1
|
Dong Q, Ullah MN, Innes D, Watkins RD, Chang CM, Zou SJ, Groll A, Sacco I, Chinn G, Levin CS. PETcoil: first results from a second-generation RF-penetrable TOF-PET brain insert for simultaneous PET/MRI. Phys Med Biol 2024; 69:185007. [PMID: 39168156 DOI: 10.1088/1361-6560/ad7221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Simultaneous positron emission tomography (PET)/magnetic resonance imaging provides concurrent information about anatomic, functional, and molecular changes in disease. We are developing a second generation MR-compatible RF-penetrable TOF-PET insert. The insert has a smaller scintillation crystal size and ring diameter compared to clinical whole-body PET scanners, resulting in higher spatial resolution and sensitivity. This paper reports the initial system performance of this full-ring PET insert. The global photopeak energy resolution and global coincidence time resolution, 11.74 ± 0.03 % FWHM and 238.1 ± 0.5 ps FWHM, respectively, are preserved as we scaled up the system to a full ring comprising 12, 288 LYSO-SiPM channels (crystal size: 3.2 × 3.2 × 20 mm3). Throughout a ten-hour experiment, the system performance remained stable, exhibiting a less than 1% change in all measured parameters. In a resolution phantom study, the system successfully resolved all 2.8 mm diameter rods, achieving an average VPR of 0.28 ± 0.08 without TOF and 0.24 ± 0.07 with TOF applied. Moreover, the implementation of TOF in the Hoffman phantom study also enhanced image quality. Initial MR compatibility studies of the full PET ring were performed with it unpowered as a milestone to focus on looking for material and geometry-related artifacts. During all MR studies, the MR body coil functioned as both the transmit and receive coil, and no observable artifacts were detected. As expected, using the body coil also as the RF receiver, MR image signal-to-noise ratio exhibited degradation (∼30%), so we are developing a high quality receive-only coil that resides inside the PET ring.
Collapse
Affiliation(s)
- Qian Dong
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Muhammad Nasir Ullah
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Derek Innes
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ronald D Watkins
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Chen-Ming Chang
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Sarah J Zou
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Andrew Groll
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ilaria Sacco
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Garry Chinn
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Craig S Levin
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
2
|
Piller M, Castilla AM, Terragni G, Alozy J, Auffray E, Ballabriga R, Campbell M, Deutschmann B, Gascon D, Gola A, Merzi S, Michalowska-Forsyth A, Penna M, Gómez S, Kratochwil N. Performance evaluation of the FastIC readout ASIC with emphasis on Cherenkov emission in TOF-PET. Phys Med Biol 2024; 69:115014. [PMID: 38657637 DOI: 10.1088/1361-6560/ad42fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Objective.The efficient usage of prompt photons like Cherenkov emission is of great interest for the design of the next generation, cost-effective, and ultra-high-sensitivity time-of-flight positron emission tomography (TOF-PET) scanners. With custom, high power consuming, readout electronics and fast digitization the prospect of sub-300 ps FWHM with PET-sized BGO crystals have been shown. However, these results are not scalable to a full system consisting of thousands of detector elements.Approach.To pave the way toward a full TOF-PET scanner, we examine the performance of the FastIC ASIC with Cherenkov-emitting scintillators (BGO), together with one of the most recent SiPM detector developments based on metal trenching from FBK. The FastIC is a highly configurable ASIC with 8 input channels, a power consumption of 12 mW ch-1and excellent linearity on the energy measurement. To put the timing performance of the FastIC into perspective, comparison measurements with high-power consuming readout electronics are performed.Main results.We achieve a best CTR FWHM of 330 ps for 2 × 2 × 3 mm3and 490 ps for 2 × 2 × 20 mm3BGO crystals with the FastIC. In addition, using 20 mm long LSO:Ce:Ca crystals, CTR values of 129 ps FWHM have been measured with the FastIC, only slightly worse to the state-of-the-art of 95 ps obtained with discrete HF electronics.Significance.For the first time, the timing capability of BGO with a scalable ASIC has been evaluated. The findings underscore the potential of the FastIC ASIC in the development of cost-effective TOF-PET scanners with excellent timing characteristics.
Collapse
Affiliation(s)
- Markus Piller
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland
- Graz University of Technology, Institute of Electronics, A-8010 Graz, Austria
| | | | - Giulia Terragni
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland
- Technical University of Vienna, Austria
| | - Jerome Alozy
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland
| | | | - Rafael Ballabriga
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland
- University of Barcelona, Spain
| | | | - Bernd Deutschmann
- Graz University of Technology, Institute of Electronics, A-8010 Graz, Austria
| | | | - Alberto Gola
- Fondazione Bruno Kessler, Via Sommarive, 18 I-38123, Trento, Italy
| | - Stefano Merzi
- Fondazione Bruno Kessler, Via Sommarive, 18 I-38123, Trento, Italy
| | | | - Michele Penna
- Fondazione Bruno Kessler, Via Sommarive, 18 I-38123, Trento, Italy
| | - Sergio Gómez
- University of Barcelona, Spain
- Serra Hunter Fellow at Polytechnic University of Catalonia, Spain
| | - Nicolaus Kratochwil
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland
- Department of Biomedical Engineering, University of California, Davis, United States of America
| |
Collapse
|
3
|
Raylman R, Stolin A, Jaliparthi G, Martone P. Construction and evaluation of a large radiation detector for Positron Emission Tomography applications. JOURNAL OF INSTRUMENTATION : AN IOP AND SISSA JOURNAL 2024; 19:P04034. [PMID: 40051531 PMCID: PMC11884425 DOI: 10.1088/1748-0221/19/04/p04034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Large arrays of pixelated scintillator potentially have application in economical construction of PET scanners. In this investigation, we constructed and evaluated a detector with an active area of 32.26 × 13.47 cm2. It is based on a 218 × 91 array of 1.4 × 1.4 × 15 mm3 LYSO elements (pitch 1.48 mm). Scintillation light is detected with a 5 × 12 array of silicon photomultipliers (SiPM) arrays. Each array consists of an 8 × 8 array of 3 × 3 mm2 (pitch 3.35 mm) SiPMs. Performance of these devices are enhanced and stabilized by cooling them. Testing revealed that the detector was able to detect 90% of the theoretically detectable 511 keV photons. The resolvability index (a measure of the ability to identify individual detector elements from background) is 0.24 ± 0.04. Additionally, the average energy resolution for the complete detector is 18.3%. These results compare well with those reported for much smaller detector modules.
Collapse
Affiliation(s)
- R.R. Raylman
- Center for Advanced Imaging, Department of Radiology, West Virginia University, 64 Medical Center Dr, Morgantown, WV, U.S.A
| | - A.V. Stolin
- Center for Advanced Imaging, Department of Radiology, West Virginia University, 64 Medical Center Dr, Morgantown, WV, U.S.A
| | - G. Jaliparthi
- Center for Advanced Imaging, Department of Radiology, West Virginia University, 64 Medical Center Dr, Morgantown, WV, U.S.A
| | - P.F. Martone
- Center for Advanced Imaging, Department of Radiology, West Virginia University, 64 Medical Center Dr, Morgantown, WV, U.S.A
| |
Collapse
|
4
|
Wang F, Kao CM, Zhang X, Liu L, Hua Y, Kim H, Choong WS, Xie Q. DOI- and TOF-capable PET array detector using double-ended light readout and stripline-based row and column electronic readout. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:269-276. [PMID: 38654812 PMCID: PMC11034922 DOI: 10.1109/trpms.2024.3360942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We investigate a highly multiplexing readout for depth-of-interaction (DOI) and time-of-flight PET detector consisting of an N×N crystals whose light outputs at the front and back ends are detected by using silicon photomultipliers (SiPM). The front N×N SiPM array is read by using a stripline (SL) configured to support discrimination of the row position of the signal-producing crystal. The back N×N SiPM array is similarly read by an SL for column discrimination. Hence, the detector has only four outputs. We built 4×4 and 8×8 detector modules (DM) by using 3.0×3.0×20 mm3 lutetium-yttrium oxyorthosilicates. The outputs were sampled and processed offline. For both DMs, crystal discrimination was successful. For the 4×4 DM, we obtained an average energy resolution (ER) of 14.1%, an average DOI resolution of 2.5 mm, a non DOI-corrected coincidence resolving time (CRT), measured in coincidence with a single-pixel reference detector, of about 495 ps. For the 8×8 DM, the average ER, average DOI resolution and average CRT were 16.4%, 2.9 mm, and 641 ps, respectively. We identified the intercrystal scattering as a probable cause for the CRT deterioration when the DM was increased from 4×4 to 8×8.
Collapse
Affiliation(s)
- Fei Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xiaoyu Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Linfeng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Heejong Kim
- The University of Chicago, Chicago, Illinois, USA
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Qingguo Xie
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Kuang Z, Sang Z, Ren N, Wang X, Zeng T, Wu S, Niu M, Cong L, Kinyanjui SM, Chen Q, Tie C, Liu Z, Sun T, Hu Z, Du J, Li Y, Liang D, Liu X, Zheng H, Yang Y. Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors. Eur J Nucl Med Mol Imaging 2024; 51:346-357. [PMID: 37782321 DOI: 10.1007/s00259-023-06458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors. METHODS The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed. RESULTS A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350-750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans. CONCLUSION The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou, 423000, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Samuel M Kinyanjui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaoyan Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changjun Tie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zheng Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junwei Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ye Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yongfeng Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Masturzo L, Carra P, Erba PA, Morrocchi M, Pilleri A, Sportelli G, Belcari N. Monte Carlo Characterization of the Trimage Brain PET System. J Imaging 2022; 8:jimaging8020021. [PMID: 35200724 PMCID: PMC8878795 DOI: 10.3390/jimaging8020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The TRIMAGE project aims to develop a brain-dedicated PET/MR/EEG (Positron Emission Tomography/Magnetic Resonance/Electroencephalogram) system that is able to perform simultaneous PET, MR and EEG acquisitions. The PET component consists of a full ring with 18 sectors. Each sector includes three square detector modules based on dual sstaggered LYSO:Ce matrices read out by SiPMs. Using Monte Carlo simulations and following NEMA (National Electrical Manufacturers Association) guidelines, image quality procedures have been applied to evaluate the performance of the PET component of the system. The performance are reported in terms of spatial resolution, uniformity, recovery coefficient, spill over ratio, noise equivalent count rate (NECR) and scatter fraction. The results show that the TRIMAGE system is at the top of the current brain PET technologies.
Collapse
Affiliation(s)
- Luigi Masturzo
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
| | - Pietro Carra
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| | - Paola Anna Erba
- Department of Translational Research and New Technology in Medicine and Surgery, Regional Center of Nuclear Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, 56126 Pisa, Italy;
| | - Matteo Morrocchi
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| | - Alessandro Pilleri
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
| | - Giancarlo Sportelli
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
- Correspondence:
| | - Nicola Belcari
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| |
Collapse
|
7
|
Son JW, Kim KY, Park JY, Kim K, Lee YS, Ko GB, Lee JS. SimPET: a Preclinical PET Insert for Simultaneous PET/MR Imaging. Mol Imaging Biol 2021; 22:1208-1217. [PMID: 32285357 DOI: 10.1007/s11307-020-01491-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE SimPET/M7 system is a small-animal dedicated simultaneous positron emission tomography and magnetic resonance imaging (PET/MRI) scanner. The SimPET insert has been upgraded from its prototype with a focus on count rate performance and sensitivity. The M7 scanner is a 1-T permanent magnet-based compact MRI system without any cryogens. Here, we present performance evaluation results of SimPET along with the results of mutual interference evaluation and simultaneously acquired PET/MR imaging. PROCEDURES Following NEMA NU 4-2008 standard, we evaluated the performance of the SimPET system. The M7 MRI compatibility of SimPET was also assessed by analyzing MRI images of a uniform phantom under different PET conditions and PET count rates with different MRI pulse sequences. Mouse imaging was performed including a whole-body 18F-NaF PET scan and a simultaneous PET/MRI scan with 64Cu-NOTA-ironoxide. RESULTS The spatial resolution at center based on 3D OSEM without and with warm background was 0.7 mm and 1.45 mm, respectively. Peak sensitivity was 4.21 % (energy window = 250-750 keV). The peak noise equivalent count rate with the same energy window was 151 kcps at 38.4 MBq. The uniformity was 4.42 %, and the spillover ratios in water- and air-filled chambers were 14.6 % and 12.7 %, respectively. In the hot rod phantom image, 0.75-mm-diameter rods were distinguishable. There were no remarkable differences in the SNR and uniformity of MRI images and PET count rates with different PET conditions and MRI pulse sequences. In the whole-body 18F-NaF PET images, fine skeletal structures were well resolved. In the simultaneous PET/MRI study with 64Cu-NOTA-ironoxide, both PET and MRI signals changed before and after injection of the dual-modal imaging probe, which was evident with the exact spatiotemporal correlation. CONCLUSIONS We demonstrated that the SimPET scanner has a high count rate performance and excellent spatial resolution. The combined SimPET/M7 enabled simultaneous PET/MR imaging studies with no remarkable mutual interference between the two imaging modalities.
Collapse
Affiliation(s)
- Jeong-Whan Son
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea
| | - Kyeong Yun Kim
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Ji Yong Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyuwan Kim
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Guen Bae Ko
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea. .,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Jae Sung Lee
- Brightonix Imaging Inc., Yeonmujang 5ga-gil, Seongdong-gu, Seoul, 04782, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
8
|
Won JY, Park H, Lee S, Son JW, Chung Y, Ko GB, Kim KY, Song J, Seo S, Ryu Y, Chung JY, Lee JS. Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1579-1590. [PMID: 33625980 DOI: 10.1109/tmi.2021.3062066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.
Collapse
|
9
|
Yang Q, Wang X, Kuang Z, Zhang C, Yang Y, Du J. Evaluation of Two SiPM Arrays for Depth-Encoding PET Detectors Based on Dual-Ended Readout. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3008710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Nadig V, Schug D, Weissler B, Schulz V. Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments. EJNMMI Phys 2021; 8:30. [PMID: 33761038 PMCID: PMC7991069 DOI: 10.1186/s40658-021-00370-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/23/2021] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Aiming to measure the difference in arrival times of two coincident γ-photons with an accuracy in the order of 200ps, time-of-flight positron emission tomography systems commonly employ silicon photomultipliers (SiPMs) and high-resolution digitization electronics, application specific integrated circuits (ASICs). This work evaluates the performance of the TOFPET2 ASIC, released by PETsys Electronics S.A. in 2017, dependent on its configuration parameters in multi-channel coincidence measurements. METHODS SiPM arrays fabricated by different vendors (KETEK, SensL, Hamamatsu, Broadcom) were tested in combination with the ASIC. Scintillator arrays featuring different reflector designs and different configurations of the TOFPET2 ASIC software parameters were evaluated. The benchtop setup used is provided with the TOFPET2 ASIC evaluation kit by PETsys Electronics S.A. RESULTS Compared to existing studies featuring the TOFPET2 ASIC, multi-channel performance results dependent on a larger set of ASIC configuration parameters were obtained that have not been reported to this extend so far. The ASIC shows promising CRTs down to 219.9 ps in combination with two Hamamatsu S14161-3050-HS-08 SiPM arrays (128 channels read out, energy resolution 13.08%) and 216.1 ps in combination with two Broadcom AFBR-S4N44P643S SiPM arrays (32 channels read out, energy resolution 9.46%). The length of the trigger delay of the dark count suppression scheme has an impact on the ASIC performance and can be configured to further improve the coincidence resolution time. The integrator gain configuration has been investigated and allows an absolute improvement of the energy resolution by up to 1% at the cost of the linearity of the energy spectrum. CONCLUSION Measuring up to the time-of-flight performance of state-of-the-art positron emission tomography (ToF-PET) systems while providing a uniform and stable readout for multiple channels at the same time, the TOFPET2 ASIC is treated as promising candidate for the integration in future ToF-PET systems.
Collapse
Affiliation(s)
- Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 17, Aachen, 52074 Germany
| | - David Schug
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 17, Aachen, 52074 Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, Aachen, 52074 Germany
| | - Bjoern Weissler
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 17, Aachen, 52074 Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, Aachen, 52074 Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 17, Aachen, 52074 Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, Aachen, 52074 Germany
- III. Physikalisches Institut B, RWTH Aachen University, Otto-Blumenthal-Straße, Aachen, 52074 Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Forckenbeckstrasse 55, Aachen, 52074 Germany
| |
Collapse
|
11
|
Bläckberg L, Sajedi S, El Fakhri G, Sabet H. A layered single-side readout depth of interaction time-of-flight-PET detector. Phys Med Biol 2021; 66:045025. [PMID: 33570050 PMCID: PMC8130834 DOI: 10.1088/1361-6560/abd592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We are exploring a scintillator-based PET detector with potential of high sensitivity, depth of interaction (DOI) capability, and timing resolution, with single-side readout. Our design combines two previous concepts: (1) multiple scintillator arrays stacked with relative offset, yielding inherent DOI information, but good timing performance has not been demonstrated with conventional light sharing readout. (2) Single crystal array with one-to-one coupling to the photodetector, showing superior timing performance compared to its light sharing counterparts, but lacks DOI. The combination, where the first layer of a staggered design is coupled one-to-one to a photodetector array, may provide both DOI and timing resolution and this concept is here evaluated through light transport simulations. Results show that: (1) unpolished crystal pixels in the staggered configuration yield better performance across all metrics compared to polished pixels, regardless of readout scheme. (2) One-to-one readout of the first layer allows for accurate DOI extraction using a single threshold. The number of multi pixel photon counter (MPPC) pixels with signal amplitudes exceeding the threshold corresponds to the interaction layer. This approach was not possible with conventional light sharing readout. (3) With a threshold of 2 optical photons, the layered approach with one-to-one coupled first layer improves timing close to the MPPC compared to the conventional one-to-one coupling non-DOI detector, due to effectively reduced crystal thickness. Single detector timing resolution values of 91, 127, 151 and 164 ps were observed per layer in the 4-layer design, to be compared to 148 ps for the single array with one-to-one coupling. (4) For the layered design with light sharing readout, timing improves with increased MPPC pixel size due to higher signal per channel. In conclusion, the combination of straightforward DOI determination, good timing performance, and relatively simple design makes the proposed concept promising for DOI-Time-of-Flight PET detectors.
Collapse
Affiliation(s)
- L Bläckberg
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - S Sajedi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - G El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - H Sabet
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
12
|
Kim H, Kao CM, Hua Y, Xie Q, Chen CT. Multiplexing Readout for Time-of-Flight (TOF) PET Detectors Using Striplines. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:662-670. [PMID: 34541433 PMCID: PMC8445371 DOI: 10.1109/trpms.2021.3051364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A recent trend in PET instrumentation is the use of silicon photomultipliers (SiPMs) for high-resolution and time-of-flight (TOF) detection. Due to its small size, a PET system can use a large number of SiPMs and hence effective and scalable multiplexing readout methods become important. Unfortunately, multiplexing readout generally degrades the fast timing properties necessary for TOF, especially at high channel reduction. Previously, we developed a stripline (SL) based readout method for PET that uses a time-based multiplexing mechanism. This method maintains fast timing by design and has been successfully used for TOF PET detectors. In this paper, we present a more systematic study in which we examine how two important design parameters of the readout - the number of inputs on an SL (n SL) and the pathlength between adjacent input positions (Δℓ) - affect its detection performance properties for PET. Our result shows that, up to n SL = 32 the readout can achieve accurate pixel discrimination and causes little degradation in the energy resolution. The TOF resolution is compromised mildly and a coincidence resolving time on the order of 300 ps FWHM can be achieved for LYSO- and SiPM-based detectors. We also discuss strategies in using the readout to further reduce the number of electronic channels that a PET system would otherwise need.
Collapse
Affiliation(s)
- Heejong Kim
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| | - Chien-Min Kao
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| | - Yuexuan Hua
- Raycan Technology Co., Ltd., Suzhou, Jiangsu 215163, China
| | - Qingguo Xie
- Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chin-Tu Chen
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
13
|
Kang HG, Yamaya T, Han YB, Song SH, Ko GB, Lee JS, Hong SJ. Crystal surface and reflector optimization for the SiPM-based dual-ended readout TOF-DOI PET detector. Biomed Phys Eng Express 2020; 6. [DOI: 10.1088/2057-1976/abc45a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022]
|
14
|
Ritzer C, Becker R, Buck A, Commichau V, Debus J, Djambazov L, Eleftheriou A, Fischer J, Fischer P, Ito M, Khateri P, Lustermann W, Ritzert M, Roser U, Rudin M, Sacco I, Tsoumpas C, Warnock G, Wyss M, Zagozdzinska-Bochenek A, Weber B, Dissertori G. Initial Characterization of the SAFIR Prototype PET-MR Scanner. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2980072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
D'Ascenzo N, Antonecchia E, Gao M, Zhang X, Baumgartner G, Brensing A, Li Z, Liu Q, Rose G, Shi X, Zhang B, Kao CM, Ni J, Xie Q. Evaluation of a Digital Brain Positron Emission Tomography Scanner Based on the Plug&Imaging Sensor Technology. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2937681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Highly multiplexed SiPM signal readout for brain-dedicated TOF-DOI PET detectors. Phys Med 2019; 68:117-123. [DOI: 10.1016/j.ejmp.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
|
17
|
Jiang W, Chalich Y, Deen MJ. Sensors for Positron Emission Tomography Applications. SENSORS 2019; 19:s19225019. [PMID: 31744258 PMCID: PMC6891456 DOI: 10.3390/s19225019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Positron emission tomography (PET) imaging is an essential tool in clinical applications for the diagnosis of diseases due to its ability to acquire functional images to help differentiate between metabolic and biological activities at the molecular level. One key limiting factor in the development of efficient and accurate PET systems is the sensor technology in the PET detector. There are generally four types of sensor technologies employed: photomultiplier tubes (PMTs), avalanche photodiodes (APDs), silicon photomultipliers (SiPMs), and cadmium zinc telluride (CZT) detectors. PMTs were widely used for PET applications in the early days due to their excellent performance metrics of high gain, low noise, and fast timing. However, the fragility and bulkiness of the PMT glass tubes, high operating voltage, and sensitivity to magnetic fields ultimately limit this technology for future cost-effective and multi-modal systems. As a result, solid-state photodetectors like the APD, SiPM, and CZT detectors, and their applications for PET systems, have attracted lots of research interest, especially owing to the continual advancements in the semiconductor fabrication process. In this review, we study and discuss the operating principles, key performance parameters, and PET applications for each type of sensor technology with an emphasis on SiPM and CZT detectors—the two most promising types of sensors for future PET systems. We also present the sensor technologies used in commercially available state-of-the-art PET systems. Finally, the strengths and weaknesses of these four types of sensors are compared and the research challenges of SiPM and CZT detectors are discussed and summarized.
Collapse
Affiliation(s)
- Wei Jiang
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Yamn Chalich
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - M. Jamal Deen
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Correspondence: or ; Tel.: +1-905-525-9140 (ext. 27137)
| |
Collapse
|
18
|
Anton-Rodriguez JM, Julyan P, Djoukhadar I, Russell D, Evans DG, Jackson A, Matthews JC. Comparison of a Standard Resolution PET-CT Scanner With an HRRT Brain Scanner for Imaging Small Tumors Within the Head. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2914909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Gagliardi V, Tosetti M, Bisogni MG, Puccini A, Belcari N, Carmarlinghi N, Fantacci ME, Fidecaro F, Franchi G, Sportelli G, Biagi L. MR Compatible Power Supply Module for PET Detectors of an Integrated PET/MR System. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2920735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|