1
|
Quan MC, Mai DJ. Biomolecular Actuators for Soft Robots. Chem Rev 2025. [PMID: 40331746 DOI: 10.1021/acs.chemrev.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Biomolecules present promising stimuli-responsive mechanisms to revolutionize soft actuators. Proteins, peptides, and nucleic acids foster specific intermolecular interactions, and their boundless sequence design spaces encode precise actuation capabilities. Drawing inspiration from nature, biomolecular actuators harness existing stimuli-responsive properties to meet the needs of diverse applications. This review features biomolecular actuators that respond to a wide variety of stimuli to drive both user-directed and autonomous actuation. We discuss how advances in biomaterial fabrication accelerate prototyping of precise, custom actuators, and we identify biomolecules with untapped actuation potential. Finally, we highlight opportunities for multifunctional and reconfigurable biomolecules to improve the versatility and sustainability of next-generation soft actuators.
Collapse
Affiliation(s)
- Michelle C Quan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Zhao Z, Yu H, Wu H, Zhang X. Bio-inspired affordance learning for 6-DoF robotic grasping: A transformer-based global feature encoding approach. Neural Netw 2024; 171:332-342. [PMID: 38113718 DOI: 10.1016/j.neunet.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
The 6-Degree-of-Freedom (6-DoF) robotic grasping is a fundamental task in robot manipulation, aimed at detecting graspable points and corresponding parameters in a 3D space, i.e affordance learning, and then a robot executes grasp actions with the detected affordances. Existing research works on affordance learning predominantly focus on learning local features directly for each grid in a voxel scene or each point in a point cloud scene, subsequently filtering the most promising candidate for execution. Contrarily, cognitive models of grasping highlight the significance of global descriptors, such as size, shape, and orientation, in grasping. These global descriptors indicate a grasp path closely tied to actions. Inspired by this, we propose a novel bio-inspired neural network that explicitly incorporates global feature encoding. In particular, our method utilizes a Truncated Signed Distance Function (TSDF) as input, and employs the recently proposed Transformer model to encode the global features of a scene directly. With the effective global representation, we then use deconvolution modules to decode multiple local features to generate graspable candidates. In addition, to integrate global and local features, we propose using a skip-connection module to merge lower-layer global features with higher-layer local features. Our approach, when tested on a recently proposed pile and packed grasping dataset for a decluttering task, surpassed state-of-the-art local feature learning methods by approximately 5% in terms of success and declutter rates. We also evaluated its running time and generalization ability, further demonstrating its superiority. We deployed our model on a Franka Panda robot arm, with real-world results aligning well with simulation data. This underscores our approach's effectiveness for generalization and real-world applications.
Collapse
Affiliation(s)
- Zhenjie Zhao
- College of Computer Science, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China; Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Hang Yu
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Hang Wu
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.
| | - Xuebo Zhang
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Limpabandhu C, Hu Y, Ren H, Song W, Tse ZTH. Actuation technologies for magnetically guided catheters. MINIM INVASIV THER 2023; 32:137-152. [PMID: 37073683 DOI: 10.1080/13645706.2023.2198004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
Due to their wide range of clinical application possibilities, magnetic actuation technologies have grabbed the attention of researchers worldwide. The design, execution, and analysis of magnetic catheter systems have advanced significantly during the last decade. The review focuses on magnetic actuation for catheter steering and control of the device, which will be explored in detail in the following sections. There is a discussion of future work and the challenges of the review systems, and the conclusions are finally addressed.
Collapse
Affiliation(s)
- Chayabhan Limpabandhu
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Yihua Hu
- Department of Electronic Engineering, University of York, York, United Kingdom
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Wenzhan Song
- School of Electrical and Computer Engineering, University of Georgia, GA, USA
| | - Zion Tsz Ho Tse
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Di Natali C, Toxiri S, Ioakeimidis S, Caldwell DG, Ortiz J. Systematic framework for performance evaluation of exoskeleton actuators. WEARABLE TECHNOLOGIES 2020; 1:e4. [PMID: 39050270 PMCID: PMC11265387 DOI: 10.1017/wtc.2020.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 07/27/2024]
Abstract
Wearable devices, such as exoskeletons, are becoming increasingly common and are being used mainly for improving motility and daily life autonomy, rehabilitation purposes, and as industrial aids. There are many variables that must be optimized to create an efficient, smoothly operating device. The selection of a suitable actuator is one of these variables, and the actuators are usually sized after studying the kinematic and dynamic characteristics of the target task, combining information from motion tracking, inverse dynamics, and force plates. While this may be a good method for approximate sizing of actuators, a more detailed approach is necessary to fully understand actuator performance, control algorithms or sensing strategies, and their impact on weight, dynamic performance, energy consumption, complexity, and cost. This work describes a learning-based evaluation method to provide this more detailed analysis of an actuation system for our XoTrunk exoskeleton. The study includes: (a) a real-world experimental setup to gather kinematics and dynamics data; (b) simulation of the actuation system focusing on motor performance and control strategy; (c) experimental validation of the simulation; and (d) testing in real scenarios. This study creates a systematic framework to analyze actuator performance and control algorithms to improve operation in the real scenario by replicating the kinematics and dynamics of the human-robot interaction. Implementation of this approach shows substantial improvement in the task-related performance when applied on a back-support exoskeleton during a walking task.
Collapse
Affiliation(s)
- Christian Di Natali
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Stefano Toxiri
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Darwin G. Caldwell
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jesús Ortiz
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
5
|
Luo J, He W, Yang C. Combined perception, control, and learning for teleoperation: key technologies, applications, and challenges. COGNITIVE COMPUTATION AND SYSTEMS 2020. [DOI: 10.1049/ccs.2020.0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jing Luo
- Key Laboratory of Autonomous Systems and Networked ControlSchool of Automation Science and EngineeringSouth China University of TechnologyGuangzhou510640People's Republic of China
| | - Wei He
- School of Automation and Electrical EngineeringUniversity of Science and Technology BeijingBeijing100083People's Republic of China
| | - Chenguang Yang
- Key Laboratory of Autonomous Systems and Networked ControlSchool of Automation Science and EngineeringSouth China University of TechnologyGuangzhou510640People's Republic of China
| |
Collapse
|
6
|
Garbin N, Doyle P, Smith B, Taylor JG, Khan MH, Khalil Q, Valdastri P. Miniature Pump for Treatment of Refractory Ascites Based on Local Magnetic Actuation. J Med Device 2019. [DOI: 10.1115/1.4042460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This paper presents the design, fabrication, and experimental validation of a novel low-cost implantable pump for the treatment of refractory ascites (RA) based on local magnetic actuation (LMA). A reciprocating positive displacement pump displaces liquid unidirectionally through magnetic coupling with a magnetic controller placed on the outside of the patient's body. The proposed solution is intuitive to use given an alignment algorithm that exploits externally placed magnetic field sensors (MFS). The implantable device has a catheter-like shape, is electronic free (no on-board battery), has low fabrication cost (<8 USD), and is able to generate a flow-rate of 3.65 L/h while effectively pumping fluids with various viscosity (1–5.5 cP). RA is commonly treated via costly paracentesis or invasive surgical placement of a transjugular portosystemic shunt (TIPS). The proposed solution can be implanted with minimally invasive techniques and can be used on a daily basis to drain a set amount of liquid, without requiring recurrent hospital visits.
Collapse
Affiliation(s)
- Nicolo Garbin
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212 e-mail:
| | | | - Byron Smith
- Senior Engineer, Medical Merge LLC, Brentwood, TN 37027 e-mail:
| | | | | | - Qasim Khalil
- Hospital Medicine Consultant, Abu Dhabi, 112412, United Arab Emirates e-mail:
| | - Pietro Valdastri
- Chair in Robotics & Autonomous Systems, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK e-mail:
| |
Collapse
|
7
|
Cohn D, Sloutski A, Elyashiv A, Varma VB, Ramanujan R. In Situ Generated Medical Devices. Adv Healthc Mater 2019; 8:e1801066. [PMID: 30828989 DOI: 10.1002/adhm.201801066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Medical devices play a major role in all areas of modern medicine, largely contributing to the success of clinical procedures and to the health of patients worldwide. They span from simple commodity products such as gauzes and catheters, to highly advanced implants, e.g., heart valves and vascular grafts. In situ generated devices are an important family of devices that are formed at their site of clinical function that have distinct advantages. Among them, since they are formed within the body, they only require minimally invasive procedures, avoiding the pain and risks associated with open surgery. These devices also display enhanced conformability to local tissues and can reach sites that otherwise are inaccessible. This review aims at shedding light on the unique features of in situ generated devices and to underscore leading trends in the field, as they are reflected by key developments recently in the field over the last several years. Since the uniqueness of these devices stems from their in situ generation, the way they are formed is crucial. It is because of this fact that in this review, the medical devices are classified depending on whether their in situ generation entails chemical or physical phenomena.
Collapse
Affiliation(s)
- Daniel Cohn
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Aaron Sloutski
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ariel Elyashiv
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Vijaykumar B. Varma
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Raju Ramanujan
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| |
Collapse
|
8
|
Scaglioni B, Fornarelli N, Garbin N, Menciassi A, Valdastri P. Independent Control of Multiple Degrees of Freedom Local Magnetic Actuators With Magnetic Cross-Coupling Compensation. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2018.2854921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Leong F, Mohammadi A, Tan Y, Thiruchelvam D, Lai CY, Valdastri P, Oetomo D. Disturbance Rejection in Multi-DOF Local Magnetic Actuation for the Robotic Abdominal Surgery. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2018.2800795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Garbin N, Slawinski PR, Aiello G, Karraz C, Valdastri P. Laparoscopic Camera Based on an Orthogonal Magnet Arrangement. IEEE Robot Autom Lett 2016. [DOI: 10.1109/lra.2016.2528303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Leong F, Garbin N, Natali CD, Mohammadi A, Thiruchelvam D, Oetomo D, Valdastri P. Magnetic Surgical Instruments for Robotic Abdominal Surgery. IEEE Rev Biomed Eng 2016; 9:66-78. [PMID: 26829803 DOI: 10.1109/rbme.2016.2521818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review looks at the implementation of magnetic-based approaches in surgical instruments for abdominal surgeries. As abdominal surgical techniques advance toward minimizing surgical trauma, surgical instruments are enhanced to support such an objective through the exploration of magnetic-based systems. With this design approach, surgical devices are given the capabilities to be fully inserted intraabdominally to achieve access to all abdominal quadrants, without the conventional rigid link connection with the external unit. The variety of intraabdominal surgical devices are anchored, guided, and actuated by external units, with power and torque transmitted across the abdominal wall through magnetic linkage. This addresses many constraints encountered by conventional laparoscopic tools, such as loss of triangulation, fulcrum effect, and loss/lack of dexterity for surgical tasks. Design requirements of clinical considerations to aid the successful development of magnetic surgical instruments, are also discussed.
Collapse
|
12
|
Sliker L, Ciuti G, Rentschler M, Menciassi A. Magnetically driven medical devices: a review. Expert Rev Med Devices 2015; 12:737-52. [PMID: 26295303 DOI: 10.1586/17434440.2015.1080120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A widely accepted definition of a medical device is an instrument or apparatus that is used to diagnose, prevent or treat disease. Medical devices take a broad range of forms and utilize various methods to operate, such as physical, mechanical or thermal. Of particular interest in this paper are the medical devices that utilize magnetic field sources to operate. The exploitation of magnetic fields to operate or drive medical devices has become increasingly popular due to interesting characteristics of magnetic fields that are not offered by other phenomena, such as mechanical contact, hydrodynamics and thermodynamics. Today, there is a wide range of magnetically driven medical devices purposed for different anatomical regions of the body. A review of these devices is presented and organized into two groups: permanent magnetically driven devices and electromagnetically driven devices. Within each category, the discussion will be further segregated into anatomical regions (e.g., gastrointestinal, ocular, abdominal, thoracic, etc.).
Collapse
Affiliation(s)
- Levin Sliker
- a 1 Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309-0427, USA
| | - Gastone Ciuti
- b 2 The BioRobotics Institute, Scuola Superiore Sant'Anna , 56025 Pontedera, Pisa, Italy
| | - Mark Rentschler
- a 1 Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309-0427, USA
| | - Arianna Menciassi
- b 2 The BioRobotics Institute, Scuola Superiore Sant'Anna , 56025 Pontedera, Pisa, Italy
| |
Collapse
|