1
|
Hsiao CC, Peng CH, Wu FZ, Cheng DC. Impact of Voxel Normalization on a Machine Learning-Based Method: A Study on Pulmonary Nodule Malignancy Diagnosis Using Low-Dose Computed Tomography (LDCT). Diagnostics (Basel) 2023; 13:3690. [PMID: 38132274 PMCID: PMC10742752 DOI: 10.3390/diagnostics13243690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Lung cancer (LC) stands as the foremost cause of cancer-related fatality rates worldwide. Early diagnosis significantly enhances patient survival rate. Nowadays, low-dose computed tomography (LDCT) is widely employed on the chest as a tool for large-scale lung cancer screening. Nonetheless, a large amount of chest radiographs creates an onerous burden for radiologists. Some computer-aided diagnostic (CAD) tools can provide insight to the use of medical images for diagnosis and can augment diagnostic speed. However, due to the variation in the parameter settings across different patients, substantial discrepancies in image voxels persist. We found that different voxel sizes can create a compromise between model generalization and diagnostic efficacy. This study investigates the performance disparities of diagnostic models trained on original images and LDCT images reconstructed to different voxel sizes while making isotropic. We examined the ability of our method to differentiate between benign and malignant nodules. Using 11 features, a support vector machine (SVM) was trained on LDCT images using an isotropic voxel with a side length of 1.5 mm for 225 patients in-house. The result yields a favorable model performance with an accuracy of 0.9596 and an area under the receiver operating characteristic curve (ROC/AUC) of 0.9855. In addition, to furnish CAD tools for clinical application, future research including LDCT images from multi-centers is encouraged.
Collapse
Affiliation(s)
- Chia-Chi Hsiao
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Chen-Hao Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40400, Taiwan;
| | - Fu-Zong Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Da-Chuan Cheng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40400, Taiwan;
| |
Collapse
|
2
|
Kavithaa G, Balakrishnan P, Yuvaraj SA. Lung Cancer Detection and Improving Accuracy Using Linear Subspace Image Classification Algorithm. Interdiscip Sci 2021; 13:779-786. [PMID: 34351570 DOI: 10.1007/s12539-021-00468-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The ability to identify lung cancer at an early stage is critical, because it can help patients live longer. However, predicting the affected area while diagnosing cancer is a huge challenge. An intelligent computer-aided diagnostic system can be utilized to detect and diagnose lung cancer by detecting the damaged region. The suggested Linear Subspace Image Classification Algorithm (LSICA) approach classifies images in a linear subspace. This methodology is used to accurately identify the damaged region, and it involves three steps: image enhancement, segmentation, and classification. The spatial image clustering technique is used to quickly segment and identify the impacted area in the image. LSICA is utilized to determine the accuracy value of the affected region for classification purposes. Therefore, a lung cancer detection system with classification-dependent image processing is used for lung cancer CT imaging. Therefore, a new method to overcome these deficiencies of the process for detection using LSICA is proposed in this work on lung cancer. MATLAB has been used in all programs. A proposed system designed to easily identify the affected region with help of the classification technique to enhance and get more accurate results.
Collapse
Affiliation(s)
- G Kavithaa
- Department of Electronics and Communication Engineering, Government College of Engineering, Salem, Tamilnadu, India.
| | - P Balakrishnan
- Malla Reddy Engineering College for Women (Autonomous), Hyderabad, 500100, India
| | - S A Yuvaraj
- Department of ECE, GRT Institute of Engineering and Technology, Tiruttani, Tamilnadu, India
| |
Collapse
|
3
|
Ren S, Laub P, Lu Y, Naganawa M, Carson RE. Atlas-Based Multiorgan Segmentation for Dynamic Abdominal PET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2926889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Lu Y, Gallezot JD, Naganawa M, Ren S, Fontaine K, Wu J, Onofrey JA, Toyonaga T, Boutagy N, Mulnix T, Panin VY, Casey ME, Carson RE, Liu C. Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET. Phys Med Biol 2019; 64:065002. [PMID: 30695768 DOI: 10.1088/1361-6560/ab02c2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PET has the potential to perform absolute in vivo radiotracer quantitation. This potential can be compromised by voluntary body motion (BM), which degrades image resolution, alters apparent tracer uptakes, introduces CT-based attenuation correction mismatch artifacts and causes inaccurate parameter estimates in dynamic studies. Existing body motion correction (BMC) methods include frame-based image-registration (FIR) approaches and real-time motion tracking using external measurement devices. FIR does not correct for motion occurring within a pre-defined frame and the device-based method is generally not practical in routine clinical use, since it requires attaching a tracking device to the patient and additional device set up time. In this paper, we proposed a data-driven algorithm, centroid of distribution (COD), to detect BM. In this algorithm, the central coordinate of the time-of-flight (TOF) bin, which can be used as a reasonable surrogate for the annihilation point, is calculated for every event, and averaged over a certain time interval to generate a COD trace. We hypothesized that abrupt changes on the COD trace in lateral direction represent BMs. After detection, BM is estimated using non-rigid image registrations and corrected through list-mode reconstruction. The COD-based BMC approach was validated using a monkey study and was evaluated against FIR using four human and one dog studies with multiple tracers. The proposed approach successfully detected BMs and yielded superior correction results over conventional FIR approaches.
Collapse
Affiliation(s)
- Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lu Y, Fontaine K, Mulnix T, Onofrey JA, Ren S, Panin V, Jones J, Casey ME, Barnett R, Kench P, Fulton R, Carson RE, Liu C. Respiratory Motion Compensation for PET/CT with Motion Information Derived from Matched Attenuation-Corrected Gated PET Data. J Nucl Med 2018; 59:1480-1486. [PMID: 29439015 DOI: 10.2967/jnumed.117.203000] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/25/2018] [Indexed: 11/16/2022] Open
Abstract
Respiratory motion degrades the detection and quantification capabilities of PET/CT imaging. Moreover, mismatch between a fast helical CT image and a time-averaged PET image due to respiratory motion results in additional attenuation correction artifacts and inaccurate localization. Current motion compensation approaches typically have 3 limitations: the mismatch among respiration-gated PET images and the CT attenuation correction (CTAC) map can introduce artifacts in the gated PET reconstructions that can subsequently affect the accuracy of the motion estimation; sinogram-based correction approaches do not correct for intragate motion due to intracycle and intercycle breathing variations; and the mismatch between the PET motion compensation reference gate and the CT image can cause an additional CT-mismatch artifact. In this study, we established a motion correction framework to address these limitations. Methods: In the proposed framework, the combined emission-transmission reconstruction algorithm was used for phase-matched gated PET reconstructions to facilitate the motion model building. An event-by-event nonrigid respiratory motion compensation method with correlations between internal organ motion and external respiratory signals was used to correct both intracycle and intercycle breathing variations. The PET reference gate was automatically determined by a newly proposed CT-matching algorithm. We applied the new framework to 13 human datasets with 3 different radiotracers and 323 lesions and compared its performance with CTAC and non-attenuation correction (NAC) approaches. Validation using 4-dimensional CT was performed for one lung cancer dataset. Results: For the 10 18F-FDG studies, the proposed method outperformed (P < 0.006) both the CTAC and the NAC methods in terms of region-of-interest-based SUVmean, SUVmax, and SUV ratio improvements over no motion correction (SUVmean: 19.9% vs. 14.0% vs. 13.2%; SUVmax: 15.5% vs. 10.8% vs. 10.6%; SUV ratio: 24.1% vs. 17.6% vs. 16.2%, for the proposed, CTAC, and NAC methods, respectively). The proposed method increased SUV ratios over no motion correction for 94.4% of lesions, compared with 84.8% and 86.4% using the CTAC and NAC methods, respectively. For the 2 18F-fluoropropyl-(+)-dihydrotetrabenazine studies, the proposed method reduced the CT-mismatch artifacts in the lower lung where the CTAC approach failed and maintained the quantification accuracy of bone marrow where the NAC approach failed. For the 18F-FMISO study, the proposed method outperformed both the CTAC and the NAC methods in terms of motion estimation accuracy at 2 lung lesion locations. Conclusion: The proposed PET/CT respiratory event-by-event motion-correction framework with motion information derived from matched attenuation-corrected PET data provides image quality superior to that of the CTAC and NAC methods for multiple tracers.
Collapse
Affiliation(s)
- Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Kathryn Fontaine
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - John A Onofrey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Silin Ren
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Judson Jones
- Siemens Medical Solutions, Knoxville, Tennessee; and
| | | | - Robert Barnett
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Peter Kench
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Roger Fulton
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|