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia.
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia
| | - Phillip Ward
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia
| |
Collapse
|
19
|
Bi XA, Yang Z, Huang Y, Xing Z, Xu L, Wu Z, Liu Z, Li X, Liu T. CE-GAN: Community Evolutionary Generative Adversarial Network for Alzheimer's Disease Risk Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3663-3675. [PMID: 38587958 DOI: 10.1109/tmi.2024.3385756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the studies of neurodegenerative diseases such as Alzheimer's Disease (AD), researchers often focus on the associations among multi-omics pathogeny based on imaging genetics data. However, current studies overlook the communities in brain networks, leading to inaccurate models of disease development. This paper explores the developmental patterns of AD from the perspective of community evolution. We first establish a mathematical model to describe functional degeneration in the brain as the community evolution driven by entropy information propagation. Next, we propose an interpretable Community Evolutionary Generative Adversarial Network (CE-GAN) to predict disease risk. In the generator of CE-GAN, community evolutionary convolutions are designed to capture the evolutionary patterns of AD. The experiments are conducted using functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data. CE-GAN achieves 91.67% accuracy and 91.83% area under curve (AUC) in AD risk prediction tasks, surpassing advanced methods on the same dataset. In addition, we validated the effectiveness of CE-GAN for pathogeny extraction. The source code of this work is available at https://github.com/fmri123456/CE-GAN.
Collapse
|
20
|
Fan F, Song H, Jiang J, He H, Sun D, Xu Z, Peng S, Zhang R, Li T, Cao J, Xu J, Peng X, Lei M, He C, Zhang J. Development and validation of a multimodal deep learning framework for vascular cognitive impairment diagnosis. iScience 2024; 27:110945. [PMID: 39391736 PMCID: PMC11465129 DOI: 10.1016/j.isci.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/15/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Cerebrovascular disease (CVD) is the second leading cause of dementia worldwide. The accurate detection of vascular cognitive impairment (VCI) in CVD patients remains an unresolved challenge. We collected the clinical non-imaging data and neuroimaging data from 307 subjects with CVD. Using these data, we developed a multimodal deep learning framework that combined the vision transformer and extreme gradient boosting algorithms. The final hybrid model within the framework included only two neuroimaging features and six clinical features, demonstrating robust performance across both internal and external datasets. Furthermore, the diagnostic performance of our model on a specific dataset was demonstrated to be comparable to that of expert clinicians. Notably, our model can identify the brain regions and clinical features that significantly contribute to the VCI diagnosis, thereby enhancing transparency and interpretability. We developed an accurate and explainable clinical decision support tool to identify the presence of VCI in patients with CVD.
Collapse
Affiliation(s)
- Fan Fan
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Hao Song
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Jiu Jiang
- Electronic Information School, Wuhan University, Wuhan, Hubei province, China
| | - Haoying He
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Sisi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Ran Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Tian Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Jing Cao
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Juan Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| | - Xiaoxiang Peng
- Department of Neurology, Third People’s Hospital of Hubei Province, Wuhan, Hubei province, China
| | - Ming Lei
- Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei province, China
| | - Chu He
- Electronic Information School, Wuhan University, Wuhan, Hubei province, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, China
| |
Collapse
|
21
|
Yu X, Liu J, Lu Y, Funahashi S, Murai T, Wu J, Li Q, Zhang Z. Early diagnosis of Alzheimer's disease using a group self-calibrated coordinate attention network based on multimodal MRI. Sci Rep 2024; 14:24210. [PMID: 39406789 PMCID: PMC11480216 DOI: 10.1038/s41598-024-74508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Convolutional neural networks (CNNs) for extracting structural information from structural magnetic resonance imaging (sMRI), combined with functional magnetic resonance imaging (fMRI) and neuropsychological features, has emerged as a pivotal tool for early diagnosis of Alzheimer's disease (AD). However, the fixed-size convolutional kernels in CNNs have limitations in capturing global features, reducing the effectiveness of AD diagnosis. We introduced a group self-calibrated coordinate attention network (GSCANet) designed for the precise diagnosis of AD using multimodal data, including encompassing Haralick texture features, functional connectivity, and neuropsychological scores. GSCANet utilizes a parallel group self-calibrated module to enhance original spatial features, expanding the field of view and embedding spatial data into channel information through a coordinate attention module, which ensures long-term contextual interaction. In a four-classification comparison (AD vs. early MCI (EMCI) vs. late MCI (LMCI) vs. normal control (NC)), GSCANet demonstrated an accuracy of 78.70%. For the three-classification comparison (AD vs. MCI vs. NC), it achieved an accuracy of 83.33%. Moreover, our method exhibited impressive accuracies in the AD vs. NC (92.81%) and EMCI vs. LMCI (84.67%) classifications. GSCANet improves classification performance at different stages of AD by employing group self-calibrated to expand features receptive field and integrating coordinated attention to facilitate significant interactions among channels and spaces. Providing insights into AD mechanisms and showcasing scalability for various disease predictions.
Collapse
Affiliation(s)
- Xiaojie Yu
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingyuan Liu
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yinping Lu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shintaro Funahashi
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Li
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China.
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
22
|
Lei B, Li Y, Fu W, Yang P, Chen S, Wang T, Xiao X, Niu T, Fu Y, Wang S, Han H, Qin J. Alzheimer's disease diagnosis from multi-modal data via feature inductive learning and dual multilevel graph neural network. Med Image Anal 2024; 97:103213. [PMID: 38850625 DOI: 10.1016/j.media.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Multi-modal data can provide complementary information of Alzheimer's disease (AD) and its development from different perspectives. Such information is closely related to the diagnosis, prevention, and treatment of AD, and hence it is necessary and critical to study AD through multi-modal data. Existing learning methods, however, usually ignore the influence of feature heterogeneity and directly fuse features in the last stages. Furthermore, most of these methods only focus on local fusion features or global fusion features, neglecting the complementariness of features at different levels and thus not sufficiently leveraging information embedded in multi-modal data. To overcome these shortcomings, we propose a novel framework for AD diagnosis that fuses gene, imaging, protein, and clinical data. Our framework learns feature representations under the same feature space for different modalities through a feature induction learning (FIL) module, thereby alleviating the impact of feature heterogeneity. Furthermore, in our framework, local and global salient multi-modal feature interaction information at different levels is extracted through a novel dual multilevel graph neural network (DMGNN). We extensively validate the proposed method on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and experimental results demonstrate our method consistently outperforms other state-of-the-art multi-modal fusion methods. The code is publicly available on the GitHub website. (https://github.com/xiankantingqianxue/MIA-code.git).
Collapse
Affiliation(s)
- Baiying Lei
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yafeng Li
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Wanyi Fu
- Department of Electronic Engineering, Tsinghua University, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, China
| | - Peng Yang
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Shaobin Chen
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohua Xiao
- The First Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 530031, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, No. 49, North Garden Rd., Haidian District, Beijing, 100191, China.
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Department of Radiology, Peking University Third Hospital, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing, 100191, China; The second hospital of Dalian Medical University,Research and developing center of medical technology, Dalian, 116027, China.
| | - Jing Qin
- Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
23
|
Jiang N, Wang G, Ye C, Liu T, Yan T. Multi-Task Collaborative Pre-Training and Adaptive Token Selection: A Unified Framework for Brain Representation Learning. IEEE J Biomed Health Inform 2024; 28:5528-5539. [PMID: 38889024 DOI: 10.1109/jbhi.2024.3416038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Structural magnetic resonance imaging (sMRI) reveals the structural organization of the brain. Learning general brain representations from sMRI is an enduring topic in neuroscience. Previous deep learning models neglect that the brain, as the core of cognition, is distinct from other organs whose primary attribute is anatomy. Capturing the high-level representation associated with inter-individual cognitive variability is key to appropriately represent the brain. Given that this cognition-related information is subtle, mixed, and distributed in the brain structure, sMRI-based models need to both capture fine-grained details and understand how they relate to the overall global structure. Additionally, it is also necessary to explicitly express the cognitive information that implicitly embedded in local-global image features. Therefore, we propose MCPATS, a brain representation learning framework that combines Multi-task Collaborative Pre-training (MCP) and Adaptive Token Selection (ATS). First, we develop MCP, including mask-reconstruction to understand global context, distort-restoration to capture fine-grained local details, adversarial learning to integrate features at different granularities, and age-prediction, using age as a surrogate for cognition to explicitly encode cognition-related information from local-global image features. This co-training allows progressive learning of implicit and explicit cognition-related representations. Then, we develop ATS based on mutual attention for downstream use of the learned representation. During fine-tuning, the ATS highlights discriminative features and reduces the impact of irrelevant information. MCPATS was validated on three different public datasets for brain disease diagnosis, outperforming competing methods and achieving accurate diagnosis. Further, we performed detailed analysis to confirm that the MCPATS-learned representation captures cognition-related information.
Collapse
|
24
|
Liu L, Xie J, Chang J, Liu Z, Sun T, Qiao H, Liang G, Guo W. H-Net: Heterogeneous Neural Network for Multi-Classification of Neuropsychiatric Disorders. IEEE J Biomed Health Inform 2024; 28:5509-5518. [PMID: 38829757 DOI: 10.1109/jbhi.2024.3405941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Clinical studies have proved that both structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) are implicitly associated with neuropsychiatric disorders (NDs), and integrating multi-modal to the binary classification of NDs has been thoroughly explored. However, accurately classifying multiple classes of NDs remains a challenge due to the complexity of disease subclass. In our study, we develop a heterogeneous neural network (H-Net) that integrates sMRI and fMRI modes for classifying multi-class NDs. To account for the differences between the two modes, H-Net adopts a heterogeneous neural network strategy to extract information from each mode. Specifically, H-Net includes an multi-layer perceptron based (MLP-based) encoder, a graph attention network based (GAT-based) encoder, and a cross-modality transformer block. The MLP-based and GAT-based encoders extract semantic features from sMRI and features from fMRI, respectively, while the cross-modality transformer block models the attention of two types of features. In H-Net, the proposed MLP-mixer block and cross-modality alignment are powerful tools for improving the multi-classification performance of NDs. H-Net is validate on the public dataset (CNP), where H-Net achieves 90% classification accuracy in diagnosing multi-class NDs. Furthermore, we demonstrate the complementarity of the two MRI modalities in improving the identification of multi-class NDs. Both visual and statistical analyses show the differences between ND subclasses.
Collapse
|
25
|
Yu Q, Ma Q, Da L, Li J, Wang M, Xu A, Li Z, Li W. A transformer-based unified multimodal framework for Alzheimer's disease assessment. Comput Biol Med 2024; 180:108979. [PMID: 39098237 DOI: 10.1016/j.compbiomed.2024.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
In Alzheimer's disease (AD) assessment, traditional deep learning approaches have often employed separate methodologies to handle the diverse modalities of input data. Recognizing the critical need for a cohesive and interconnected analytical framework, we propose the AD-Transformer, a novel transformer-based unified deep learning model. This innovative framework seamlessly integrates structural magnetic resonance imaging (sMRI), clinical, and genetic data from the extensive Alzheimer's Disease Neuroimaging Initiative (ADNI) database, encompassing 1651 subjects. By employing a Patch-CNN block, the AD-Transformer efficiently transforms image data into image tokens, while a linear projection layer adeptly converts non-image data into corresponding tokens. As the core, a transformer block learns comprehensive representations of the input data, capturing the intricate interplay between modalities. The AD-Transformer sets a new benchmark in AD diagnosis and Mild Cognitive Impairment (MCI) conversion prediction, achieving remarkable average area under curve (AUC) values of 0.993 and 0.845, respectively, surpassing those of traditional image-only models and non-unified multimodal models. Our experimental results confirmed the potential of the AD-Transformer as a potent tool in AD diagnosis and MCI conversion prediction. By providing a unified framework that jointly learns holistic representations of both image and non-image data, the AD-Transformer paves the way for more effective and precise clinical assessments, offering a clinically adaptable strategy for leveraging diverse data modalities in the battle against AD.
Collapse
Affiliation(s)
- Qi Yu
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Ma
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Da
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiahui Li
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengying Wang
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Andi Xu
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Wenyuan Li
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Huang F, Qiu A. Ensemble Vision Transformer for Dementia Diagnosis. IEEE J Biomed Health Inform 2024; 28:5551-5561. [PMID: 38889030 DOI: 10.1109/jbhi.2024.3412812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, deep learning has gained momentum in computer-aided Alzheimer's Disease (AD) diagnosis. This study introduces a novel approach, Monte Carlo Ensemble Vision Transformer (MC-ViT), which develops an ensemble approach with Vision transformer (ViT). Instead of using traditional ensemble methods that deploy multiple learners, our approach employs a single vision transformer learner. By harnessing Monte Carlo sampling, this method produces a broad spectrum of classification decisions, enhancing the MC-ViT performance. This novel technique adeptly overcomes the limitation of 3D patch convolutional neural networks that only characterize partial of the whole brain anatomy, paving the way for a neural network adept at discerning 3D inter-feature correlations. Evaluations using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with 7199 scans and Open Access Series of Imaging Studies-3 (OASIS-3) with 1992 scans showcased its performance. With minimal preprocessing, our approach achieved an impressive 90% accuracy in AD classification, surpassing both 2D-slice CNNs and 3D CNNs.
Collapse
|
27
|
Qiu Z, Yang P, Xiao C, Wang S, Xiao X, Qin J, Liu CM, Wang T, Lei B. 3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer's Disease Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3161-3175. [PMID: 38607706 DOI: 10.1109/tmi.2024.3386937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net.
Collapse
|
28
|
Li Y, Chen G, Wang G, Zhou Z, An S, Dai S, Jin Y, Zhang C, Zhang M, Yu F. Dominating Alzheimer's disease diagnosis with deep learning on sMRI and DTI-MD. Front Neurol 2024; 15:1444795. [PMID: 39211812 PMCID: PMC11358067 DOI: 10.3389/fneur.2024.1444795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder that has become one of the major health concerns for the elderly. Computer-aided AD diagnosis can assist doctors in quickly and accurately determining patients' severity and affected regions. Methods In this paper, we propose a method called MADNet for computer-aided AD diagnosis using multimodal datasets. The method selects ResNet-10 as the backbone network, with dual-branch parallel extraction of discriminative features for AD classification. It incorporates long-range dependencies modeling using attention scores in the decision-making layer and fuses the features based on their importance across modalities. To validate the effectiveness of our proposed multimodal classification method, we construct a multimodal dataset based on the publicly available ADNI dataset and a collected XWNI dataset, which includes examples of AD, Mild Cognitive Impairment (MCI), and Cognitively Normal (CN). Results On this dataset, we conduct binary classification experiments of AD vs. CN and MCI vs. CN, and demonstrate that our proposed method outperforms other traditional single-modal deep learning models. Furthermore, this conclusion also confirms the necessity of using multimodal sMRI and DTI data for computer-aided AD diagnosis, as these two modalities complement and convey information to each other. We visualize the feature maps extracted by MADNet using Grad-CAM, generating heatmaps that guide doctors' attention to important regions in patients' sMRI, which play a crucial role in the development of AD, establishing trust between human experts and machine learning models. Conclusion We propose a simple yet effective multimodal deep convolutional neural network model MADNet that outperforms traditional deep learning methods that use a single-modality dataset for AD diagnosis.
Collapse
Affiliation(s)
- Yuxia Li
- Department of Neurology, Tangshan Central Hospital, Hebei, China
| | - Guanqun Chen
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guoxin Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhiyi Zhou
- JD Health International Inc., Beijing, China
| | - Shan An
- JD Health International Inc., Beijing, China
| | - Shipeng Dai
- College of Science, Northeastern University, Shenyang, China
| | - Yuxin Jin
- JD Health International Inc., Beijing, China
| | - Chao Zhang
- JD Health International Inc., Beijing, China
| | - Mingkai Zhang
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Feng Yu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Liang J, Yan T, Huang Y, Li T, Rao S, Yang H, Lu J, Niu Y, Li D, Xiang J, Wang B. Continuous Dictionary of Nodes Model and Bilinear-Diffusion Representation Learning for Brain Disease Analysis. Brain Sci 2024; 14:810. [PMID: 39199501 PMCID: PMC11352990 DOI: 10.3390/brainsci14080810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Brain networks based on functional magnetic resonance imaging (fMRI) provide a crucial perspective for diagnosing brain diseases. Representation learning has recently attracted tremendous attention due to its strong representation capability, which can be naturally applied to brain disease analysis. However, traditional representation learning only considers direct and local node interactions in original brain networks, posing challenges in constructing higher-order brain networks to represent indirect and extensive node interactions. To address this problem, we propose the Continuous Dictionary of Nodes model and Bilinear-Diffusion (CDON-BD) network for brain disease analysis. The CDON model is innovatively used to learn the original brain network, with its encoder weights directly regarded as latent features. To fully integrate latent features, we further utilize Bilinear Pooling to construct higher-order brain networks. The Diffusion Module is designed to capture extensive node interactions in higher-order brain networks. Compared to state-of-the-art methods, CDON-BD demonstrates competitive classification performance on two real datasets. Moreover, the higher-order representations learned by our method reveal brain regions relevant to the diseases, contributing to a better understanding of the pathology of brain diseases.
Collapse
Affiliation(s)
- Jiarui Liang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China;
| | - Yin Huang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Ting Li
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Songhui Rao
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongye Yang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiayu Lu
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Niu
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Dandan Li
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Xiang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Wang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
30
|
Noroozi M, Gholami M, Sadeghsalehi H, Behzadi S, Habibzadeh A, Erabi G, Sadatmadani SF, Diyanati M, Rezaee A, Dianati M, Rasoulian P, Khani Siyah Rood Y, Ilati F, Hadavi SM, Arbab Mojeni F, Roostaie M, Deravi N. Machine and deep learning algorithms for classifying different types of dementia: A literature review. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-15. [PMID: 39087520 DOI: 10.1080/23279095.2024.2382823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The cognitive impairment known as dementia affects millions of individuals throughout the globe. The use of machine learning (ML) and deep learning (DL) algorithms has shown great promise as a means of early identification and treatment of dementia. Dementias such as Alzheimer's Dementia, frontotemporal dementia, Lewy body dementia, and vascular dementia are all discussed in this article, along with a literature review on using ML algorithms in their diagnosis. Different ML algorithms, such as support vector machines, artificial neural networks, decision trees, and random forests, are compared and contrasted, along with their benefits and drawbacks. As discussed in this article, accurate ML models may be achieved by carefully considering feature selection and data preparation. We also discuss how ML algorithms can predict disease progression and patient responses to therapy. However, overreliance on ML and DL technologies should be avoided without further proof. It's important to note that these technologies are meant to assist in diagnosis but should not be used as the sole criteria for a final diagnosis. The research implies that ML algorithms may help increase the precision with which dementia is diagnosed, especially in its early stages. The efficacy of ML and DL algorithms in clinical contexts must be verified, and ethical issues around the use of personal data must be addressed, but this requires more study.
Collapse
Affiliation(s)
- Masoud Noroozi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Gholami
- Department of Electrical and Computer Engineering, Tarbiat Modares Univeristy, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Artificial Intelligence in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Saleh Behzadi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mitra Diyanati
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dianati
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pegah Rasoulian
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yashar Khani Siyah Rood
- Faculty of Engineering, Computer Engineering, Islamic Azad University of Bandar Abbas, Bandar Abbas, Iran
| | - Fatemeh Ilati
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | | | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Minoo Roostaie
- School of Medicine, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC. Spatial-Temporal Co-Attention Learning for Diagnosis of Mental Disorders From Resting-State fMRI Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10591-10605. [PMID: 37027556 DOI: 10.1109/tnnls.2023.3243000] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuroimaging techniques have been widely adopted to detect the neurological brain structures and functions of the nervous system. As an effective noninvasive neuroimaging technique, functional magnetic resonance imaging (fMRI) has been extensively used in computer-aided diagnosis (CAD) of mental disorders, e.g., autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). In this study, we propose a spatial-temporal co-attention learning (STCAL) model for diagnosing ASD and ADHD from fMRI data. In particular, a guided co-attention (GCA) module is developed to model the intermodal interactions of spatial and temporal signal patterns. A novel sliding cluster attention module is designed to address global feature dependency of self-attention mechanism in fMRI time series. Comprehensive experimental results demonstrate that our STCAL model can achieve competitive accuracies of 73.0 ± 4.5%, 72.0 ± 3.8%, and 72.5 ± 4.2% on the ABIDE I, ABIDE II, and ADHD-200 datasets, respectively. Moreover, the potential for feature pruning based on the co-attention scores is validated by the simulation experiment. The clinical interpretation analysis of STCAL can allow medical professionals to concentrate on the discriminative regions of interest and key time frames from fMRI data.
Collapse
|
32
|
Kaur A, Mittal M, Bhatti JS, Thareja S, Singh S. A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease. Artif Intell Med 2024; 154:102928. [PMID: 39029377 DOI: 10.1016/j.artmed.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/15/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of dementia, characterized by a steady decline in mental, behavioral, and social abilities and impairs a person's capacity for independent functioning. It is a fatal neurodegenerative disease primarily affecting older adults. OBJECTIVES The purpose of this literature review is to investigate various AD detection techniques, datasets, input modalities, algorithms, libraries, and performance evaluation metrics used to determine which model or strategy may provide superior performance. METHOD The initial search yielded 807 papers, but only 100 research articles were chosen after applying the inclusion-exclusion criteria. This SLR analyzed research items published between January 2019 and December 2022. The ACM, Elsevier, IEEE Xplore Digital Library, PubMed, Springer and Taylor & Francis were systematically searched. The current study considers articles that used Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), APOe4 genotype, Diffusion Tensor Imaging (DTI) and Cerebrospinal Fluid (CSF) biomarkers. The study was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. CONCLUSION According to the literature survey, most studies (n = 76) used the DL strategy. The datasets used by studies were primarily derived from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The majority of studies (n = 73) used single-modality neuroimaging data, while the remaining used multi-modal input data. In a multi-modality approach, the combination of MRI and PET scans is commonly preferred. Also, Regarding the algorithm used, Convolution Neural Network (CNN) showed the highest accuracy, 100 %, in classifying AD vs. CN subjects whereas the SVM was the most common ML algorithm, with a maximum accuracy of 99.82 %.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India
| | - Meenakshi Mittal
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India
| | - Jasvinder Singh Bhatti
- Dept. of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Dept. of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Satwinder Singh
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
33
|
Kiran A, Alsaadi M, Dutta AK, Raparthi M, Soni M, Alsubai S, Byeon H, Kulkarni MH, Asenso E. Bio-inspired deep learning-personalized ensemble Alzheimer's diagnosis model for mental well-being. SLAS Technol 2024; 29:100161. [PMID: 38901762 DOI: 10.1016/j.slast.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Most classification models for Alzheimer's Diagnosis (AD) do not have specific strategies for individual input samples, leading to the problem of easily overlooking personalized differences between samples. This research introduces a customized dynamically ensemble convolution neural network (PDECNN), which is able to build a specific integration strategy based on the distinctiveness of the sample. In this paper, we propose a personalized dynamic ensemble alzheimer's Diagnosis classification model. This model will dynamically modify the deteriorated brain areas of interest depending on various samples since it can adjust to variations in the degeneration of sample brain areas. In clinical problems, the PDECNN model has additional diagnostic importance since it can identify sample-specific degraded brain areas based on input samples. This model considers the variability of brain region degeneration levels between input samples, evaluates the degree of degeneration of specific brain regions using an attention mechanism, and selects and integrates brain region features based on the degree of degeneration. Furthermore, by redesigning the classification accuracy performance, we respectively improve it by 4 %, 11 %, and 8 %. Moreover, the degraded brain regions identified by the model show high consistency with the clinical manifestations of AD.
Collapse
Affiliation(s)
- Ajmeera Kiran
- Dept. of Computer Science and Engineering, MLR Institute of Technology, Dundigal, Hyderabad, Telangana, 500043, India
| | - Mahmood Alsaadi
- Department of computer science, Al-Maarif University College, Al Anbar, 31001, Iraq
| | - Ashit Kumar Dutta
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh, 13713, Kingdom of Saudi Arabia
| | - Mohan Raparthi
- Software Engineer, alphabet Life Science, Dallas Texas, 75063, US
| | - Mukesh Soni
- Department of CSE, University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Shtwai Alsubai
- Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia
| | - Haewon Byeon
- Department of AI and Software, Inje University, Gimhae 50834, Republic of Korea
| | | | - Evans Asenso
- Department of Agricultural Engineering, School of Engineering Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
34
|
Ganesan P, Ramesh GP, Falkowski-Gilski P, Falkowska-Gilska B. Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network. Front Physiol 2024; 15:1380459. [PMID: 39045216 PMCID: PMC11263168 DOI: 10.3389/fphys.2024.1380459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction: Alzheimer's Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because it efficiently reflects the brain variations. Methods: Machine learning and deep learning models are widely applied on sMRI images for AD detection to accelerate the diagnosis process and to assist clinicians for timely treatment. In this article, an effective automated framework is implemented for early detection of AD. At first, the Region of Interest (RoI) is segmented from the acquired sMRI images by employing Otsu thresholding method with Tunicate Swarm Algorithm (TSA). The TSA finds the optimal segmentation threshold value for Otsu thresholding method. Then, the vectors are extracted from the RoI by applying Local Binary Pattern (LBP) and Local Directional Pattern variance (LDPv) descriptors. At last, the extracted vectors are passed to Deep Belief Networks (DBN) for image classification. Results and Discussion: The proposed framework achieves supreme classification accuracy of 99.80% and 99.92% on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarker and Lifestyle flagship work of ageing (AIBL) datasets, which is higher than the conventional detection models.
Collapse
Affiliation(s)
- Praveena Ganesan
- Department of Electronics and Communication Engineering, St. Peter’s Institute of Higher Education and Research, Chennai, India
| | - G. P. Ramesh
- Department of Electronics and Communication Engineering, St. Peter’s Institute of Higher Education and Research, Chennai, India
| | | | | |
Collapse
|
35
|
Gou Y, Liu Y, He F, Hunyadi B, Zhu C. Tensor Completion for Alzheimer's Disease Prediction From Diffusion Tensor Imaging. IEEE Trans Biomed Eng 2024; 71:2211-2223. [PMID: 38349831 DOI: 10.1109/tbme.2024.3365131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder with insidious onset. Accurate prediction of the disease progression has received increasing attention. Cognitive scores that reflect patients' cognitive status have become important criteria for predicting AD. Most existing methods consider the relationship between neuroimages and cognitive scores to improve prediction results. However, the inherent structure information in interrelated cognitive scores is rarely considered. METHOD In this article, we propose a relation-aware tensor completion multitask learning method (RATC-MTL), in which the cognitive scores are represented as a third-order tensor to preserve the global structure information in clinical scores. We combine both tensor completion and linear regression into a unified framework, which allows us to capture both inter and intra modes correlations in cognitive tensor with a low-rank constraint, as well as incorporate the relationship between biological features and cognitive status by imposing a regression model on multiple cognitive scores. RESULT Compared to the single-task and state-of-the-art multi-task algorithms, our proposed method obtains the best results for predicting cognitive scores in terms of four commonly used metrics. Furthermore, the overall performance of our method in classifying AD progress is also the best. CONCLUSION Our results demonstrate the effectiveness of the proposed framework in fully exploring the global structure information in cognitive scores. SIGNIFICANCE This study introduces a novel concept of leveraging tensor completion to assist in disease diagnoses, potentially offering a solution to the issue of data scarcity encountered in prolonged monitoring scenarios.
Collapse
|
36
|
Li S, Zhang R. A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction. Neural Netw 2024; 175:106285. [PMID: 38593556 DOI: 10.1016/j.neunet.2024.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Graph neural networks (GNNs) have recently grown in popularity for disease prediction. Existing GNN-based methods primarily build the graph topological structure around a single modality and combine it with other modalities to acquire feature representations of acquisitions. The complicated relationship in each modality, however, may not be well highlighted due to its specificity. Further, relatively shallow networks restrict adequate extraction of high-level features, affecting disease prediction performance. Accordingly, this paper develops a new interactive deep cascade spectral graph convolutional network with multi-relational graphs (IDCGN) for disease prediction tasks. Its crucial points lie in constructing multiple relational graphs and dual cascade spectral graph convolution branches with interaction (DCSGBI). Specifically, the former designs a pairwise imaging-based edge generator and a pairwise non-imaging-based edge generator from different modalities by devising two learnable networks, which adaptively capture graph structures and provide various views of the same acquisition to aid in disease diagnosis. Again, DCSGBI is established to enrich high-level semantic information and low-level details of disease data. It devises a cascade spectral graph convolution operator for each branch and incorporates the interaction strategy between different branches into the network, successfully forming a deep model and capturing complementary information from diverse branches. In this manner, more favorable and sufficient features are learned for a reliable diagnosis. Experiments on several disease datasets reveal that IDCGN exceeds state-of-the-art models and achieves promising results.
Collapse
Affiliation(s)
- Sihui Li
- Medical Big data Research Center, School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China.
| | - Rui Zhang
- Medical Big data Research Center, School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China.
| |
Collapse
|
37
|
Wang G, Jiang N, Ma Y, Chen D, Wu J, Li G, Liang D, Yan T. Connectional-style-guided contextual representation learning for brain disease diagnosis. Neural Netw 2024; 175:106296. [PMID: 38653077 DOI: 10.1016/j.neunet.2024.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Structural magnetic resonance imaging (sMRI) has shown great clinical value and has been widely used in deep learning (DL) based computer-aided brain disease diagnosis. Previous DL-based approaches focused on local shapes and textures in brain sMRI that may be significant only within a particular domain. The learned representations are likely to contain spurious information and have poor generalization ability in other diseases and datasets. To facilitate capturing meaningful and robust features, it is necessary to first comprehensively understand the intrinsic pattern of the brain that is not restricted within a single data/task domain. Considering that the brain is a complex connectome of interlinked neurons, the connectional properties in the brain have strong biological significance, which is shared across multiple domains and covers most pathological information. In this work, we propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain, used for multiple brain disease diagnosis. Specifically, it has a vision transformer (ViT) encoder and leverages mask reconstruction as the proxy task and Gram matrices to guide the representation of connectional information. It facilitates the capture of global context and the aggregation of features with biological plausibility. The results indicate that CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases and outperforms state-of-the-art models. Furthermore, we demonstrate that CS-CRL captures more brain-network-like properties, and better aggregates features, is easier to optimize, and is more robust to noise, which explains its superiority in theory.
Collapse
Affiliation(s)
- Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Ning Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yunxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Duanduan Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Dong Liang
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
38
|
Zheng Z, Liang E, Zhang Y, Weng Z, Chai J, Bu W, Xu J, Su T. A segmentation-based algorithm for classification of benign and malignancy Thyroid nodules with multi-feature information. Biomed Eng Lett 2024; 14:785-800. [PMID: 38946824 PMCID: PMC11208362 DOI: 10.1007/s13534-024-00375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The aim of this study is to propose a new diagnostic model based on "segmentation + classification" to improve the routine screening of Thyroid nodule ultrasonography by utilizing the key domain knowledge of medical diagnostic tasks. A Multi-scale segmentation network based on a pyramidal pooling structure of multi-parallel void spaces is proposed. First, in the segmentation network, the exact information of the underlying feature space is obtained by an Attention Gate. Second, the inflated convolutional part of Atrous Spatial Pyramid Pooling (ASPP) is cascaded for multiple downsampling. Finally, a three-branch classification network combined with expert knowledge is designed, drawing on doctors' clinical diagnosis experience, to extract features from the original image of the nodule, the regional image of the nodule, and the edge image of the nodule, respectively, and to improve the classification accuracy of the model by utilizing the Coordinate attention (CA) mechanism and cross-level feature fusion. The Multi-scale segmentation network achieves 94.27%, 93.90% and 88.85% of mean precision (mPA), Dice value (Dice) and mean joint intersection (MIoU), respectively, and the accuracy, specificity and sensitivity of the classification network reaches 86.07%, 81.34% and 90.19%, respectively. Comparison tests show that this method outperforms the U-Net, AGU-Net and DeepLab V3+ classical models as well as the nnU-Net, Swin UNetr and MedFormer models that have emerged in recent years. This algorithm, as an auxiliary diagnostic tool, can help physicians more accurately assess the benign or malignant nature of Thyroid nodules. It can provide objective quantitative indicators, reduce the bias of subjective judgment, and improve the consistency and accuracy of diagnosis. Codes and models are available at https://github.com/enheliang/Thyroid-Segmentation-Network.git.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- School of Electronic Information Engineering, Inner Mongolia University, 235 Daxue West Road, Saihan District, Hohhot, 010021 Inner Mongolia China
| | - Enhe Liang
- School of Electronic Information Engineering, Inner Mongolia University, 235 Daxue West Road, Saihan District, Hohhot, 010021 Inner Mongolia China
| | - Yujie Zhang
- School of Electronic Information Engineering, Inner Mongolia University, 235 Daxue West Road, Saihan District, Hohhot, 010021 Inner Mongolia China
| | - Zhi Weng
- School of Electronic Information Engineering, Inner Mongolia University, 235 Daxue West Road, Saihan District, Hohhot, 010021 Inner Mongolia China
| | - Jun Chai
- Imaging Medicine Department, Inner Mongolia People’s Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, 737399 Inner Mongolia China
| | - Wenjin Bu
- Imaging Medicine Department, Inner Mongolia People’s Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, 737399 Inner Mongolia China
| | - Jinjin Xu
- Imaging Medicine Department, Inner Mongolia People’s Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, 737399 Inner Mongolia China
| | - Tianyi Su
- School of Electronic Information Engineering, Inner Mongolia University, 235 Daxue West Road, Saihan District, Hohhot, 010021 Inner Mongolia China
| |
Collapse
|
39
|
Hu X, Liu L, Xiong M, Lu J. Application of artificial intelligence-based magnetic resonance imaging in diagnosis of cerebral small vessel disease. CNS Neurosci Ther 2024; 30:e14841. [PMID: 39045778 PMCID: PMC11267174 DOI: 10.1111/cns.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Cerebral small vessel disease (CSVD) is an important cause of stroke, cognitive impairment, and other diseases, and its early quantitative evaluation can significantly improve patient prognosis. Magnetic resonance imaging (MRI) is an important method to evaluate the occurrence, development, and severity of CSVD. However, the diagnostic process lacks quantitative evaluation criteria and is limited by experience, which may easily lead to missed diagnoses and misdiagnoses. With the development of artificial intelligence technology based on deep learning, the extraction of high-dimensional features in imaging can assist doctors in clinical decision-making, and it has been widely used in brain function and mental disorders, and cardiovascular and cerebrovascular diseases. This paper summarizes the global research results in recent years and briefly describes the application of deep learning in evaluating CSVD signs in MRI imaging, including recent small subcortical infarcts, lacunes of presumed vascular origin, vascular white matter hyperintensity, enlarged perivascular spaces, cerebral microbleeds, brain atrophy, cortical superficial siderosis, and cortical cerebral microinfarct.
Collapse
Affiliation(s)
- Xiaofei Hu
- Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Nuclear Medicine, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Li Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical ImagingThird Military Medical University (Army Medical University)ChongqingChina
| | - Ming Xiong
- Department of Digital Medicine, School of Biomedical Engineering and Medical ImagingThird Military Medical University (Army Medical University)ChongqingChina
| | - Jie Lu
- Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
40
|
Malik AK, Tanveer M. Graph Embedded Ensemble Deep Randomized Network for Diagnosis of Alzheimer's Disease. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:546-558. [PMID: 36112566 DOI: 10.1109/tcbb.2022.3202707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Randomized shallow/deep neural networks with closed form solution avoid the shortcomings that exist in the back propagation (BP) based trained neural networks. Ensemble deep random vector functional link (edRVFL) network utilize the strength of two growing fields, i.e., deep learning and ensemble learning. However, edRVFL model doesn't consider the geometrical relationship of the data while calculating the final output parameters corresponding to each layer considered as base model. In the literature, graph embedded frameworks have been successfully used to describe the geometrical relationship within data. In this paper, we propose an extended graph embedded RVFL (EGERVFL) model that, unlike standard RVFL, employs both intrinsic and penalty subspace learning (SL) criteria under the graph embedded framework in its optimization process to calculate the model's output parameters. The proposed shallow EGERVFL model has only single hidden layer and hence, has less representation learning. Therefore, we further develop an ensemble deep EGERVFL (edEGERVFL) model that can be considered a variant of edRVFL model. Unlike edRVFL, the proposed edEGERVFL model solves graph embedded based optimization problem in each layer and hence, has better generalization performance than edRVFL model. We evaluated the proposed approaches for the diagnosis of Alzheimer's disease and furthermore on UCI datasets. The experimental results demonstrate that the proposed models perform better than baseline models. The source code of the proposed models is available at https://github.com/mtanveer1/.
Collapse
|
41
|
Weng T, Zheng Y, Xie Y, Qin W, Guo L. Diagnosing schizophrenia using deep learning: Novel interpretation approaches and multi-site validation. Brain Res 2024; 1833:148876. [PMID: 38513996 DOI: 10.1016/j.brainres.2024.148876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia is a profound and enduring mental disorder that imposes significant negative impacts on individuals, their families, and society at large. The development of more accurate and objective diagnostic tools for schizophrenia can be expedited through the employment of deep learning (DL), that excels at deciphering complex hierarchical non-linear patterns. However, the limited interpretability of deep learning has eroded confidence in the model and restricted its clinical utility. At the same time, if the data source is only derived from a single center, the model's generalizability is difficult to test. To enhance the model's reliability and applicability, leave-one-center-out validation with a large and diverse sample from multiple centers is crucial. In this study, we utilized Nine different global centers to train and test the 3D Resnet model's generalizability, resulting in an 82% classification performance (area under the curve) on all datasets sourced from different countries, employing a leave-one-center-out-validation approach. Per our approximation of the feature significance of each region on the atlas, we identified marked differences in the thalamus, pallidum, and inferior frontal gyrus between individuals with schizophrenia and healthy controls, lending credence to prior research findings. At the same time, in order to translate the model's output into clinically applicable insights, the SHapley Additive exPlanations (SHAP) permutation explainer method with an anatomical atlas have been refined, thereby offering precise neuroanatomical and functional interpretations of different brain regions.
Collapse
Affiliation(s)
- Tingting Weng
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yuemei Zheng
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Shandong 100038, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
42
|
Zhou X, Balachandra AR, Romano MF, Chin SP, Au R, Kolachalama VB. Adversarial Learning for MRI Reconstruction and Classification of Cognitively Impaired Individuals. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:83169-83182. [PMID: 39148927 PMCID: PMC11326336 DOI: 10.1109/access.2024.3408840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Game theory-inspired deep learning using a generative adversarial network provides an environment to competitively interact and accomplish a goal. In the context of medical imaging, most work has focused on achieving single tasks such as improving image resolution, segmenting images, and correcting motion artifacts. We developed a dual-objective adversarial learning framework that simultaneously 1) reconstructs higher quality brain magnetic resonance images (MRIs) that 2) retain disease-specific imaging features critical for predicting progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD). We obtained 3-Tesla, T1-weighted brain MRIs of participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI, N=342) and the National Alzheimer's Coordinating Center (NACC, N = 190) datasets. We simulated MRIs with missing data by removing 50% of sagittal slices from the original scans (i.e., diced scans). The generator was trained to reconstruct brain MRIs using the diced scans as input. We introduced a classifier into the GAN architecture to discriminate between stable (i.e., sMCI) and progressive MCI (i.e., pMCI) based on the generated images to facilitate encoding of disease-related information during reconstruction. The framework was trained using ADNI data and externally validated on NACC data. In the NACC cohort, generated images had better image quality than the diced scans (Structural similarity (SSIM) index: 0.553 ± 0.116 versus 0.348 ± 0.108). Furthermore, a classifier utilizing the generated images distinguished pMCI from sMCI more accurately than with the diced scans (F1-score: 0.634 ± 0.019 versus 0.573 ± 0.028). Competitive deep learning has potential to facilitate disease-oriented image reconstruction in those at risk of developing Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Akshara R Balachandra
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael F Romano
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Sang Peter Chin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Boston University Alzheimer's Disease Research Center, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Vijaya B Kolachalama
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Boston University Alzheimer's Disease Research Center, Boston, MA 02118, USA
- Department of Computer Science, Faculty of Computing and Data Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
43
|
Liu X, Li W, Miao S, Liu F, Han K, Bezabih TT. HAMMF: Hierarchical attention-based multi-task and multi-modal fusion model for computer-aided diagnosis of Alzheimer's disease. Comput Biol Med 2024; 176:108564. [PMID: 38744010 DOI: 10.1016/j.compbiomed.2024.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition, and early intervention can help slow its progression. However, integrating multi-dimensional information and deep convolutional networks increases the model parameters, affecting diagnosis accuracy and efficiency and hindering clinical diagnostic model deployment. Multi-modal neuroimaging can offer more precise diagnostic results, while multi-task modeling of classification and regression tasks can enhance the performance and stability of AD diagnosis. This study proposes a Hierarchical Attention-based Multi-task Multi-modal Fusion model (HAMMF) that leverages multi-modal neuroimaging data to concurrently learn AD classification tasks, cognitive score regression, and age regression tasks using attention-based techniques. Firstly, we preprocess MRI and PET image data to obtain two modal data, each containing distinct information. Next, we incorporate a novel Contextual Hierarchical Attention Module (CHAM) to aggregate multi-modal features. This module employs channel and spatial attention to extract fine-grained pathological features from unimodal image data across various dimensions. Using these attention mechanisms, the Transformer can effectively capture correlated features of multi-modal inputs. Lastly, we adopt multi-task learning in our model to investigate the influence of different variables on diagnosis, with a primary classification task and a secondary regression task for optimal multi-task prediction performance. Our experiments utilized MRI and PET images from 720 subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The results show that our proposed model achieves an overall accuracy of 93.15% for AD/NC recognition, and the visualization results demonstrate its strong pathological feature recognition performance.
Collapse
Affiliation(s)
- Xiao Liu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Weimin Li
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| | - Shang Miao
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Fangyu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; BGI-Shenzhen, Shenzhen, China
| | - Ke Han
- Medical and Health Center, Liaocheng People's Hospital, LiaoCheng, China
| | - Tsigabu T Bezabih
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| |
Collapse
|
44
|
Ye J, Zeng A, Pan D, Zhang Y, Zhao J, Chen Q, Liu Y. MAD-Former: A Traceable Interpretability Model for Alzheimer's Disease Recognition Based on Multi-Patch Attention. IEEE J Biomed Health Inform 2024; 28:3637-3648. [PMID: 38442047 PMCID: PMC11315578 DOI: 10.1109/jbhi.2024.3368500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The integration of structural magnetic resonance imaging (sMRI) and deep learning techniques is one of the important research directions for the automatic diagnosis of Alzheimer's disease (AD). Despite the satisfactory performance achieved by existing voxel-based models based on convolutional neural networks (CNNs), such models only handle AD-related brain atrophy at a single spatial scale and lack spatial localization of abnormal brain regions based on model interpretability. To address the above limitations, we propose a traceable interpretability model for AD recognition based on multi-patch attention (MAD-Former). MAD-Former consists of two parts: recognition and interpretability. In the recognition part, we design a 3D brain feature extraction network to extract local features, followed by constructing a dual-branch attention structure with different patch sizes to achieve global feature extraction, forming a multi-scale spatial feature extraction framework. Meanwhile, we propose an important attention similarity position loss function to assist in model decision-making. The interpretability part proposes a traceable method that can obtain a 3D ROI space through attention-based selection and receptive field tracing. This space encompasses key brain tissues that influence model decisions. Experimental results reveal the significant role of brain tissues such as the Fusiform Gyrus (FuG) in AD recognition. MAD-Former achieves outstanding performance in different tasks on ADNI and OASIS datasets, demonstrating reliable model interpretability.
Collapse
|
45
|
Patel H, Shah H, Patel G, Patel A. Hematologic cancer diagnosis and classification using machine and deep learning: State-of-the-art techniques and emerging research directives. Artif Intell Med 2024; 152:102883. [PMID: 38657439 DOI: 10.1016/j.artmed.2024.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Hematology is the study of diagnosis and treatment options for blood diseases, including cancer. Cancer is considered one of the deadliest diseases across all age categories. Diagnosing such a deadly disease at the initial stage is essential to cure the disease. Hematologists and pathologists rely on microscopic evaluation of blood or bone marrow smear images to diagnose blood-related ailments. The abundance of overlapping cells, cells of varying densities among platelets, non-illumination levels, and the amount of red and white blood cells make it more difficult to diagnose illness using blood cell images. Pathologists are required to put more effort into the traditional, time-consuming system. Nowadays, it becomes possible with machine learning and deep learning techniques, to automate the diagnostic processes, categorize microscopic blood cells, and improve the accuracy of the procedure and its speed as the models developed using these methods may guide an assisting tool. In this article, we have acquired, analyzed, scrutinized, and finally selected around 57 research papers from various machine learning and deep learning methodologies that have been employed in the diagnosis of leukemia and its classification over the past 20 years, which have been published between the years 2003 and 2023 by PubMed, IEEE, Science Direct, Google Scholar and other pertinent sources. Our primary emphasis is on evaluating the advantages and limitations of analogous research endeavors to provide a concise and valuable research directive that can be of significant utility to fellow researchers in the field.
Collapse
Affiliation(s)
- Hema Patel
- Smt. Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India.
| | - Himal Shah
- QURE Haematology Centre, Ahmedabad 380006, Gujarat, India
| | - Gayatri Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India
| | - Atul Patel
- Smt. Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India
| |
Collapse
|
46
|
Mu S, Shan S, Li L, Jing S, Li R, Zheng C, Cui X. DMA-HPCNet: Dual Multi-Level Attention Hybrid Pyramid Convolution Neural Network for Alzheimer's Disease Classification. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1955-1964. [PMID: 38717874 DOI: 10.1109/tnsre.2024.3398640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Computer-aided diagnosis (CAD) plays a crucial role in the clinical application of Alzheimer's disease (AD). In particular, convolutional neural network (CNN)-based methods are highly sensitive to subtle changes caused by brain atrophy in medical images (e.g., magnetic resonance imaging, MRI). Due to computational resource constraints, most CAD methods focus on quantitative features in specific regions, neglecting the holistic nature of the images, which poses a challenge for a comprehensive understanding of pathological changes in AD. To address this issue, we propose a lightweight dual multi-level hybrid pyramid convolutional neural network (DMA-HPCNet) to aid clinical diagnosis of AD. Specifically, we introduced ResNet as the backbone network and modularly extended the hybrid pyramid convolution (HPC) block and the dual multi-level attention (DMA) module. Among them, the HPC block is designed to enhance the acquisition of information at different scales, and the DMA module is proposed to sequentially extract different local and global representations from the channel and spatial domains. Our proposed DMA-HPCNet method was evaluated on baseline MRI slices of 443 subjects from the ADNI dataset. Experimental results show that our proposed DMA-HPCNet model performs efficiently in AD-related classification tasks with low computational cost.
Collapse
|
47
|
Han K, Li G, Fang Z, Yang F. Multi-Template Meta-Information Regularized Network for Alzheimer's Disease Diagnosis Using Structural MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1664-1676. [PMID: 38109240 DOI: 10.1109/tmi.2023.3344384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Structural magnetic resonance imaging (sMRI) has been widely applied in computer-aided Alzheimer's disease (AD) diagnosis, owing to its capabilities in providing detailed brain morphometric patterns and anatomical features in vivo. Although previous works have validated the effectiveness of incorporating metadata (e.g., age, gender, and educational years) for sMRI-based AD diagnosis, existing methods solely paid attention to metadata-associated correlation to AD (e.g., gender bias in AD prevalence) or confounding effects (e.g., the issue of normal aging and metadata-related heterogeneity). Hence, it is difficult to fully excavate the influence of metadata on AD diagnosis. To address these issues, we constructed a novel Multi-template Meta-information Regularized Network (MMRN) for AD diagnosis. Specifically, considering diagnostic variation resulting from different spatial transformations onto different brain templates, we first regarded different transformations as data augmentation for self-supervised learning after template selection. Since the confounding effects may arise from excessive attention to meta-information owing to its correlation with AD, we then designed the modules of weakly supervised meta-information learning and mutual information minimization to learn and disentangle meta-information from learned class-related representations, which accounts for meta-information regularization for disease diagnosis. We have evaluated our proposed MMRN on two public multi-center cohorts, including the Alzheimer's Disease Neuroimaging Initiative (ADNI) with 1,950 subjects and the National Alzheimer's Coordinating Center (NACC) with 1,163 subjects. The experimental results have shown that our proposed method outperformed the state-of-the-art approaches in both tasks of AD diagnosis, mild cognitive impairment (MCI) conversion prediction, and normal control (NC) vs. MCI vs. AD classification.
Collapse
|
48
|
Alp S, Akan T, Bhuiyan MS, Disbrow EA, Conrad SA, Vanchiere JA, Kevil CG, Bhuiyan MAN. Joint transformer architecture in brain 3D MRI classification: its application in Alzheimer's disease classification. Sci Rep 2024; 14:8996. [PMID: 38637671 PMCID: PMC11026447 DOI: 10.1038/s41598-024-59578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease that mostly affects the elderly, slowly impairs memory, cognition, and daily tasks. AD has long been one of the most debilitating chronic neurological disorders, affecting mostly people over 65. In this study, we investigated the use of Vision Transformer (ViT) for Magnetic Resonance Image processing in the context of AD diagnosis. ViT was utilized to extract features from MRIs, map them to a feature sequence, perform sequence modeling to maintain interdependencies, and classify features using a time series transformer. The proposed model was evaluated using ADNI T1-weighted MRIs for binary and multiclass classification. Two data collections, Complete 1Yr 1.5T and Complete 3Yr 3T, from the ADNI database were used for training and testing. A random split approach was used, allocating 60% for training and 20% for testing and validation, resulting in sample sizes of (211, 70, 70) and (1378, 458, 458), respectively. The performance of our proposed model was compared to various deep learning models, including CNN with BiL-STM and ViT with Bi-LSTM. The suggested technique diagnoses AD with high accuracy (99.048% for binary and 99.014% for multiclass classification), precision, recall, and F-score. Our proposed method offers researchers an approach to more efficient early clinical diagnosis and interventions.
Collapse
Affiliation(s)
- Sait Alp
- Department of Computer Engineering, Erzurum Technical University, Erzurum, Turkey
| | - Taymaz Akan
- Division of Clinical Informatics, Department of Medicine, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
- Center for Brain Health, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
| | - Elizabeth A Disbrow
- Center for Brain Health, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
- Department of Neurology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
- Department of Psychiatry, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
| | - Steven A Conrad
- Division of Clinical Informatics, Department of Medicine, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
| | - John A Vanchiere
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA
| | - Mohammad A N Bhuiyan
- Division of Clinical Informatics, Department of Medicine, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA.
- Center for Brain Health, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103-4228, USA.
| |
Collapse
|
49
|
Chang C, Shi W, Wang Y, Zhang Z, Huang X, Jiao Y. The path from task-specific to general purpose artificial intelligence for medical diagnostics: A bibliometric analysis. Comput Biol Med 2024; 172:108258. [PMID: 38467093 DOI: 10.1016/j.compbiomed.2024.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Artificial intelligence (AI) has revolutionized many fields, and its potential in healthcare has been increasingly recognized. Based on diverse data sources such as imaging, laboratory tests, medical records, and electrophysiological data, diagnostic AI has witnessed rapid development in recent years. A comprehensive understanding of the development status, contributing factors, and their relationships in the application of AI to medical diagnostics is essential to further promote its use in clinical practice. In this study, we conducted a bibliometric analysis to explore the evolution of task-specific to general-purpose AI for medical diagnostics. We used the Web of Science database to search for relevant articles published between 2010 and 2023, and applied VOSviewer, the R package Bibliometrix, and CiteSpace to analyze collaborative networks and keywords. Our analysis revealed that the field of AI in medical diagnostics has experienced rapid growth in recent years, with a focus on tasks such as image analysis, disease prediction, and decision support. Collaborative networks were observed among researchers and institutions, indicating a trend of global cooperation in this field. Additionally, we identified several key factors contributing to the development of AI in medical diagnostics, including data quality, algorithm design, and computational power. Challenges to progress in the field include model explainability, robustness, and equality, which will require multi-stakeholder, interdisciplinary collaboration to tackle. Our study provides a holistic understanding of the path from task-specific, mono-modal AI toward general-purpose, multimodal AI for medical diagnostics. With the continuous improvement of AI technology and the accumulation of medical data, we believe that AI will play a greater role in medical diagnostics in the future.
Collapse
Affiliation(s)
- Chuheng Chang
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Wen Shi
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Youyang Wang
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zhan Zhang
- Department of Computer Science and Technology, Tsinghua University, Beijing, China.
| | - Xiaoming Huang
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yang Jiao
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
50
|
Huang Y, Li Y, Yuan Y, Zhang X, Yan W, Li T, Niu Y, Xu M, Yan T, Li X, Li D, Xiang J, Wang B, Yan T. Beta-informativeness-diffusion multilayer graph embedding for brain network analysis. Front Neurosci 2024; 18:1303741. [PMID: 38525375 PMCID: PMC10957763 DOI: 10.3389/fnins.2024.1303741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Brain network analysis provides essential insights into the diagnosis of brain disease. Integrating multiple neuroimaging modalities has been demonstrated to be more effective than using a single modality for brain network analysis. However, a majority of existing brain network analysis methods based on multiple modalities often overlook both complementary information and unique characteristics from various modalities. To tackle this issue, we propose the Beta-Informativeness-Diffusion Multilayer Graph Embedding (BID-MGE) method. The proposed method seamlessly integrates structural connectivity (SC) and functional connectivity (FC) to learn more comprehensive information for diagnosing neuropsychiatric disorders. Specifically, a novel beta distribution mapping function (beta mapping) is utilized to increase vital information and weaken insignificant connections. The refined information helps the diffusion process concentrate on crucial brain regions to capture more discriminative features. To maximize the preservation of the unique characteristics of each modality, we design an optimal scale multilayer brain network, the inter-layer connections of which depend on node informativeness. Then, a multilayer informativeness diffusion is proposed to capture complementary information and unique characteristics from various modalities and generate node representations by incorporating the features of each node with those of their connected nodes. Finally, the node representations are reconfigured using principal component analysis (PCA), and cosine distances are calculated with reference to multiple templates for statistical analysis and classification. We implement the proposed method for brain network analysis of neuropsychiatric disorders. The results indicate that our method effectively identifies crucial brain regions associated with diseases, providing valuable insights into the pathology of the disease, and surpasses other advanced methods in classification performance.
Collapse
Affiliation(s)
- Yin Huang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Ying Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Yuting Yuan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Xingyu Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Wenjie Yan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Mengzhou Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Xiaowen Li
- Computer Information Engineering Institute, Shanxi Technology and Business College, Taiyuan, China
| | - Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Tianyi Yan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|