1
|
Park J, Jang S, Park M, Park H, Yoon J, Hwang M. SAM: Semi-Active Mechanism for Extensible Continuum Manipulator and Real-Time Hysteresis Compensation Control Algorithm. Int J Med Robot 2024; 20:e70014. [PMID: 39668568 DOI: 10.1002/rcs.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Cable-driven continuum manipulators (CDCMs) enable scar-free procedures but face limitations in workspace and control accuracy due to hysteresis. METHODS We introduce an extensible CDCM with a semi-active mechanism (SAM) and develop a real-time hysteresis compensation control algorithm using a temporal convolution network (TCN) based on data collected from fiducial markers and RGBD sensing. RESULTS Performance validation shows the proposed controller significantly reduces hysteresis by up to 69.5% in random trajectory tracking test and approximately 26% in the box pointing task. CONCLUSION The SAM mechanism enables access to various lesions without damaging surrounding tissues. The proposed controller with TCN-based compensation effectively predicts hysteresis behaviour and minimises position and joint angle errors in real-time, which has the potential to enhance surgical task performance.
Collapse
Affiliation(s)
- Junhyun Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Seonghyeok Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Myeongbo Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Hyojae Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeonghyeon Yoon
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Minho Hwang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
2
|
Zhou P, Yao J, Zhang S, Wei C, Zhang H, Qi S. A bioinspired fishbone continuum robot with rigid-flexible-soft coupling structure. BIOINSPIRATION & BIOMIMETICS 2022; 17:066012. [PMID: 35998612 DOI: 10.1088/1748-3190/ac8c10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Rigid-flexible-soft coupled robots are an important development direction of robotics, which face many theoretical and technical challenges in their design, manufacture, and modeling. Inspired by fishbones, we propose a novel cable-driven single-backbone continuum robot which has a compact structure, is lightweight, and has high dexterity. In contrast to the existing single-backbone continuum robots, the middle backbone of the continuum robot is serially formed by multiple cross-arranged bioinspired fishbone units. The proposed bioinspired fishbone unit, having good one-dimensional bending properties, is a special rigid-flexible-soft structure mainly made by multi-material 3D printing technology. The unique design and manufacture of the middle backbone provide the continuum robot with excellent constant curvature characteristics and reduce the coupling between different motion dimensions, laying a foundation for the continuum robot to have a more accurate theoretical model as well as regular and controllable deformation. Moreover, we build the forward and inverse kinematics model based on the geometric analysis method, and analyze its workspace. Further, the comparison between the experimental and theoretical results shows that the prediction errors of the kinematics model are within the desired 0.5 mm. Also, we establish the relation between the cable driving force of the bioinspired fishbone unit and its bending angle, which can provide guidance for the optimization of the continuum robot in the future. The application demos prove that the continuum robot has good dexterity and compliance, and can perform tasks such as obstacle crossing locomotion and narrow space transportation. This work provides new ideas for the bioinspired design and high-precision modeling of continuum robots.
Collapse
Affiliation(s)
- Pan Zhou
- Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, 066004,People's Republic of China
| | - Jiantao Yao
- Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, 066004,People's Republic of China
- Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Ministry of Education of China, Qinhuangdao, 066004, People's Republic of China
| | - Shuai Zhang
- Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, 066004,People's Republic of China
| | - Chunjie Wei
- Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, 066004,People's Republic of China
| | - Hongyu Zhang
- Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, 066004,People's Republic of China
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Shupeng Qi
- Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, 066004,People's Republic of China
| |
Collapse
|
3
|
Huang L, Liu B, Zhang L, Yin L. Equilibrium Conformation of a Novel Cable-Driven Snake-Arm Robot under External Loads. MICROMACHINES 2022; 13:mi13071149. [PMID: 35888966 PMCID: PMC9319917 DOI: 10.3390/mi13071149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Based on the anti-parallelogram mechanism, an approximate cylindrical rolling joint is proposed to develop a novel cable-driven snake-arm robot with multiple degrees of freedom (DOF). Furthermore, the kinematics of the cable-driven snake-arm robot are established, and the mapping between actuator space and joint space is simplified by bending decoupling motion in the multiple segments. The workspace and bending configurations of the robot are obtained. The static model is established by the principle of minimum potential energy. Furthermore, the simplified cable constraints in the static model are proposed through Taylor expansion, which facilitates the equilibrium conformation analysis of the robot under different external forces. The cable-driven snake-arm robot prototype is developed to verify the feasibility of the robot design and the availability of the static model through the experiments of the free bending motion and the external load on the robot.
Collapse
Affiliation(s)
- Long Huang
- School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (L.H.); (B.L.)
- Hunan Provincial Key Laboratory of Intelligent Manufacturing Technology for High-Performance Mechanical Equipment, Changsha University of Science and Technology, Changsha 410114, China
| | - Bei Liu
- School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (L.H.); (B.L.)
| | - Leiyu Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100022, China;
| | - Lairong Yin
- School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (L.H.); (B.L.)
- Correspondence:
| |
Collapse
|
4
|
Dupont PE, Simaan N, Choset H, Rucker C. Continuum Robots for Medical Interventions. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:847-870. [PMID: 35756186 PMCID: PMC9231641 DOI: 10.1109/jproc.2022.3141338] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Continuum robots are not constructed with discrete joints but, instead, change shape and position their tip by flexing along their entire length. Their narrow curvilinear shape makes them well suited to passing through body lumens, natural orifices, or small surgical incisions to perform minimally invasive procedures. Modeling and controlling these robots are, however, substantially more complex than traditional robots comprised of rigid links connected by discrete joints. Furthermore, there are many approaches to achieving robot flexure. Each presents its own design and modeling challenges, and to date, each has been pursued largely independently of the others. This article attempts to provide a unified summary of the state of the art of continuum robot architectures with respect to design for specific clinical applications. It also describes a unifying framework for modeling and controlling these systems while additionally explaining the elements unique to each architecture. The major research accomplishments are described for each topic and directions for the future progress needed to achieve widespread clinical use are identified.
Collapse
Affiliation(s)
- Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Nabil Simaan
- Department of Mechanical Engineering, the Department of Computer Science, and the Department of Otolaryngology, Vanderbilt University, Nashville, TN 37235 USA
| | - Howie Choset
- Mechanical Engineering Department, the Biomedical Engineering Department, and the Robotics Institute, Carnegie Mellon, Pittsburgh, PA 15213 USA
| | - Caleb Rucker
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
5
|
Lin B, Wang J, Song S, Li B, Meng MQH. A Modular Lockable Mechanism for Tendon-Driven Robots: Design, Modeling and Characterization. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3142907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Hyper-Redundant Manipulator Capable of Adjusting Its Non-Uniform Curvature with Discrete Stiffness Distribution. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hyper-redundant manipulators are widely used in minimally invasive surgery because they can navigate through narrow passages in passive compliance with the human body. Although their stability and dexterity have been significantly improved over the years, we need manipulators that can bend with appropriate curvatures and adapt to complex environments. This paper proposes a design principle for a manipulator capable of adjusting its non-uniform curvature and predicting the bending shape. Rigid segments were serially stacked, and elastic fixtures in the form of flat springs were arranged between hinged-slide joint segments. A manipulator with a diameter of 4.5 mm and a length of 28 mm had been fabricated. A model was established to predict the bending shape through minimum potential energy theory, kinematics, and measured stiffnesses of the flat springs. A comparison of the simulation and experimental results indicated an average position error of 3.82% of the endpoints when compared to the total length. With this modification, the manipulator is expected to be widely used in various fields such as small endoscope systems and single-port robot systems.
Collapse
|
7
|
Liu Z, Zhang X, Cai Z, Peng H, Wu Z. Real-Time Dynamics of Cable-Driven Continuum Robots Considering the Cable Constraint and Friction Effect. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3086413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Abstract
Compliant continuum robots (CCRs) have slender and elastic bodies. Compared with a traditional serial robot, they have more degrees of freedom and can deform their flexible bodies to go through a constrained environment. In this paper, we classify CCRs according to basic transmission units. The merits, materials and potential drawbacks of each type of CCR are described. Drive systems depend on the basic transmission units significantly, and their advantages and disadvantages are reviewed and summarized. Variable stiffness and intrinsic sensing are desired characteristics of CCRs, and the methods of obtaining the two characteristics are discussed. Finally, we discuss the friction, buckling, singularity and twisting problems of CCRs, and emphasise the ways to reduce their effects, followed by several proposing perspectives, such as the collaborative CCRs.
Collapse
|
9
|
Chen Y, Wu B, Jin J, Xu K. A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3058925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Rao P, Peyron Q, Lilge S, Burgner-Kahrs J. How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance. Front Robot AI 2021; 7:630245. [PMID: 33604355 PMCID: PMC7885639 DOI: 10.3389/frobt.2020.630245] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022] Open
Abstract
Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results.
Collapse
Affiliation(s)
- Priyanka Rao
- Continuum Robotics Laboratory, Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Quentin Peyron
- Continuum Robotics Laboratory, Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Sven Lilge
- Continuum Robotics Laboratory, Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Jessica Burgner-Kahrs
- Continuum Robotics Laboratory, Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
11
|
Lu J, Du F, Yang F, Zhang T, Lei Y, Wang J. Kinematic modeling of a class of n-tendon continuum manipulators. Adv Robot 2020. [DOI: 10.1080/01691864.2020.1812427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jiajia Lu
- School of Mechanical Engineering, Shandong University, Jinan, People’s Republic of China
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education Shandong University, Jinan, People’s Republic of China
| | - Fuxin Du
- School of Mechanical Engineering, Shandong University, Jinan, People’s Republic of China
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education Shandong University, Jinan, People’s Republic of China
| | - Fuchun Yang
- School of Mechanical Engineering, Shandong University, Jinan, People’s Republic of China
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education Shandong University, Jinan, People’s Republic of China
| | - Tao Zhang
- School of Mechanical Engineering, Shandong University, Jinan, People’s Republic of China
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education Shandong University, Jinan, People’s Republic of China
| | - Yanqiang Lei
- School of Control Science and Engineering, Shandong University, Jinan, People’s Republic of China
| | - Jianjun Wang
- School of Mechanical Engineering, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
12
|
Jolaei M, Hooshiar A, Dargahi J, Packirisamy M. Toward Task Autonomy in Robotic Cardiac Ablation: Learning-Based Kinematic Control of Soft Tendon-Driven Catheters. Soft Robot 2020; 8:340-351. [PMID: 32678722 DOI: 10.1089/soro.2020.0006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The goal of this study was to propose and validate a control framework with level-2 autonomy (task autonomy) for the control of flexible ablation catheters. To this end, a kinematic model for the flexible portion of typical ablation catheters was developed and a 40-mm-long spring-loaded flexible catheter was fabricated. The feasible space of the catheter was obtained experimentally. Furthermore, a robotic catheter intervention system was prototyped for controlling the length of the catheter tendons. The proposed control framework used a support vector machine classifier to determine the tendons to be driven, and a fully connected neural network regressor to determine the length of the tendons. The classifier and regressors were trained with the data from the feasible space. The control system was implemented in parallel at user-interface and firmware and exhibited a 0.4-s lag in following the input. The validation studies were four trajectory tracking and four target reaching experiments. The system was capable of tracking trajectories with an error of 0.49 ± 0.32 and 0.62 ± 0.36 mm in slow and fast trajectories, respectively. Also, it exhibited submillimeter accuracy in reaching three preplanned targets and ruling out one nonfeasible target autonomously. The results showed improved accuracy and repeatability of the position control compared with the recent literature. The proposed learning-based approach could be used in enabling task autonomy for catheter-based ablation therapies.
Collapse
Affiliation(s)
- Mohammad Jolaei
- Robotic Surgery Laboratory and Mechanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, Canada.,Optical Bio-microsystems Laboratory, Mechanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, Canada
| | - Amir Hooshiar
- Robotic Surgery Laboratory and Mechanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, Canada
| | - Javad Dargahi
- Robotic Surgery Laboratory and Mechanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, Canada
| | - Muthukumaran Packirisamy
- Optical Bio-microsystems Laboratory, Mechanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, Canada
| |
Collapse
|
13
|
Kim Y, Parada GA, Liu S, Zhao X. Ferromagnetic soft continuum robots. Sci Robot 2019; 4:4/33/eaax7329. [DOI: 10.1126/scirobotics.aax7329] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
Abstract
Small-scale soft continuum robots capable of active steering and navigation in a remotely controllable manner hold great promise in diverse areas, particularly in medical applications. Existing continuum robots, however, are often limited to millimeter or centimeter scales due to miniaturization challenges inherent in conventional actuation mechanisms, such as pulling mechanical wires, inflating pneumatic or hydraulic chambers, or embedding rigid magnets for manipulation. In addition, the friction experienced by the continuum robots during navigation poses another challenge for their applications. Here, we present a submillimeter-scale, self-lubricating soft continuum robot with omnidirectional steering and navigating capabilities based on magnetic actuation, which are enabled by programming ferromagnetic domains in its soft body while growing hydrogel skin on its surface. The robot’s body, composed of a homogeneous continuum of a soft polymer matrix with uniformly dispersed ferromagnetic microparticles, can be miniaturized below a few hundreds of micrometers in diameter, and the hydrogel skin reduces the friction by more than 10 times. We demonstrate the capability of navigating through complex and constrained environments, such as a tortuous cerebrovascular phantom with multiple aneurysms. We further demonstrate additional functionalities, such as steerable laser delivery through a functional core incorporated in the robot’s body. Given their compact, self-contained actuation and intuitive manipulation, our ferromagnetic soft continuum robots may open avenues to minimally invasive robotic surgery for previously inaccessible lesions, thereby addressing challenges and unmet needs in healthcare.
Collapse
|
14
|
Design and Kinematic Control of the Cable-Driven Hyper-Redundant Manipulator for Potential Underwater Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Underwater manipulators are important robotic tools in the exploration of the ocean environment. Up to now, most existing underwater manipulators are rigid and with fixed 5 or 7 degrees of freedom (DOF), which may not be very suitable for some complicated underwater scenarios (e.g., pipe networks, narrow deep cavities, etc.). The biomimetic concept of muscles and tendons is also considered as continuum manipulators, but load capacity and operation accuracy are their essential drawbacks and thus limit their practical applications. Recently, the cable-driven technique has been developed for manipulators, which can include numerous joints and hyper-redundant DOF to execute tasks with dexterity and adaptability and thus they have strong potential for these complex underwater applications. In this paper, the design of a novel cable-driven hyper-redundant manipulator (CDHRM) is introduced, which is driven by multiple cables passing through the tubular structure from the base to the end-effector, and the joint numbers can be extended and decided by the specific underwater task requirements. The kinematic analysis of the proposed CDHRM is given which includes two parts: the cable-joint kinematics and the joint-end kinematics. The geometric relationship between the cable length and the joint angles are derived via the established geometric model for the cable-joint kinematics, and the projection relationship between the joint angles and end-effector’s pose is established via the spatial coordinate transformation matrix for the joint-end kinematics. Thus, the complex mapping relationships among the cables, joints and end-effectors are clearly achieved. To implement precise control, the kinematic control scheme is developed for the CDHRM with series-parallel connections and hyper-redundancy to achieve good tracking performance. The experiment on a real CDHRM system with five joints is carried out and the results verify the accuracy of kinematics solution, and the effectiveness of the proposed control design. Particularly, three experiments are tested in the underwater environment, which verifies its good tracking performance, load carrying and grasping capacity.
Collapse
|