1
|
Chen Y, Wu W, Ou-Yang L, Wang R, Kwong S. GRESS: Grouping Belief-Based Deep Contrastive Subspace Clustering. IEEE TRANSACTIONS ON CYBERNETICS 2025; 55:148-160. [PMID: 39437281 DOI: 10.1109/tcyb.2024.3475034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The self-expressive coefficient plays a crucial role in the self-expressiveness-based subspace clustering method. To enhance the precision of the self-expressive coefficient, we propose a novel deep subspace clustering method, named grouping belief-based deep contrastive subspace clustering (GRESS), which integrates the clustering information and higher-order relationship into the coefficient matrix. Specifically, we develop a deep contrastive subspace clustering module to enhance the learning of both self-expressive coefficients and cluster representations simultaneously. This approach enables the derivation of relatively noiseless self-expressive similarities and cluster-based similarities. To enable interaction between these two types of similarities, we propose a unique grouping belief-based affinity refinement module. This module leverages grouping belief to uncover the higher-order relationships within the similarity matrix, and integrates the well-designed noisy similarity suppression and similarity increment regularization to eliminate redundant connections while complete absent information. Extensive experimental results on four benchmark datasets validate the superiority of our proposed method GRESS over several state-of-the-art methods.
Collapse
|
2
|
Gui Y, Li C, Xu Y. Spatial domains identification in spatial transcriptomics using modality-aware and subspace-enhanced graph contrastive learning. Comput Struct Biotechnol J 2024; 23:3703-3713. [PMID: 39507820 PMCID: PMC11539238 DOI: 10.1016/j.csbj.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Spatial transcriptomics (ST) technologies have emerged as an effective tool to identify the spatial architecture of tissues, facilitating a comprehensive understanding of organ function and the tissue microenvironment. Spatial domain identification is the first and most critical step in ST data analysis, which requires thoughtful utilization of tissue microenvironment and morphological priors. Here, we propose a graph contrastive learning framework, GRAS4T, which combines contrastive learning and a subspace analysis model to accurately distinguish different spatial domains by capturing the tissue microenvironment through self-expressiveness of spots within the same domain. To uncover the pertinent features for spatial domain identification, GRAS4T employs a graph augmentation based on histological image priors, preserving structural information crucial for the clustering task. Experimental results on eight ST datasets from five different platforms show that GRAS4T outperforms five state-of-the-art competing methods. Significantly, GRAS4T excels at separating distinct tissue structures and unveiling more detailed spatial domains. GRAS4T combines the advantages of subspace analysis and graph representation learning with extensibility, making it an ideal framework for ST domain identification.
Collapse
Affiliation(s)
- Yang Gui
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chao Li
- School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233041, China
| | - Yan Xu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Lin Y, Chen S. Convex Subspace Clustering by Adaptive Block Diagonal Representation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:10065-10078. [PMID: 35439144 DOI: 10.1109/tnnls.2022.3164540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Subspace clustering is a class of extensively studied clustering methods where the spectral-type approaches are its important subclass. Its key first step is to desire learning a representation coefficient matrix with block diagonal structure. To realize this step, many methods were successively proposed by imposing different structure priors on the coefficient matrix. These impositions can be roughly divided into two categories, i.e., indirect and direct. The former introduces the priors such as sparsity and low rankness to indirectly or implicitly learn the block diagonal structure. However, the desired block diagonalty cannot necessarily be guaranteed for noisy data. While the latter directly or explicitly imposes the block diagonal structure prior such as block diagonal representation (BDR) to ensure so-desired block diagonalty even if the data is noisy but at the expense of losing the convexity that the former's objective possesses. For compensating their respective shortcomings, in this article, we follow the direct line to propose adaptive BDR (ABDR) which explicitly pursues block diagonalty without sacrificing the convexity of the indirect one. Specifically, inspired by Convex BiClustering, ABDR coercively fuses both columns and rows of the coefficient matrix via a specially designed convex regularizer, thus naturally enjoying their merits and adaptively obtaining the number of blocks. Finally, experimental results on synthetic and real benchmarks demonstrate the superiority of ABDR to the state-of-the-arts (SOTAs).
Collapse
|
4
|
Zhao Y, Li X. Spectral Clustering With Adaptive Neighbors for Deep Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:2068-2078. [PMID: 34469311 DOI: 10.1109/tnnls.2021.3105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spectral clustering is a well-known clustering algorithm for unsupervised learning, and its improved algorithms have been successfully adapted for many real-world applications. However, traditional spectral clustering algorithms are still facing many challenges to the task of unsupervised learning for large-scale datasets because of the complexity and cost of affinity matrix construction and the eigen-decomposition of the Laplacian matrix. From this perspective, we are looking forward to finding a more efficient and effective way by adaptive neighbor assignments for affinity matrix construction to address the above limitation of spectral clustering. It tries to learn an affinity matrix from the view of global data distribution. Meanwhile, we propose a deep learning framework with fully connected layers to learn a mapping function for the purpose of replacing the traditional eigen-decomposition of the Laplacian matrix. Extensive experimental results have illustrated the competitiveness of the proposed algorithm. It is significantly superior to the existing clustering algorithms in the experiments of both toy datasets and real-world datasets.
Collapse
|
5
|
Khamkar R, Das P, Namasudra S. SCEOMOO: A novel Subspace Clustering approach using Evolutionary algorithm, Off-spring generation and Multi-Objective Optimization. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Zhou T, Fu H, Gong C, Shao L, Porikli F, Ling H, Shen J. Consistency and Diversity Induced Human Motion Segmentation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:197-210. [PMID: 35104213 DOI: 10.1109/tpami.2022.3147841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Subspace clustering is a classical technique that has been widely used for human motion segmentation and other related tasks. However, existing segmentation methods often cluster data without guidance from prior knowledge, resulting in unsatisfactory segmentation results. To this end, we propose a novel Consistency and Diversity induced human Motion Segmentation (CDMS) algorithm. Specifically, our model factorizes the source and target data into distinct multi-layer feature spaces, in which transfer subspace learning is conducted on different layers to capture multi-level information. A multi-mutual consistency learning strategy is carried out to reduce the domain gap between the source and target data. In this way, the domain-specific knowledge and domain-invariant properties can be explored simultaneously. Besides, a novel constraint based on the Hilbert Schmidt Independence Criterion (HSIC) is introduced to ensure the diversity of multi-level subspace representations, which enables the complementarity of multi-level representations to be explored to boost the transfer learning performance. Moreover, to preserve the temporal correlations, an enhanced graph regularizer is imposed on the learned representation coefficients and the multi-level representations of the source data. The proposed model can be efficiently solved using the Alternating Direction Method of Multipliers (ADMM) algorithm. Extensive experimental results on public human motion datasets demonstrate the effectiveness of our method against several state-of-the-art approaches.
Collapse
|
7
|
Abdolali M, Gillis N. Revisiting data augmentation for subspace clustering. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Auto-weighted low-rank representation for clustering. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Lai J, Chen H, Li W, Li T, Wan J. Semi-supervised feature selection via adaptive structure learning and constrained graph learning. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wang Y, Gao C, Zhou J. Geometrical structure preservation joint with self-expression maintenance for adaptive graph learning. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
|
12
|
Guo W, Wang Z, Du W. Pseudolabel‐guided multiview consensus graph learning for semisupervised classification. INT J INTELL SYST 2022. [DOI: 10.1002/int.22958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Guo
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology Shanghai China
- Department of Computer Science and Engineering East China University of Science and Technology Shanghai China
| | - Zhe Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology Shanghai China
- Department of Computer Science and Engineering East China University of Science and Technology Shanghai China
| | - Wenli Du
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology Shanghai China
| |
Collapse
|
13
|
Yao L, Lu GF. Double structure scaled simplex representation for multi-view subspace clustering. Neural Netw 2022; 151:168-177. [DOI: 10.1016/j.neunet.2022.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
14
|
Chen C, Lu H, Wei H, Geng X. Deep subspace image clustering network with self-expression and self-supervision. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Xu Y, Chen S, Li J, Han Z, Yang J. Autoencoder-Based Latent Block-Diagonal Representation for Subspace Clustering. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:5408-5418. [PMID: 33206621 DOI: 10.1109/tcyb.2020.3031666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Block-diagonal representation (BDR) is an effective subspace clustering method. The existing BDR methods usually obtain a self-expression coefficient matrix from the original features by a shallow linear model. However, the underlying structure of real-world data is often nonlinear, thus those methods cannot faithfully reflect the intrinsic relationship among samples. To address this problem, we propose a novel latent BDR (LBDR) model to perform the subspace clustering on a nonlinear structure, which jointly learns an autoencoder and a BDR matrix. The autoencoder, which consists of a nonlinear encoder and a linear decoder, plays an important role to learn features from the nonlinear samples. Meanwhile, the learned features are used as a new dictionary for a linear model with block-diagonal regularization, which can ensure good performances for spectral clustering. Moreover, we theoretically prove that the learned features are located in the linear space, thus ensuring the effectiveness of the linear model using self-expression. Extensive experiments on various real-world datasets verify the superiority of our LBDR over the state-of-the-art subspace clustering approaches.
Collapse
|
16
|
Sui J, Liu Z, Liu L, Jung A, Li X. Dynamic Sparse Subspace Clustering for Evolving High-Dimensional Data Streams. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:4173-4186. [PMID: 33232249 DOI: 10.1109/tcyb.2020.3023973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In an era of ubiquitous large-scale evolving data streams, data stream clustering (DSC) has received lots of attention because the scale of the data streams far exceeds the ability of expert human analysts. It has been observed that high-dimensional data are usually distributed in a union of low-dimensional subspaces. In this article, we propose a novel sparse representation-based DSC algorithm, called evolutionary dynamic sparse subspace clustering (EDSSC). It can cope with the time-varying nature of subspaces underlying the evolving data streams, such as subspace emergence, disappearance, and recurrence. The proposed EDSSC consists of two phases: 1) static learning and 2) online clustering. During the first phase, a data structure for storing the statistic summary of data streams, called EDSSC summary, is proposed which can better address the dilemma between the two conflicting goals: 1) saving more points for accuracy of subspace clustering (SC) and 2) discarding more points for the efficiency of DSC. By further proposing an algorithm to estimate the subspace number, the proposed EDSSC does not need to know the number of subspaces. In the second phase, a more suitable index, called the average sparsity concentration index (ASCI), is proposed, which dramatically promotes the clustering accuracy compared to the conventionally utilized SCI index. In addition, the subspace evolution detection model based on the Page-Hinkley test is proposed where the appearing, disappearing, and recurring subspaces can be detected and adapted. Extinct experiments on real-world data streams show that the EDSSC outperforms the state-of-the-art online SC approaches.
Collapse
|
17
|
Li J, Liu H, Tao Z, Zhao H, Fu Y. Learnable Subspace Clustering. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:1119-1133. [PMID: 33306473 DOI: 10.1109/tnnls.2020.3040379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article studies the large-scale subspace clustering (LS2C) problem with millions of data points. Many popular subspace clustering methods cannot directly handle the LS2C problem although they have been considered to be state-of-the-art methods for small-scale data points. A simple reason is that these methods often choose all data points as a large dictionary to build huge coding models, which results in high time and space complexity. In this article, we develop a learnable subspace clustering paradigm to efficiently solve the LS2C problem. The key concept is to learn a parametric function to partition the high-dimensional subspaces into their underlying low-dimensional subspaces instead of the computationally demanding classical coding models. Moreover, we propose a unified, robust, predictive coding machine (RPCM) to learn the parametric function, which can be solved by an alternating minimization algorithm. Besides, we provide a bounded contraction analysis of the parametric function. To the best of our knowledge, this article is the first work to efficiently cluster millions of data points among the subspace clustering methods. Experiments on million-scale data sets verify that our paradigm outperforms the related state-of-the-art methods in both efficiency and effectiveness.
Collapse
|
18
|
Weighted sparse simplex representation: a unified framework for subspace clustering, constrained clustering, and active learning. Data Min Knowl Discov 2022. [DOI: 10.1007/s10618-022-00820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSpectral-based subspace clustering methods have proved successful in many challenging applications such as gene sequencing, image recognition, and motion segmentation. In this work, we first propose a novel spectral-based subspace clustering algorithm that seeks to represent each point as a sparse convex combination of a few nearby points. We then extend the algorithm to a constrained clustering and active learning framework. Our motivation for developing such a framework stems from the fact that typically either a small amount of labelled data are available in advance; or it is possible to label some points at a cost. The latter scenario is typically encountered in the process of validating a cluster assignment. Extensive experiments on simulated and real datasets show that the proposed approach is effective and competitive with state-of-the-art methods.
Collapse
|
19
|
Abhadiomhen SE, Wang Z, Shen X. Coupled low rank representation and subspace clustering. APPL INTELL 2022; 52:530-546. [DOI: 10.1007/s10489-021-02409-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
|
20
|
A Robust Tensor-Based Submodule Clustering for Imaging Data Using l12 Regularization and Simultaneous Noise Recovery via Sparse and Low Rank Decomposition Approach. J Imaging 2021; 7:jimaging7120279. [PMID: 34940746 PMCID: PMC8708766 DOI: 10.3390/jimaging7120279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Abstract
The massive generation of data, which includes images and videos, has made data management, analysis, information extraction difficult in recent years. To gather relevant information, this large amount of data needs to be grouped. Real-life data may be noise corrupted during data collection or transmission, and the majority of them are unlabeled, allowing for the use of robust unsupervised clustering techniques. Traditional clustering techniques, which vectorize the images, are unable to keep the geometrical structure of the images. Hence, a robust tensor-based submodule clustering method based on l12 regularization with improved clustering capability is formulated. The l12 induced tensor nuclear norm (TNN), integrated into the proposed method, offers better low rankness while retaining the self-expressiveness property of submodules. Unlike existing methods, the proposed method employs a simultaneous noise removal technique by twisting the lateral image slices of the input data tensor into frontal slices and eliminates the noise content in each image, using the principles of the sparse and low rank decomposition technique. Experiments are carried out over three datasets with varying amounts of sparse, Gaussian and salt and pepper noise. The experimental results demonstrate the superior performance of the proposed method over the existing state-of-the-art methods.
Collapse
|
21
|
|