1
|
Yang Y, Yuan T, Rodriguez Y Baena F, Dini D, Zhan W. Effect of infusion direction on convection-enhanced drug delivery to anisotropic tissue. J R Soc Interface 2024; 21:20240378. [PMID: 39353562 PMCID: PMC11444765 DOI: 10.1098/rsif.2024.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Convection-enhanced delivery (CED) can effectively overcome the blood-brain barrier by infusing drugs directly into diseased sites in the brain using a catheter, but its clinical performance still needs to be improved. This is strongly related to the highly anisotropic characteristics of brain white matter, which results in difficulties in controlling drug transport and distribution in space. In this study, the potential to improve the delivery of six drugs by adjusting the placement of the infusion catheter is examined using a mathematical model and accurate numerical simulations that account simultaneously for the interstitial fluid (ISF) flow and drug transport processes in CED. The results demonstrate the ability of this direct infusion to enhance ISF flow and therefore facilitate drug transport. However, this enhancement is highly anisotropic, subject to the orientation of local axon bundles and is limited within a small region close to the infusion site. Drugs respond in different ways to infusion direction: the results of our simulations show that while some drugs are almost insensitive to infusion direction, this strongly affects other compounds in terms of isotropy of drug distribution from the catheter. These findings can serve as a reference for planning treatments using CED.
Collapse
Affiliation(s)
- Yi Yang
- School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London, UK
| | | | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Lezcano DA, Iordachita II, Kim JS. FBG-based Shape-Sensing to Enable Lateral Deflection Methods of Autonomous Needle Insertion. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2024; 2024:6977-6982. [PMID: 39780952 PMCID: PMC11709456 DOI: 10.1109/iros58592.2024.10801886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In diagnosing and treating prostate cancer the flexible bevel tip needle insertion surgical technique is commonly used. Bevel tip needles experience asymmetric loading on the needle's tip, inducing natural bending of the needle and enabling control mechanisms for precise placement of the needle during surgery. Several methods leverage the needles natural bending to provide autonomous control of needle insertion for accurate needle placement in an effort to reduce excess tissue damage and improve patient outcomes from needle insertion intraventions. Moreover, control methods using lateral deflection of the needle intra-operatively to steer the needle during insertion have been studied and have shown promising results. Thus, to enable these autonomous control methods, real-time, intra-operative shape-sensing feedback is pivotal for optimal performance of the needle insertion control. This work presents an extension of our proven Lie-group theoretic shape-sensing model to handle lateral deflection of the needle during needle insertion and validate this extension with robotic needle insertions in phantom tissue using stereo vision as a ground truth. Furthermore, the system configuration for real-time shape-sensing is implemented using ROS 2, demonstrating average feedback frequency of 15 ± 8 Hz. Average needle shape errors realized from this extension under 1 mm, validating the shape-sensing models' extension.
Collapse
Affiliation(s)
- Dimitri A Lezcano
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Iulian I Iordachita
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Seob Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Yuan T, Zhan W, Terzano M, Holzapfel GA, Dini D. A comprehensive review on modeling aspects of infusion-based drug delivery in the brain. Acta Biomater 2024; 185:1-23. [PMID: 39032668 DOI: 10.1016/j.actbio.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Brain disorders represent an ever-increasing health challenge worldwide. While conventional drug therapies are less effective due to the presence of the blood-brain barrier, infusion-based methods of drug delivery to the brain represent a promising option. Since these methods are mechanically controlled and involve multiple physical phases ranging from the neural and molecular scales to the brain scale, highly efficient and precise delivery procedures can significantly benefit from a comprehensive understanding of drug-brain and device-brain interactions. Behind these interactions are principles of biophysics and biomechanics that can be described and captured using mathematical models. Although biomechanics and biophysics have received considerable attention, a comprehensive mechanistic model for modeling infusion-based drug delivery in the brain has yet to be developed. Therefore, this article reviews the state-of-the-art mechanistic studies that can support the development of next-generation models for infusion-based brain drug delivery from the perspective of fluid mechanics, solid mechanics, and mathematical modeling. The supporting techniques and database are also summarized to provide further insights. Finally, the challenges are highlighted and perspectives on future research directions are provided. STATEMENT OF SIGNIFICANCE: Despite the immense potential of infusion-based drug delivery methods for bypassing the blood-brain barrier and efficiently delivering drugs to the brain, achieving optimal drug distribution remains a significant challenge. This is primarily due to our limited understanding of the complex interactions between drugs and the brain that are governed by principles of biophysics and biomechanics, and can be described using mathematical models. This article provides a comprehensive review of state-of-the-art mechanistic studies that can help to unravel the mechanism of drug transport in the brain across the scales, which underpins the development of next-generation models for infusion-based brain drug delivery. More broadly, this review will serve as a starting point for developing more effective treatments for brain diseases and mechanistic models that can be used to study other soft tissue and biomaterials.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK.
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Duan Y, Ling J, Feng Z, Ye T, Sun T, Zhu Y. A Survey of Needle Steering Approaches in Minimally Invasive Surgery. Ann Biomed Eng 2024; 52:1492-1517. [PMID: 38530535 DOI: 10.1007/s10439-024-03494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
In virtue of a curved insertion path inside tissues, needle steering techniques have revealed the potential with the assistance of medical robots and images. The superiority of this technique has been preliminarily verified with several maneuvers: target realignment, obstacle circumvention, and multi-target access. However, the momentum of needle steering approaches in the past decade leads to an open question-"How to choose an applicable needle steering approach for a specific clinical application?" This survey discusses this question in terms of design choices and clinical considerations, respectively. In view of design choices, this survey proposes a hierarchical taxonomy of current needle steering approaches. Needle steering approaches of different manipulations and designs are classified to systematically review the design choices and their influences on clinical treatments. In view of clinical consideration, this survey discusses the steerability and acceptability of the current needle steering approaches. On this basis, the pros and cons of the current needle steering approaches are weighed and their suitable applications are summarized. At last, this survey concluded with an outlook of the needle steering techniques, including the potential clinical applications and future developments in mechanical design.
Collapse
Affiliation(s)
- Yuzhou Duan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jie Ling
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhao Feng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Tingting Ye
- Industrial and Systems Engineering Department, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Tairen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuchuan Zhu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
5
|
Zhao YJ, Jin YX, Wen C, Zhang YD, Zhang H. A mechanics-based model for predicting flexible needle bending with large curvature in soft tissue. Med Eng Phys 2024; 126:104156. [PMID: 38621852 DOI: 10.1016/j.medengphy.2024.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/17/2024]
Abstract
Percutaneous insertion is one of the most common minimally invasive procedures. Compared with traditional straight rigid needles, bevel-tipped flexible needle can generate curved trajectories to avoid obstacles and sensitive organs. However, the nonlinear large deflection problem challenges the bending prediction of the needle, which dramatically influences the surgical success rate. This paper analyzed the mechanism of needle-tissue interaction, and established a mechanics-based model of the needle bending during an insertion. And then, a discretization of the bending model was adopted to accurately predict the large bending of the needle in soft tissue. Insertion experiments were conducted to validate the bending prediction model. The results showed that the large needle bending was predicted with the mean/RMSE/maximumu error of 0.42 mm / 0.26 mm / 1.08 mm, which was clinically acceptable. This proved the rationality and accuracy of the proposed model.
Collapse
Affiliation(s)
- Yan-Jiang Zhao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China.
| | - Ye-Xin Jin
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Chao Wen
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China; College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
| | - Yong-De Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - He Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| |
Collapse
|
6
|
Muzzammil HM, Zhang YD, Ejaz H, Yuan Q, Muddassir M. A review on tissue-needle interaction and path planning models for bevel tip type flexible needle minimal intervention. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:523-561. [PMID: 38303433 DOI: 10.3934/mbe.2024023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A flexible needle has emerged as a crucial clinical technique in contemporary medical practices, particularly for minimally invasive interventions. Its applicability spans diverse surgical domains such as brachytherapy, cardiovascular surgery, neurosurgery and others. Notably, flexible needles find utility in biopsies requiring deep skin penetration to access infected areas. Despite its minimally invasive advantages, the precise guidance of the needle to its intended target, while avoiding damage to bones, blood vessels, organs and tissues, remains a significant challenge for researchers. Consequently, extensive research has been dedicated to enhancing the steering and accuracy of flexible needles. Here, we aim to elucidate the recent advancements, trends and perspectives in flexible needle steering models and path planning over the last 15 years. The discussed models encompass various types, including symmetric-tip needles, curved-tip needles, tendon-actuated needles, programmable needles and the innovative fracture-directed waterjet needles. Moreover, the paper offers a comprehensive analysis, comparing the trajectories followed by these needle models to attain the desired target with minimal tissue damage. By delving into these aspects, the paper contributes to a deeper understanding of the current landscape of flexible needle technology and guides future research directions in this dynamic field.
Collapse
Affiliation(s)
- Hafiz Muhammad Muzzammil
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Harbin University of Science and Technology, Harbin 150080, China
- Department of Mechanical and Aerospace Engineering, Air University, E-9, Islamabad, Pakistan
| | - Yong-De Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Hassan Ejaz
- Department of Mechanical and Aerospace Engineering, Air University, E-9, Islamabad, Pakistan
| | - Qihang Yuan
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Harbin University of Science and Technology, Harbin 150080, China
| | - Muhammad Muddassir
- Department of Mechanical and Aerospace Engineering, Air University, E-9, Islamabad, Pakistan
| |
Collapse
|
7
|
Wen R, Wang Z, Yi J, Hu Y. Bending-activated biotensegrity structure enables female Megarhyssa to cross the barrier of Euler's critical force. SCIENCE ADVANCES 2023; 9:eadi8284. [PMID: 37851796 PMCID: PMC10584334 DOI: 10.1126/sciadv.adi8284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
The parasitic female Megarhyssa has a hair-like ovipositor capable of withstanding a penetration force 10 times greater than Euler's critical force, using a reciprocating penetration method. Understanding and replicating this penetration mechanism may notably broaden the application scenarios of artificial slender elements. Here, we show that the Megarhyssa's stretched intersegmental membrane and precurved abdomen activate the multipart ovipositor as a biotensegrity structure. The ovipositor's first and second valvulae alternately retract and protract, with each retracted valvula forming a tension network to support the other under compression, resulting in an exponentially increased critical force. We validated this mechanism in a multipart flexible microneedle that withstood a penetration force of 2.5× Euler's critical force and in a lightweight industrial robot that achieved intrinsic safety through its ideal dual-stiffness characteristic. This finding could potentially elucidate the high efficiency of insect probes and inspire more efficient and safer engineering designs.
Collapse
Affiliation(s)
- Rongwei Wen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 000000, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 000000, China
- Department of Computer Science, The University of Hong Kong, Hong Kong 000000, China
| | - Zheng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Juan Yi
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 000000, China
- Orthopedics Center, The University of Hong Kong–Shenzhen Hospital, Shenzhen 518048, China
| |
Collapse
|
8
|
Aktas A, Demircali AA, Secoli R, Temelkuran B, Rodriguez Y Baena F. Towards a Procedure-Optimised Steerable Catheter for Deep-Seated Neurosurgery. Biomedicines 2023; 11:2008. [PMID: 37509647 PMCID: PMC10377471 DOI: 10.3390/biomedicines11072008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the ovine model with a 2.5 mm PBN prototype. However, further size reductions are necessary for other diagnostic and therapeutic procedures and drug delivery operations involving deep-seated tissue structures. Since PBNs have a complex cross-section geometry, standard production methods, such as extrusion, fail, as the outer diameter is reduced further. This paper presents our first attempt to demonstrate a new manufacturing method for PBNs that employs thermal drawing technology. Experimental characterisation tests were performed for the 2.5 mm PBN and the new 1.3 mm thermally drawn (TD) PBN prototype described here. The results show that thermal drawing presents a significant advantage in miniaturising complex needle structures. However, the steering behaviour was affected due to the choice of material in this first attempt, a limitation which will be addressed in future work.
Collapse
Affiliation(s)
- Ayhan Aktas
- Mechatronics in Medicine Laboratory, Hamlyn Center, Imperial College London, London SW7 2AZ, UK
| | - Ali Anil Demircali
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Riccardo Secoli
- Mechatronics in Medicine Laboratory, Hamlyn Center, Imperial College London, London SW7 2AZ, UK
| | - Burak Temelkuran
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
9
|
Robotic needle steering: state-of-the-art and research challenges. INTEL SERV ROBOT 2022. [DOI: 10.1007/s11370-022-00446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Donder A, Baena FRY. Kalman-Filter-Based, Dynamic 3-D Shape Reconstruction for Steerable Needles With Fiber Bragg Gratings in Multicore Fibers. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3125853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdulhamit Donder
- Mechatronics in Medicine Laboratory, Department of Mechanical Engineering, Imperial College London, London, U.K
| | | |
Collapse
|
11
|
Robust Deflected Path Planning Method for Superelastic Nitinol Coaxial Biopsy Needle: Application to an Automated Magnetic Resonance Image-Guided Breast Biopsy Robot. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3132837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Zhao YJ, Wen C, Zhang YD, Zhang H. Needle Tip Pose Estimation for Ultrasound- Guided Steerable Flexible Needle with a Complicated Trajectory in Soft Tissue. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3196465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan-Jiang Zhao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China
| | - Chao Wen
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China
| | - Yong-De Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China
| | - He Zhang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, China
| |
Collapse
|
13
|
Pinzi M, Watts T, Secoli R, Galvan S, Baena FRY. Path Replanning for Orientation-Constrained Needle Steering. IEEE Trans Biomed Eng 2021; 68:1459-1466. [PMID: 33606622 DOI: 10.1109/tbme.2021.3060470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Needle-based neurosurgical procedures require high accuracy in catheter positioning to achieve high clinical efficacy. Significant challenges for achieving accurate targeting are (i) tissue deformation (ii) clinical obstacles along the insertion path (iii) catheter control. OBJECTIVE We propose a novel path-replanner able to generate an obstacle-free and curvature bounded three-dimensional (3D) path at each time step during insertion, accounting for a constrained target pose and intraoperative anatomical deformation. Additionally, our solution is sufficiently fast to be used in a closed-loop system: needle tip tracking via electromagnetic sensors is used by the path-replanner to automatically guide the programmable bevel-tip needle (PBN) while surgical constraints on sensitive structures avoidance are met. METHODS The generated path is achieved by combining the "Bubble Bending" method for online path deformation and a 3D extension of a convex optimisation method for path smoothing. RESULTS Simulation results performed on a realistic dataset show that our replanning method can guide a PBN with bounded curvature to a predefined target pose with an average targeting error of 0.65 ± 0.46 mm in position and 3.25 ± 5.23 degrees in orientation under a deformable simulated environment. The proposed algorithm was also assessed in-vitro on a brain-like gelatin phantom, achieving a target error of 1.81 ± 0.51 mm in position and 5.9 ± 1.42 degrees in orientation. CONCLUSION The presented work assessed the performance of a new online steerable needle path-planner able to avoid anatomical obstacles while optimizing surgical criteria. SIGNIFICANCE This method is particularly suited for surgical procedures demanding high accuracy on the desired goal pose under tissue deformations and real-world inaccuracies.
Collapse
|
14
|
Pinzi M, Vakharia VN, Hwang BY, Anderson WS, Duncan JS, Baena FRY. Computer Assisted Planning for Curved Laser Interstitial Thermal Therapy. IEEE Trans Biomed Eng 2021; 68:2957-2964. [PMID: 33534700 DOI: 10.1109/tbme.2021.3056749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Laser interstitial thermal therapy (LiTT) is a minimally invasive alternative to conventional open surgery for drug-resistant focal mesial temporal lobe epilepsy (MTLE). Recent studies suggest that higher seizure freedom rates are correlated with maximal ablation of the mesial hippocampal head, whilst sparing of the parahippocampal gyrus (PHG) may reduce neuropsychological sequelae. Current commercially available laser catheters are inserted following manually planned straight-line trajectories, which cannot conform to curved brain structures, such as the hippocampus, without causing collateral damage or requiring multiple insertions. The clinical feasibility and potential of curved LiTT trajectories through steerable needles has yet to be investigated. This is the focus of our work. We propose a GPU-accelerated computer-assisted planning (CAP) algorithm for steerable needle insertions that generates optimized curved 3D trajectories with maximal ablation of the amygdalohippocampal complex and minimal collateral damage to nearby structures, while accounting for a variable ablation diameter ( 5-15mm). Simulated trajectories and ablations were performed on 5 patients with mesial temporal sclerosis (MTS), which were identified from a prospectively managed database. The algorithm generated obstacle-free paths with significantly greater target area ablation coverage and lower PHG ablation variance compared to straight line trajectories. The presented CAP algorithm returns increased ablation of the amygdalohippocampal complex, with lower patient risk scores compared to straight-line trajectories. This is the first clinical application of preoperative planning for steerable needle based LiTT. This study suggests that steerable needles have the potential to improve LiTT procedure efficacy whilst improving the safety and should thus be investigated further.
Collapse
|
15
|
Shin HG, Park I, Kim K, Kim HK, Chung WK. Corneal Suturing Robot Capable of Producing Sutures With Desired Shape for Corneal Transplantation Surgery. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2020.3031885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Biologically Inspired Surgical Needle Steering: Technology and Application of the Programmable Bevel-Tip Needle. Biomimetics (Basel) 2020; 5:biomimetics5040068. [PMID: 33339448 PMCID: PMC7768529 DOI: 10.3390/biomimetics5040068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022] Open
Abstract
Percutaneous interventions via minimally invasive surgical systems can provide patients with better outcomes and faster recovery times than open surgeries. Accurate needle insertions are vital for successful procedures, and actively steered needles can increase system precision. Here, we describe how biology inspired the design of a novel Programmable Bevel-Tip Needle (PBN), mimicking the mechanics and control methods of certain insects ovipositors. Following an overview of our unique research and development journey, this paper explores our latest, biomimetic control of PBNs and its application to neurosurgery, which we validate within a simulated environment. Three modalities are presented, namely a Direct Push Controller, a Cyclic Actuation Controller, and a newly developed Hybrid Controller, which have been integrated into a surgical visual interface. The results of open loop, expert human-in-the-loop and a non-expert user study show that the Hybrid Controller is the best choice when considering system performance and the ability to lesson strain on the surrounding tissue which we hypothesis will result in less damage along the insertion tract. Over representative trajectories for neurosurgery using a Hybrid Controller, an expert user could reach a target along a 3D path with an accuracy of 0.70±0.69 mm, and non-expert users 0.97±0.72 mm, both clinically viable results and equivalent or better than the state-of-the-art actively steered needles over 3D paths. This paper showcases a successful example of a biologically inspired, actively steered needle, which has been integrated within a clinical interface and designed for seamless integration into the neurosurgical workflow.
Collapse
|
17
|
Favaro A, Secoli R, Baena FRY, Momi ED. Model-Based Robust Pose Estimation for a Multi-Segment, Programmable Bevel-Tip Steerable Needle. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.3018406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Terzano M, Dini D, Rodriguez Y Baena F, Spagnoli A, Oldfield M. An adaptive finite element model for steerable needles. Biomech Model Mechanobiol 2020; 19:1809-1825. [PMID: 32152795 PMCID: PMC7502456 DOI: 10.1007/s10237-020-01310-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/17/2020] [Indexed: 11/28/2022]
Abstract
Penetration of a flexible and steerable needle into a soft target material is a complex problem to be modelled, involving several mechanical challenges. In the present paper, an adaptive finite element algorithm is developed to simulate the penetration of a steerable needle in brain-like gelatine material, where the penetration path is not predetermined. The geometry of the needle tip induces asymmetric tractions along the tool–substrate frictional interfaces, generating a bending action on the needle in addition to combined normal and shear loading in the region where fracture takes place during penetration. The fracture process is described by a cohesive zone model, and the direction of crack propagation is determined by the distribution of strain energy density in the tissue surrounding the tip. Simulation results of deep needle penetration for a programmable bevel-tip needle design, where steering can be controlled by changing the offset between interlocked needle segments, are mainly discussed in terms of penetration force versus displacement along with a detailed description of the needle tip trajectories. It is shown that such results are strongly dependent on the relative stiffness of needle and tissue and on the tip offset. The simulated relationship between programmable bevel offset and needle curvature is found to be approximately linear, confirming empirical results derived experimentally in a previous work. The proposed model enables a detailed analysis of the tool–tissue interactions during needle penetration, providing a reliable means to optimise the design of surgical catheters and aid pre-operative planning.
Collapse
Affiliation(s)
- Michele Terzano
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | - Andrea Spagnoli
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Matthew Oldfield
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
19
|
Influence of a Biocompatible Hydrophilic Needle Surface Coating on a Puncture Biopsy Process for Biomedical Applications. COATINGS 2020. [DOI: 10.3390/coatings10020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A puncture biopsy is a widely used, minimally invasive surgery process. During the needle insertion process, the needle body is always in direct contact with a biological soft tissue. Tissue adhesion and different degrees of tissue damage occur frequently. Optimization of the needle surface, and especially the lubrication of the needle surface, can deal with these problems efficiently. Therefore, in this paper, a biocompatible hydrophilic coating was applied onto the surface of a needle to improve the surface quality of the needle surface. Further, a simplified finite element model of insertion was established, and extracorporeal insertion experiments were used to verify the accuracy of the model. Then, by analyzing a simulation model of a coated needle and a conventional needle, the influence of the application of the coated needle on the insertion process was obtained. It can be seen from the results that the coating application relieved the force on the needle and the soft tissue during the insertion process and could significantly reduce friction during the insertion process. At the same time, the deformation of biological soft tissue was reduced, and the adhesion situation between the needle and tissue improved, which optimized the puncture needle.
Collapse
|
20
|
Zhan W, Rodriguez Y Baena F, Dini D. Effect of tissue permeability and drug diffusion anisotropy on convection-enhanced delivery. Drug Deliv 2020; 26:773-781. [PMID: 31357890 PMCID: PMC6711026 DOI: 10.1080/10717544.2019.1639844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although convection-enhanced delivery (CED) can successfully facilitate a bypass of the blood brain barrier, its treatment efficacy remains highly limited in clinic. This can be partially attributed to the brain anisotropic characteristics that lead to the difficulties in controlling the drug spatial distribution. Here, the responses of six different drugs to the tissue anisotropy are examined through a parametric study performed using a multiphysics model, which considers interstitial fluid flow, tissue deformation and interlinked drug transport processes in CED. The delivery outcomes are evaluated in terms of the penetration depth and delivery volume for effective therapy. Simulation results demonstrate that the effective penetration depth in a given direction can be improved with the increase of the corresponding component of anisotropic characteristics. The anisotropic tissue permeability could only reshape the drug distribution in space but has limited contribution to the total effective delivery volume. On the other hand, drugs respond in different ways to the anisotropic diffusivity. The large delivery volumes of fluorouracil, carmustine, cisplatin and doxorubicin could be achieved in relatively isotropic tissue, while paclitaxel and methotrexate are able to cover enlarged regions into anisotropic tissues. Results obtained from this study serve as a guide for the design of CED treatments.
Collapse
Affiliation(s)
- Wenbo Zhan
- a Department of Mechanical Engineering, Imperial College London , London , UK
| | | | - Daniele Dini
- a Department of Mechanical Engineering, Imperial College London , London , UK
| |
Collapse
|
21
|
Ramadi KB, Cima MJ. Materials and Devices for Micro-invasive Neural Interfacing. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Segato A, Pieri V, Favaro A, Riva M, Falini A, De Momi E, Castellano A. Automated Steerable Path Planning for Deep Brain Stimulation Safeguarding Fiber Tracts and Deep Gray Matter Nuclei. Front Robot AI 2019; 6:70. [PMID: 33501085 PMCID: PMC7806057 DOI: 10.3389/frobt.2019.00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
Deep Brain Stimulation (DBS) is a neurosurgical procedure consisting in the stereotactic implantation of stimulation electrodes to specific brain targets, such as deep gray matter nuclei. Current solutions to place the electrodes rely on rectilinear stereotactic trajectories (RTs) manually defined by surgeons, based on pre-operative images. An automatic path planner that accurately targets subthalamic nuclei (STN) and safeguards critical surrounding structures is still lacking. Also, robotically-driven curvilinear trajectories (CTs) computed on the basis of state-of-the-art neuroimaging would decrease DBS invasiveness, circumventing patient-specific obstacles. This work presents a new algorithm able to estimate a pool of DBS curvilinear trajectories for reaching a given deep target in the brain, in the context of the EU's Horizon EDEN2020 project. The prospect of automatically computing trajectory plans relying on sophisticated newly engineered steerable devices represents a breakthrough in the field of microsurgical robotics. By tailoring the paths according to single-patient anatomical constraints, as defined by advanced preoperative neuroimaging including diffusion MR tractography, this planner ensures a higher level of safety than the standard rectilinear approach. Ten healthy controls underwent Magnetic Resonance Imaging (MRI) on 3T scanner, including 3DT1-weighted sequences, 3Dhigh-resolution time-of-flight MR angiography (TOF-MRA) and high angular resolution diffusion MR sequences. A probabilistic q-ball residual-bootstrap MR tractography algorithm was used to reconstruct motor fibers, while the other deep gray matter nuclei surrounding STN and vessels were segmented on T1 and TOF-MRA images, respectively. These structures were labeled as obstacles. The reliability of the automated planner was evaluated; CTs were compared to RTs in terms of efficacy and safety. Targeting the anterior STN, CTs performed significantly better in maximizing the minimal distance from critical structures, by finding a tuned balance between all obstacles. Moreover, CTs resulted superior in reaching the center of mass (COM) of STN, as well as in optimizing the entry angle in STN and in the skull surface.
Collapse
Affiliation(s)
- Alice Segato
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Valentina Pieri
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Favaro
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|