1
|
Cai CJ, Huang H, Ren H. Untethered bistable origami crawler for confined applications. COMMUNICATIONS ENGINEERING 2024; 3:150. [PMID: 39478162 PMCID: PMC11525557 DOI: 10.1038/s44172-024-00294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024]
Abstract
Magnetically actuated miniature origami crawlers are capable of robust locomotion in confined environments but are limited to passive functionalities. Here, we propose a bistable origami crawler that can shape-morph to access two separate regimes of folding degrees of freedom that are separated by an energy barrier. Using the modified bistable V-fold origami crease pattern as the fundamental unit of the crawler, we incorporated internal permanent magnets to enable untethered shape-morphing. By modulating the orientation of the external magnetic field, the crawler can reconfigure between an undeployed locomotion state and a deployed load-bearing state. In the undeployed state, the crawler can deform to enable out-of-plane crawling for robust bi-directional locomotion and navigation in confined environments based on friction anisotropy. In the deployed state, the crawler can execute microneedle insertion in confined environments. Through this work, we demonstrated the advantage of incorporating bistability into origami mechanisms to expand their capabilities in space-constraint applications.
Collapse
Affiliation(s)
- Catherine Jiayi Cai
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117575, Singapore
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore, 636732, Singapore
- Department of Electronic Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hui Huang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore, 636732, Singapore
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Hongliang Ren
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117575, Singapore.
- Department of Electronic Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Ameen S, Merchant HA. Intragastric balloons for obesity: critical review of device design, efficacy, tolerability, and unmet clinical needs. Expert Rev Med Devices 2024; 21:37-54. [PMID: 38030993 DOI: 10.1080/17434440.2023.2289691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Sustaining a healthy weight is a challenge and obesity, with associated risk of co-morbidities, is a major public health concern. Bariatric surgery has shown a great promise for many where pharmacological and lifestyle interventions failed to work. However, challenges and limitations associated with bariatric surgery has pushed the demand for less invasive, reversible (anatomically) interventions, such as intragastric balloons (IGBs). AREAS COVERED This review critically appraises IGBs used in the past, present, and those in clinical trials, discussing the device designs, limitations, placement and removal techniques, patient eligibility, efficacy, and safety issues. EXPERT OPINION Several intragastric balloons were developed over the years that brought excitement to patients and healthcare professionals alike. Albeit good efficacy, there had been several safety issues reported with IGBs such as spontaneous deflation, intestinal occlusion, gut perforation, and mucosal ulcerations. This led to evolution of IGBs design; device material, filling mechanism, fluid type, inflation volume, and further innovations to ease ingestion and removal of device. There are some IGB devices under development aimed to swallow like a conventional pill and excrete naturally through defecation, however, how successful they will be in clinical practice in terms of their efficacy and tolerability remains to be seen in the future.
Collapse
Affiliation(s)
- Sara Ameen
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, West Yorkshire, UK
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, West Yorkshire, UK
- Department of Bioscience, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
3
|
A Worm-like Crawling Soft Robot with Pneumatic Actuators Based on Selective Laser Sintering of TPU Powder. Biomimetics (Basel) 2022; 7:biomimetics7040205. [PMID: 36412733 PMCID: PMC9743957 DOI: 10.3390/biomimetics7040205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Soft robotics is one of the most popular areas in the field of robotics due to advancements in bionic technology, novel materials, and additive manufacturing. Existing soft crawling robots with specific structures have a single locomotion mode and cannot complete turning. Moreover, some silicone-based robots lack stiffness, leading to unstable movements especially when climbing walls, and have limited environmental adaptability. Therefore, in this study, a novel crawling soft robot with a multi-movement mode and high environmental adaptability is proposed. As the main structure of the robot, pneumatic single-channeled and double-channeled actuators are designed, inspired by the worm's somite expansion and contraction. Model-based methods are employed to evaluate and analyze the characteristics of the actuators. By the application of selective laser sintering technology and thermoplastic polyurethane (TPU) material, the fabricated actuators with an auxetic cavity structure are able to maintain a certain stiffness. Via the coordination between the actuators and the suckers, two locomotion modes-straight-line and turning-are realized. In the testing, the speed of straight-line crawling was 7.15 mm/s, and the single maximum turning angle was 28.8 degrees. The testing verified that the robot could realize crawling on flat ground, slopes, and smooth vertical walls with a certain stability and equipment-carrying capacity. This research could lay the foundation for subsequent applications, including large tank interior inspections, civil aviation fuselage and wing inspections, and wall-cleaning in high-rise buildings.
Collapse
|
4
|
Yan B. Actuators for Implantable Devices: A Broad View. MICROMACHINES 2022; 13:1756. [PMID: 36296109 PMCID: PMC9610948 DOI: 10.3390/mi13101756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The choice of actuators dictates how an implantable biomedical device moves. Specifically, the concept of implantable robots consists of the three pillars: actuators, sensors, and powering. Robotic devices that require active motion are driven by a biocompatible actuator. Depending on the actuating mechanism, different types of actuators vary remarkably in strain/stress output, frequency, power consumption, and durability. Most reviews to date focus on specific type of actuating mechanism (electric, photonic, electrothermal, etc.) for biomedical applications. With a rapidly expanding library of novel actuators, however, the granular boundaries between subcategories turns the selection of actuators a laborious task, which can be particularly time-consuming to those unfamiliar with actuation. To offer a broad view, this study (1) showcases the recent advances in various types of actuating technologies that can be potentially implemented in vivo, (2) outlines technical advantages and the limitations of each type, and (3) provides use-specific suggestions on actuator choice for applications such as drug delivery, cardiovascular, and endoscopy implants.
Collapse
Affiliation(s)
- Bingxi Yan
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Rehan M, Al-Bahadly I, Thomas DG, Avci E. Development of a Robotic Capsule for in vivo Sampling of Gut Microbiota. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Rehan
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G. Thomas
- Monogastric Research Centre, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Erin O, Liu X, Ge J, Opfermann J, Barnoy Y, Mair LO, Kang JU, Gensheimer W, Weinberg IN, Diaz-Mercado Y, Krieger A. Overcoming the Force Limitations of Magnetic Robotic Surgery: Magnetic Pulse Actuated Collisions for Tissue-Penetrating-Needle for Tetherless Interventions. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 4:2200072. [PMID: 35967598 PMCID: PMC9364690 DOI: 10.1002/aisy.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 06/03/2023]
Abstract
The field of magnetic robotics aims to obviate physical connections between the actuators and end-effectors. Such tetherless control may enable new ultra-minimally invasive surgical manipulations in clinical settings. While wireless actuation offers advantages in medical applications, the challenge of providing sufficient force to magnetic needles for tissue penetration remains a barrier to practical application. Applying sufficient force for tissue penetration is required for tasks such as biopsy, suturing, cutting, drug delivery, and accessing deep seated regions of complex structures in organs such as the eye. To expand the force landscape for such magnetic surgical tools, an impact-force based suture needle capable of penetrating in vitro and ex vivo samples with 3-DOF planar motion is proposed. Using custom-built 14G and 25G needles, we demonstrate generation of 410 mN penetration force, a 22.7-fold force increase with more than 20 times smaller volume compared to similar magnetically guided needles. With the MPACT-Needle, in vitro suturing of a gauze mesh onto an agar gel is demonstrated. In addition, we have reduced the tip size to 25G, which is a typical needle size for interventions in the eye, to demonstrate ex vivo penetration in a rabbit eye, mimicking procedures such as corneal injections and transscleral drug delivery.
Collapse
Affiliation(s)
- Onder Erin
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiaolong Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiawei Ge
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Justin Opfermann
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yotam Barnoy
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lamar O Mair
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA
| | - Jin U Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William Gensheimer
- Department of Opthalmology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Yancy Diaz-Mercado
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Byrne J, Huang HW, McRae JC, Babaee S, Soltani A, Becker SL, Traverso G. Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery. Adv Drug Deliv Rev 2021; 177:113926. [PMID: 34403749 DOI: 10.1016/j.addr.2021.113926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of macromolecules via the gastrointestinal (GI) tract remains a significant challenge. A variety of technologies using physical modes of drug delivery have been developed and investigated to overcome the epithelial cell layer of the GI tract for local and systemic delivery. These technologies include direct injection, jetting, ultrasound, and iontophoresis, which have been largely adapted from transdermal drug delivery. Direct injection of agents using needles through endoscopy has been used clinically for over a century. Jetting, a needle-less method of drug delivery where a high-speed stream of fluid medication penetrates tissue, has been evaluated pre-clinically for delivery of agents into the buccal mucosa. Ultrasound has been shown to be beneficial in enhancing delivery of macromolecules, including nucleic acids, in pre-clinical animal models. The application of an electric field gradient to drive drugs into tissues through the technique of iontophoresis has been shown to deliver highly toxic chemotherapies into GI tissues. Here in, we provide an in-depth overview of these physical modes of drug delivery in the GI tract and their clinical and preclinical uses.
Collapse
Affiliation(s)
- James Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA
| | - Hen-Wei Huang
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - James C McRae
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sahab Babaee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amin Soltani
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Yan JS, Yan B, Meng K. Current status and future developments of upper gastrointestinal tract capsule endoscopy. Shijie Huaren Xiaohua Zazhi 2021; 29:960-965. [DOI: 10.11569/wcjd.v29.i16.960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Capsule endoscopy has been widely used for the diagnosis of small bowel diseases due to its safety, noninvasiveness, and acceptability. Despite the potential benefits of capsule endoscopy, there are obvious challenges to capsule endoscopy application in the upper gastrointestinal tract, due to the fast transit speed in the esophagus and large space of the gastric cavity. With the development of innovative technologies, such as magnetic navigation and tethered capsule endoscopy, the indications for capsule endoscopy have recently been expanded. Various capsule endoscopes have been applied to clinical practice, and several state-of-the-art research-oriented designs and devices provide hope for further use in the diagnosis of upper gastrointestinal diseases. In this review, we will summarize the current status and future developments of upper gastrointestinal tract capsule endoscopy.
Collapse
Affiliation(s)
- Jing-Shuang Yan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China,School of Medicine, Nankai University, Tianjin 300071, China
| | - Bin Yan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ke Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
9
|
Lyutakov I, Penchev P. Current Advances in Drug Delivery Systems for Capsule Endoscopy. Curr Drug Metab 2020; 21:838-843. [PMID: 32682365 DOI: 10.2174/1389200221666200719002652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/22/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Oral administration of medications and current oral modified-release systems are the most preferred drug delivery routes, but they provide efficacy up to 12-24 hours per administration and are not useful when the patient has short transit time. The once-daily administered formulations are the endpoint of many types of drug development, and some innovations in capsule endoscopy (CE) can solve this problem. OBJECTIVE This review aims to reveal recent advances in drug delivery systems (DDS) for CE as an essential field of research for more precise drug targeting at the gastrointestinal (GI) tract. METHODS We performed a narrative overview of the MEDLINE database from 1991-2020 using the keywords of DDS and CE with synthesizing the findings, hand searches, and authoritative articles. RESULTS There are microelectromechanical systems and non-mechanical patent technologies for DDS for CE, and the implementation of wireless-capsule medical devices into the human body will provide new diagnostic and therapeutic options. Integrating biomedical CE with DDS and the cloud technology will bring remote real-time feedbackbased automated treatment or responsive medication. CONCLUSION Swallowable drug delivery systems for capsule endoscopy brings an entirely new approach for diagnostic and therapeutic methods in digestive diseases.
Collapse
Affiliation(s)
- Ivan Lyutakov
- Department of Gastroenterology, University Hospital "Tsaritsa Yoanna-ISUL", Medical University Sofia, Sofia, Bulgaria
| | - Plamen Penchev
- Department of Gastroenterology, University Hospital "Tsaritsa Yoanna-ISUL", Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
10
|
Kim Y, Park JE, Wie JJ, Yang SG, Lee DH, Jin YJ. Effects of Helix Geometry on Magnetic Guiding of Helical Polymer Composites on a Gastric Cancer Model: A Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1014. [PMID: 32102338 PMCID: PMC7078772 DOI: 10.3390/ma13041014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
This study investigates the effects of soft-robot geometry on magnetic guiding to develop an efficient helical mediator on a three-dimensional (3D) gastric cancer model. Four different magnetically active helical soft robots are synthesized by the inclusion of 5-μm iron particles in polydimethylsiloxane matrices. The soft robots are named based on the diameter and length (D2-L15, D5-L20, D5-L25, and D5-L35) with samples having varied helical pitch and weight values. Then, the four samples are tested on a flat surface as well as a stomach model with various 3D wrinkles. We analyze the underlying physics of intermittent magnetomotility for the helix on a flat surface. In addition, we extract representative failure cases of magnetomotility on the stomach model. The D5-L25 sample was the most suitable among the four samples for a helical soft robot that can be moved to a target lesion by the magnetic-flux density of the stomach model. The effects of diameter, length, pitch, and weight of a helical soft robot on magnetomotility are discussed in order for the robot to reach the target lesion successfully via magnetomotility.
Collapse
Affiliation(s)
- Yongju Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea; (Y.K.); (J.E.P.)
| | - Jeong Eun Park
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea; (Y.K.); (J.E.P.)
| | - Jeong Jae Wie
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea; (Y.K.); (J.E.P.)
| | - Su Geun Yang
- Department of New Drug Development, Inha University, School of Medicine, Incheon 22212, Korea;
| | - Don Haeng Lee
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Korea;
- The National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorders (NCEED), Incheon 22332, Korea
- Utah-Inha DDS & Advanced Therapeutics Research Center, Incheon 22332, Korea
| | - Young-Joo Jin
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Korea;
| |
Collapse
|
11
|
Son D, Gilbert H, Sitti M. Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy. Soft Robot 2019; 7:10-21. [PMID: 31418640 DOI: 10.1089/soro.2018.0171] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wireless capsule endoscopes have revolutionized diagnostic procedures in the gastrointestinal (GI) tract by minimizing discomfort and trauma. Biopsy procedures, which are often necessary for a confirmed diagnosis of an illness, have been incorporated recently into robotic capsule endoscopes to improve their diagnostic functionality beyond only imaging. However, capsule robots to date have only been able to acquire biopsy samples of superficial tissues of the GI tract, which could generate false-negative diagnostic results if the diseased tissue is under the surface of the GI tract. To improve their diagnostic accuracy for submucosal tumors/diseases, we propose a magnetically actuated soft robotic capsule robot, which takes biopsy samples in a deep tissue of a stomach using the fine-needle biopsy technique. We present the design, control, and human-machine interfacing methods for the fine-needle biopsy capsule robot. Ex vivo experiments in a porcine stomach show 85% yield for the biopsy of phantom tumors located underneath the first layers of the stomach wall.
Collapse
Affiliation(s)
- Donghoon Son
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Hunter Gilbert
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,School of Medicine and School of Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
12
|
Hoang MC, Le VH, Kim J, Choi E, Kang B, Park JO, Kim CS. A wireless tattooing capsule endoscope using external electromagnetic actuation and chemical reaction pressure. PLoS One 2019; 14:e0219740. [PMID: 31310612 PMCID: PMC6634410 DOI: 10.1371/journal.pone.0219740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
In this paper, we present a tattooing capsule endoscope (TCE) that can localize an intestinal lesion or tumor for a preoperative laparoscopic surgery. The TCE is based on a wireless capsule endoscope (WCE) structure and can be actively controlled by an external electromagnetic actuation system to move, observe, and mark the target lesion in the gastrointestinal (GI) tract. The TCE is designed to perform capsule locomotion, needle extrusion and intrusion motions, and ink injection. First, the TCE is controlled to move to the target lesion during GI tract diagnosis via a capsule endoscopic camera. Further, a tattooing needle is extruded by an electromagnetically controlled mechanism to puncture the tissue. Finally, the tattooing ink is injected by the chemically reacted carbon dioxide gas pressure that is triggered by a shape memory alloy wire and a reed switch. The reed switch is also activated by the external magnetic field flux density. The suggested methods were verified by the ex-vivo experiments. The TCE prototype was able to move to the target lesion and inject the ink beneath the mucosa layer safely, thereby leaving a visible tattooed mark for surgical lesion identification. The proposed TCE method can accelerate the development of functionalities as well as tattooing procedures of the WCE in the GI tract.
Collapse
Affiliation(s)
- Manh Cuong Hoang
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Viet Ha Le
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Jayoung Kim
- Medical Microrobot Center, Chonnam National University, Gwangju, South Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Byungjeon Kang
- Medical Microrobot Center, Chonnam National University, Gwangju, South Korea
| | - Jong-Oh Park
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Chang-Sei Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
13
|
Than TD, Alici G, Zhou H, Harvey S, Li W. Enhanced Localization of Robotic Capsule Endoscopes Using Positron Emission Markers and Rigid-Body Transformation. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2019; 49:1270-1284. [DOI: 10.1109/tsmc.2017.2719050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Khalil ISM, Adel A, Mahdy D, Micheal MM, Mansour M, Hamdi N, Misra S. Magnetic localization and control of helical robots for clearing superficial blood clots. APL Bioeng 2019; 3:026104. [PMID: 31531411 PMCID: PMC6735531 DOI: 10.1063/1.5090872] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/03/2019] [Indexed: 11/14/2022] Open
Abstract
This work presents an approach for the localization and control of helical robots during removal of superficial blood clots inside in vitro and ex vivo models. The position of the helical robot is estimated using an array of Hall-effect sensors and precalculated magnetic field map of two synchronized rotating dipole fields. The estimated position is used to implement closed-loop motion control of the helical robot using the rotating dipole fields. We validate the localization accuracy by visual feedback and feature tracking inside the in vitro model. The experimental results show that the magnetic localization of a helical robot with diameter of 1 mm can achieve a mean absolute position error of 2.35 ± 0.4 mm (n = 20). The simultaneous localization and motion control of the helical robot enables propulsion toward a blood clot and clearing at an average removal rate of 0.67 ± 0.47 mm3/min. This method is used to localize the helical robot inside a rabbit aorta (ex vivo model), and the localization accuracy is validated using ultrasound feedback with a mean absolute position error of 2.6 mm.
Collapse
Affiliation(s)
- Islam S M Khalil
- Department of Biomechanical Engineering, University of Twente, Enschede 7500 AE, The Netherlands
| | - Alaa Adel
- Department of Mechatronics Engineering, The German University in Cairo, New Cairo 11835, Egypt
| | - Dalia Mahdy
- Department of Mechatronics Engineering, The German University in Cairo, New Cairo 11835, Egypt
| | - Mina M Micheal
- Department of Mechatronics Engineering, The German University in Cairo, New Cairo 11835, Egypt
| | - Mohanad Mansour
- Department of Mechatronics Engineering, The German University in Cairo, New Cairo 11835, Egypt
| | - Nabila Hamdi
- Department of Pharmacology and Toxicology, The German University in Cairo, New Cairo 11835, Egypt
| | | |
Collapse
|
15
|
Scaglioni B, Previtera L, Martin J, Norton J, Obstein KL, Valdastri P. Explicit Model Predictive Control of a Magnetic Flexible Endoscope. IEEE Robot Autom Lett 2019; 4:716-723. [PMID: 30931392 PMCID: PMC6435294 DOI: 10.1109/lra.2019.2893418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, explicit model predictive control is applied in conjunction with nonlinear optimisation to a magnetically actuated flexible endoscope for the first time. The approach is aimed at computing the motion of the external permanent magnet, given the desired forces and torques. The strategy described here takes advantage of the nonlinear nature of the magnetic actuation and explicitly considers the workspace boundaries, as well as the actuation constraints. Initially, a simplified dynamic model of the tethered capsule, based on the Euler-Lagrange equations is developed. Subsequently, the explicit model predictive control is described and a novel approach for the external magnet positioning, based on a single step, nonlinear optimisation routine, is proposed. Finally, the strategy is implemented on the experimental platform, where bench-top trials are performed on a realistic colon phantom, showing the effectiveness of the technique. The work presented here constitutes an initial exploration for model-based control techniques applied to magnetically manipulated payloads, the techniques described here may be applied to a wide range of devices, including flexible endoscopes and wireless capsules. To our knowledge, this is the first example of advanced closed loop control of magnetic capsules.
Collapse
Affiliation(s)
- Bruno Scaglioni
- Storm Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK,{b.scaglioni,j.norton,p.valdastri}[at]leeds.ac.uk
| | | | - James Martin
- Storm Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK,{b.scaglioni,j.norton,p.valdastri}[at]leeds.ac.uk
| | - Joseph Norton
- Storm Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK,{b.scaglioni,j.norton,p.valdastri}[at]leeds.ac.uk
| | - Keith L Obstein
- Division of Gastroenterology, Vanderbilt University, Nashville TN, USA, keith.obstein[at]vumc.org
| | - Pietro Valdastri
- Storm Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK,{b.scaglioni,j.norton,p.valdastri}[at]leeds.ac.uk
| |
Collapse
|
16
|
Son D, Dong X, Sitti M. A Simultaneous Calibration Method for Magnetic Robot Localization and Actuation Systems. IEEE T ROBOT 2019. [DOI: 10.1109/tro.2018.2885218] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Image Based High-Level Control System Design for Steering and Controlling of an Active Capsule Endoscope. J INTELL ROBOT SYST 2018. [DOI: 10.1007/s10846-018-0956-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Impact of magnetic steering on gastric transit time of a capsule endoscopy (with video). Gastrointest Endosc 2018; 88:746-754. [PMID: 30005825 DOI: 10.1016/j.gie.2018.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS AND AIMS Delayed gastric transit of the capsule may lead to incomplete small bowel examination, reducing the diagnostic yield. Thus, this study was designed to determine if magnetic steering could enhance capsule gastric emptying and mucosal visualization within the duodenum. METHODS The intervention group comprised 100 patients undergoing magnetic-controlled capsule endoscopy between May to September 2017 in whom magnetic control was used to assist transpyloric passage of the capsule and duodenal inspection. A cohort of 100 patients who had undergone the procedure before May 2017 was randomly selected from the database as an historic control group in whom transpyloric movement of the capsule occurred spontaneously (without magnetic assistance). The difference in the pyloric transit time (PTT) and duodenal papilla detection rate (DPDR) between the 2 groups were compared, and related factors were also investigated. RESULTS Transpyloric passage of the capsule under magnetic control was successfully performed in 59 patients (59%). Median PTT was greatly reduced in the intervention group from 58.38 minutes (range, 13.45-87.47) to 4.69 minutes (range, 1.56-55.00; P < .001), and DPDR was also greatly improved with magnetic steering (30.5% vs 9%, P < .001). Magnetic steering, male gender, and higher body mass index were independently associated with reduced gastric transit time and magnetic steering with an enhanced DPDR. CONCLUSIONS Magnetic steering of the capsule can enhance gastric emptying of the capsule and may prove useful in nonobese and female patients who appeared to have longer gastric transit time and achieved a better DPDR than that under the action of peristalsis alone. (Clinical trial registration number: NCT03441945.).
Collapse
|
19
|
Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M. Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
A deep learning based fusion of RGB camera information and magnetic localization information for endoscopic capsule robots. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2017; 1:442-450. [PMID: 29250590 PMCID: PMC5727155 DOI: 10.1007/s41315-017-0039-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
A reliable, real time localization functionality is crutial for actively controlled capsule endoscopy robots, which are an emerging, minimally invasive diagnostic and therapeutic technology for the gastrointestinal (GI) tract. In this study, we extend the success of deep learning approaches from various research fields to the problem of sensor fusion for endoscopic capsule robots. We propose a multi-sensor fusion based localization approach which combines endoscopic camera information and magnetic sensor based localization information. The results performed on real pig stomach dataset show that our method achieves sub-millimeter precision for both translational and rotational movements.
Collapse
|
21
|
Song S, Zhang C, Liu L, Meng MQH. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments. Int J Comput Assist Radiol Surg 2017; 13:241-251. [PMID: 28983750 DOI: 10.1007/s11548-017-1672-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023]
Abstract
PURPOSE Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. METHODS We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. RESULTS Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. CONCLUSION The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
Collapse
Affiliation(s)
- Shuang Song
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Changchun Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Li Liu
- Shenzhen University Health Science Center, Shenzhen, 518055, China.
| | - Max Q-H Meng
- The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
22
|
Kim D, Hwang K, Park J, Park HH, Ahn S. Miniaturization of Implantable Micro-Robot Propulsion Using a Wireless Power Transfer System. MICROMACHINES 2017; 8:mi8090269. [PMID: 30400459 PMCID: PMC6190159 DOI: 10.3390/mi8090269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
This paper presents an efficient coil design for a mm-sized micro-robot which generates a propulsion force and torque and receives electrical energy using a wireless power transfer system. To determine the most efficient coil structures and produce propulsion and torque on the micro-robot, both helical and spiral coil modeling was conducted, and analytical formulations of the propulsion force and torque were derived for helical and spiral coil structures. Additionally, the dominant dimensional factors for determining propulsion and coil torque were analyzed in detail. Based on the results, an optimum coil structure for generating maximum force on the micro-robot was developed and is herein presented with dimensional analysis. Simulations and experiments were also conducted to verify the design, and good agreement was achieved. A 3-mm micro-robot that simultaneously generated a propulsion force and torque and received electrical energy via wireless power transfer was successfully fabricated using the proposed method and verified.
Collapse
Affiliation(s)
- Dongwook Kim
- The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Karam Hwang
- The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Jaehyoung Park
- The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Hyun Ho Park
- Department of Electronic Engineering, the University of Suwon, Hwaseong 18123, Korea.
| | - Seungyoung Ahn
- The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
23
|
Stewart FR, Qiu Y, Lay HS, Newton IP, Cox BF, Al-Rawhani MA, Beeley J, Liu Y, Huang Z, Cumming DRS, Näthke I, Cochran S. Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy. SENSORS 2017; 17:s17071553. [PMID: 28671642 PMCID: PMC5539857 DOI: 10.3390/s17071553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022]
Abstract
Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work.
Collapse
Affiliation(s)
- Fraser R Stewart
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Yongqiang Qiu
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Holly S Lay
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Ian P Newton
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Benjamin F Cox
- School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | | | - James Beeley
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Yangminghao Liu
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK.
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK.
| | - David R S Cumming
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Inke Näthke
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
24
|
Son D, Dogan MD, Sitti M. Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy. 2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) 2017:1132-1139. [DOI: 10.1109/icra.2017.7989135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Umay I, Fidan B, Barshan B. Localization and Tracking of Implantable Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E583. [PMID: 28335384 PMCID: PMC5375869 DOI: 10.3390/s17030583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/20/2023]
Abstract
Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems.
Collapse
Affiliation(s)
- Ilknur Umay
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Barış Fidan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Billur Barshan
- Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara TR-06800, Turkey.
| |
Collapse
|
26
|
Popek KM, Schmid T, Abbott JJ. Six-Degree-of-Freedom Localization of an Untethered Magnetic Capsule Using a Single Rotating Magnetic Dipole. IEEE Robot Autom Lett 2017. [DOI: 10.1109/lra.2016.2608421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Do TN, Ho KY, Phee SJ. A Magnetic Soft Endoscopic Capsule-Inflated Intragastric Balloon for Weight Management. Sci Rep 2016; 6:39486. [PMID: 28000756 PMCID: PMC5175216 DOI: 10.1038/srep39486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
Overweight and obesity have been identified as a cause of high risk diseases like diabetes and cancer. Although conventional Intragastric Balloons (IGBs) have become an efficient and less invasive method for overweight and obesity treatment, the use of conventional tools such as catheter or endoscope to insert and remove the IGBs from the patient's body causes nausea, vomiting, discomfort, and even gastric mucous damage. To eliminate these drawbacks, we develop a novel magnetic soft capsule device with gas-filled balloon inflation. The balloon is made from a thin and biocompatible material that can be inflated to a desired volume using biocompatible effervescent chemicals. In addition, both the outer balloon and inner capsule are designed to be soft and chemical resistance. The soft capsule shell is fabricated using scaffold-solvent approach while the outer balloon utilizes a novel fabrication approach for 3D spherical structure. A prototype of the proposed capsule and balloon is given. Experiments are successfully carried out in stimulated gastric environment and fresh porcine stomach to validate the effectiveness and reliability of the proposed approach.
Collapse
Affiliation(s)
- Thanh Nho Do
- California NanoSystems Institute (CNSI), University of California, Santa Barbara, Room 2810, Elings Hall, Mesa Road, CA, 93106, USA
| | - Khek Yu Ho
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University of Health System, 119260 Singapore
| | - Soo Jay Phee
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
28
|
Son D, Yim S, Sitti M. A 5-D Localization Method for a Magnetically Manipulated Untethered Robot using a 2-D Array of Hall-effect Sensors. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2016; 21:708-716. [PMID: 27458327 PMCID: PMC4957559 DOI: 10.1109/tmech.2015.2488361] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This paper introduces a new five-dimensional localization method for an untethered meso-scale magnetic robot, which is manipulated by a computer-controlled electromagnetic system. The developed magnetic localization setup is a two-dimensional array of mono-axial Hall-effect sensors, which measure the perpendicular magnetic fields at their given positions. We introduce two steps for localizing a magnetic robot more accurately. First, the dipole modeled magnetic field of the electromagnet is subtracted from the measured data in order to determine the robot's magnetic field. Secondly, the subtracted magnetic field is twice differentiated in the perpendicular direction of the array, so that the effect of the electromagnetic field in the localization process is minimized. Five variables regarding the position and orientation of the robot are determined by minimizing the error between the measured magnetic field and the modeled magnetic field in an optimization method. The resulting position error is 2.1±0.8 mm and angular error is 6.7±4.3° within the applicable range (5 cm) of magnetic field sensors at 200 Hz. The proposed localization method would be used for the position feedback control of untethered magnetic devices or robots for medical applications in the future.
Collapse
Affiliation(s)
- Donghoon Son
- Department of Mechanical Engineering, Carnegie Mellon University, PA 15213 USA and Physical Intelligence Department, Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Sehyuk Yim
- Performed this research at Carnegie Mellon University, Pittsburgh, PA 15213 USA. Now, he is with the Robotics and Media Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Metin Sitti
- Department of Mechanical Engineering, Carnegie Mellon University, PA 15213 USA and Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
29
|
Di Natali C, Beccani M, Simaan N, Valdastri P. Jacobian-Based Iterative Method for Magnetic Localization in Robotic Capsule Endoscopy. IEEE T ROBOT 2016; 32:327-338. [PMID: 27087799 PMCID: PMC4826733 DOI: 10.1109/tro.2016.2522433] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study is to validate a Jacobian-based iterative method for real-time localization of magnetically controlled endoscopic capsules. The proposed approach applies finite-element solutions to the magnetic field problem and least-squares interpolations to obtain closed-form and fast estimates of the magnetic field. By defining a closed-form expression for the Jacobian of the magnetic field relative to changes in the capsule pose, we are able to obtain an iterative localization at a faster computational time when compared with prior works, without suffering from the inaccuracies stemming from dipole assumptions. This new algorithm can be used in conjunction with an absolute localization technique that provides initialization values at a slower refresh rate. The proposed approach was assessed via simulation and experimental trials, adopting a wireless capsule equipped with a permanent magnet, six magnetic field sensors, and an inertial measurement unit. The overall refresh rate, including sensor data acquisition and wireless communication was 7 ms, thus enabling closed-loop control strategies for magnetic manipulation running faster than 100 Hz. The average localization error, expressed in cylindrical coordinates was below 7 mm in both the radial and axial components and 5° in the azimuthal component. The average error for the capsule orientation angles, obtained by fusing gyroscope and inclinometer measurements, was below 5°.
Collapse
Affiliation(s)
- Christian Di Natali
- STORM Laboratory Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Marco Beccani
- STORM Laboratory Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Nabil Simaan
- ARMA Laboratory Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Pietro Valdastri
- STORM Laboratory Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
30
|
Rahman I, Patel P, Boger P, Thomson M, Afzal NA. Utilisation of magnets to enhance gastrointestinal endoscopy. World J Gastrointest Endosc 2015; 7:1306-1310. [PMID: 26722611 PMCID: PMC4689792 DOI: 10.4253/wjge.v7.i19.1306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/08/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
Methods to assess, access and treat pathology within the gastrointestinal tract continue to evolve with video endoscopy replacing radiology as the gold standard. Whilst endoscope technology develops further with the advent of newer higher resolution chips, an array of adjuncts has been developed to enhance endoscopy in other ways; most notable is the use of magnets. Magnets are utilised in many areas, ranging from endoscopic training, lesion resection, aiding manoeuvrability of capsule endoscopes, to assisting in easy placement of tubes for nutritional feeding. Some of these are still at an experimental stage, whilst others are being increasingly incorporated in our everyday practice.
Collapse
|
31
|
Slawinski PR, Obstein KL, Valdastri P. Capsule endoscopy of the future: What's on the horizon? World J Gastroenterol 2015; 21:10528-41. [PMID: 26457013 PMCID: PMC4588075 DOI: 10.3748/wjg.v21.i37.10528] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/22/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Capsule endoscopes have evolved from passively moving diagnostic devices to actively moving systems with potential therapeutic capability. In this review, we will discuss the state of the art, define the current shortcomings of capsule endoscopy, and address research areas that aim to overcome said shortcomings. Developments in capsule mobility schemes are emphasized in this text, with magnetic actuation being the most promising endeavor. Research groups are working to integrate sensor data and fuse it with robotic control to outperform today's standard invasive procedures, but in a less intrusive manner. With recent advances in areas such as mobility, drug delivery, and therapeutics, we foresee a translation of interventional capsule technology from the bench-top to the clinical setting within the next 10 years.
Collapse
|
32
|
Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E. Biomedical Applications of Untethered Mobile Milli/Microrobots. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2015; 103:205-224. [PMID: 27746484 PMCID: PMC5063027 DOI: 10.1109/jproc.2014.2385105] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biome dical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications.
Collapse
Affiliation(s)
- Metin Sitti
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany, and also are with Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238 USA
| | - Hakan Ceylan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Wenqi Hu
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Joshua Giltinan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany, and also are with Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238 USA
| | - Mehmet Turan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Sehyuk Yim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Eric Diller
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada
| |
Collapse
|
33
|
Marco B, Ekawahyu S, Christian Di N, Pietro V. SMAC — A Modular Open Source Architecture for Medical Capsule Robots. INT J ADV ROBOT SYST 2014. [DOI: 10.5772/59505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The field of Medical Capsule Robots (MCRs) is gaining momentum in the robotics community, with applications spanning from abdominal surgery to gastrointestinal (GI) endoscopy. MCRs are miniature multifunctional devices usually constrained in both size and on-board power supply. The design process for MCRs is time consuming and resource intensive, as it involves the development of custom hardware and software components. In this work, we present the STORM Lab Modular Architecture for Capsules (SMAC), a modular open source architecture for MCRs aiming to provide the MCRs research community with a tool for shortening the design and development time for capsule robots. The SMAC platform consists of both hardware modules and firmware libraries that can be used for developing MCRs. In particular, the SMAC modules are miniature boards of uniform diameter (i.e., 9.8 mm) that are able to fulfill five different functions: signal coordination combined with wireless data transmission, sensing, actuation, powering and vision/illumination. They are small in size, low power, and have reconfigurable software libraries for the Hardware Abstraction Layer (HAL), which has been proven to work reliably for different types of MCRs. A design template for a generic SMAC application implementing a robust communication protocol is presented in this work, together with its finite state machine abstraction, capturing all the architectural components involved. The reliability of the wireless link is assessed for different levels of data transmission power and separation distances. The current consumption for each SMAC module is quantified and the timing of a SMAC radio message transmission is characterized. Finally, the applicability of SMAC in the field of MCRs is discussed by analysing examples from the literature.
Collapse
Affiliation(s)
- Beccani Marco
- STORM Lab, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Susilo Ekawahyu
- STORM Lab, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Natali Christian Di
- STORM Lab, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Valdastri Pietro
- STORM Lab, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
34
|
Trung Duc Than, Alici G, Harvey S, O'Keefe G, Hao Zhou, Weihua Li, Cook T, Alam-Fotias S. An Effective Localization Method for Robotic Endoscopic Capsules Using Multiple Positron Emission Markers. IEEE T ROBOT 2014. [DOI: 10.1109/tro.2014.2333111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Munoz F, Alici G, Li W, Tan Z, Xiong K, Li Y, Ye Y, Luo ZP, He F, Gong Y. A review of drug delivery systems for capsule endoscopy. Adv Drug Deliv Rev 2014; 71:77-85. [PMID: 24384373 DOI: 10.1016/j.addr.2013.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
The development of a highly controllable drug delivery system (DDS) for capsule endoscopy has become an important field of research due to its promising applications in therapeutic treatment of diseases in the gastrointestinal (GI) tract and drug absorption studies. Several factors need to be considered to establish the minimum requirements for a functional DDS. Environmental factors of the GI tract and also pharmaceutical factors can help determine the requirements to be met by a DDS in an endoscopic capsule. In order to minimize the influence of such factors on the performance of an effective DDS, at least two mechanisms should be incorporated into a capsule endoscope: an anchoring mechanism to control the capsule position and a drug release mechanism to control variables such as the drug release rate, number of doses and amount of drug released. The implementation of such remotely actuated mechanisms is challenging due to several constraints, including the limited space available in a swallowable capsule endoscope and the delicate and complex environment within the GI tract. This paper presents a comprehensive overview of existing DDS. A comparison of such DDS for capsule endoscopy based on the minimum DDS requirements is presented and future work is also discussed.
Collapse
Affiliation(s)
| | | | | | - Zifang Tan
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Ke Xiong
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yan Li
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Ye
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou 510006, China
| | - Zong-Ping Luo
- Orthopaedic Institute, Soochow University, Suzhou 215006, China; Department of Orthopaedics, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fan He
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China; Orthopaedic Institute, Soochow University, Suzhou 215006, China; Department of Orthopaedics, First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Yihong Gong
- School of Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
36
|
Yim S, Gultepe E, Gracias DH, Sitti M. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng 2014; 61:513-21. [PMID: 24108454 PMCID: PMC4023810 DOI: 10.1109/tbme.2013.2283369] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper proposes a new wireless biopsy method where a magnetically actuated untethered soft capsule endoscope carries and releases a large number of thermo-sensitive, untethered microgrippers (μ-grippers) at a desired location inside the stomach and retrieves them after they self-fold and grab tissue samples. We describe the working principles and analytical models for the μ-gripper release and retrieval mechanisms, and evaluate the proposed biopsy method in ex vivo experiments. This hierarchical approach combining the advanced navigation skills of centimeter-scaled untethered magnetic capsule endoscopes with highly parallel, autonomous, submillimeter scale tissue sampling μ-grippers offers a multifunctional strategy for gastrointestinal capsule biopsy.
Collapse
Affiliation(s)
- Sehyuk Yim
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Evin Gultepe
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Metin Sitti
- Department of Mechanical Engineering, Robotics Institute, and Biomedical Engineering, Pittsburgh, PA 15213 USA
| |
Collapse
|
37
|
Yim S, Goyal K, Sitti M. Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2013; 18:1413-1418. [PMID: 25378896 PMCID: PMC4219580 DOI: 10.1109/tmech.2012.2235077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this paper, we present a magnetically actuated multimodal drug release mechanism using a tetherless soft capsule endoscope for the treatment of gastric disease. Because the designed capsule has a drug chamber between both magnetic heads, if it is compressed by the external magnetic field, the capsule could release a drug in a specific position locally. The capsule is designed to release a drug in two modes according to the situation. In the first mode, a small amount of drug is continuously released by a series of pulse type magnetic field (0.01-0.03 T). The experimental results show that the drug release can be controlled by the frequency of the external magnetic pulse. In the second mode, about 800 mm3 of drug is released by the external magnetic field of 0.07 T, which induces a stronger magnetic attraction than the critical force for capsule's collapsing. As a result, a polymeric coating is formed around the capsule. The coated area is dependent on the drug viscosity. This paper presents simulations and various experiments to evaluate the magnetically actuated multimodal drug release capability. The proposed soft capsules could be used as minimally invasive tetherless medical devices with therapeutic capability for the next generation capsule endoscopy.
Collapse
|