1
|
Chen M, Yang D, Zhu XR, Ma L, Grosshans DR, Shao Y, Lu W. Investigation of intra-fractionated range guided adaptive proton therapy (RGAPT): II. Range-shift compensated on-line treatment adaptation and verification. Phys Med Biol 2024; 69:155006. [PMID: 38861995 DOI: 10.1088/1361-6560/ad56f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
We previously proposed range-guided adaptive proton therapy (RGAPT) that uses mid-range treatment beams as probing beams and intra-fractionated range measurements for online adaptation. In this work, we demonstrated experimental verification and reported the dosimetric accuracy for RGAPT. A STEEV phantom was used for the experiments, and a 3 × 3 × 3 cm3cube inside the phantom was assigned to be the treatment target. We simulated three online range shift scenarios: reference, overshoot, and undershoot, by placing upstream Lucite sheets, 4, 0, and 8 that corresponded to changes of 0, 6.8, and -6.8 mm, respectively, in water-equivalent path length. The reference treatment plan was to deliver single-field uniform target doses in pencil beam scanning mode and generated on the Eclipse treatment planning system. Different numbers of mid-range layers, including single, three, and five layers, were selected as probing beams to evaluate beam range (BR) measurement accuracy in positron emission tomography (PET). Online plans were modified to adapt to BR shifts and compensate for probing beam doses. In contrast, non-adaptive plans were also delivered and compared to adaptive plans by film measurements. The mid-range probing beams of three (5.55MU) and five layers (8.71MU) yielded accurate range shift measurements in 60 s of PET acquisition with uncertainty of 0.5 mm while the single-layer probing (1.65MU) was not sufficient for measurements. The adaptive plans achieved an average gamma (2%/2 mm) passing rate of 95%. In contrast, the non-adaptive plans only had an average passing rate of 69%. RGAPT planning and delivery are feasible and verified by the experiments. The probing beam delivery, range measurements, and adaptive planning and delivery added a small increase in treatment delivery workflow time but resulted in substantial dose improvement. The three-layer mid-range probing was most suitable considering the balance of high range measurement accuracy and the low number of probing beam layers.
Collapse
Affiliation(s)
- Mingli Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Dongxu Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Xiaorong R Zhu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Lin Ma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Yiping Shao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| |
Collapse
|
2
|
Yang D, Zhu XR, Chen M, Ma L, Cheng X, Grosshans DR, Lu W, Shao Y. Investigation of intra-fractionated range guided adaptive proton therapy: I. On-line PET imaging and range measurement. Phys Med Biol 2024; 69:155005. [PMID: 38861997 DOI: 10.1088/1361-6560/ad56f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Develop a prototype on-line positron emission tomography (PET) scanner and evaluate its capability of on-line imaging and intra-fractionated proton-induced radioactivity range measurement.Approach.Each detector consists of 32 × 32 array of 2 × 2 × 30 mm3Lutetium-Yttrium Oxyorthosilicate scintillators with single-scintillator-end readout through a 20 × 20 array of 3 × 3 mm2Silicon Photomultipliers. The PET can be configurated with a full-ring of 20 detectors for conventional PET imaging or a partial-ring of 18 detectors for on-line imaging and range measurement. All detector-level readout and processing electronics are attached to the backside of the system gantry and their output signals are transferred to a field-programable-gate-array based system electronics and data acquisition that can be placed 2 m away from the gantry. The PET imaging performance and radioactivity range measurement capability were evaluated by both the offline study that placed a radioactive source with known intensity and distribution within a phantom and the online study that irradiated a phantom with proton beams under different radiation and imaging conditions.Main results.The PET has 32 cm diameter and 6.5 cm axial length field-of-view (FOV), ∼2.3-5.0 mm spatial resolution within FOV, 3% sensitivity at the FOV center, 18%-30% energy resolution, and ∼9 ns coincidence time resolution. The offline study shows the PET can determine the shift of distal falloff edge position of a known radioactivity distribution with the accuracy of 0.3 ± 0.3 mm even without attenuation and scatter corrections, and online study shows the PET can measure the shift of proton-induced positron radioactive range with the accuracy of 0.6 ± 0.3 mm from the data acquired with a short-acquisition (60 s) and low-dose (5 MU) proton radiation to a human head phantom.Significance.This study demonstrated the capability of intra-fractionated PET imaging and radioactivity range measurement and will enable the investigation on the feasibility of intra-fractionated, range-shift compensated adaptive proton therapy.
Collapse
Affiliation(s)
- Dongxu Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Xiaorong R Zhu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77000, United States of America
| | - Mingli Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Lin Ma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Xinyi Cheng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77000, United States of America
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Yiping Shao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| |
Collapse
|
3
|
Abstract
Biomedical research has long relied on small-animal studies to elucidate disease process and develop new medical treatments. The introduction of in vivo functional imaging technology, such as PET, has allowed investigators to peer inside their subjects and follow disease progression longitudinally as well as improve understanding of normal biological processes. Recent developments in CRISPR, immuno-PET, and high-resolution in vivo imaging have only increased the importance of small-animal, or preclinical, PET imaging. Other drivers of preclinical PET innovation include new combinations of imaging technologies, such as PET/MR imaging, which require changes to PET hardware.
Collapse
Affiliation(s)
- Adrienne L Lehnert
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, UW Box 356043, Seattle, WA, USA.
| | - Robert S Miyaoka
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, UW Box 356043, Seattle, WA, USA
| |
Collapse
|
4
|
Krishnamoorthy S, Teo BKK, Zou W, McDonough J, Karp JS, Surti S. A proof-of-concept study of an in-situ partial-ring time-of-flight PET scanner for proton beam verification. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:694-702. [PMID: 34746539 DOI: 10.1109/trpms.2020.3044326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of a PET system capable of in-situ imaging requires a design that can accommodate the proton treatment beam nozzle. Among the several PET instrumentation approaches developed thus far, the dual-panel PET scanner is often used as it is simpler to develop and integrate within the proton therapy gantry. Partial-angle coverage of these systems can however lead to limited-angle artefacts in the reconstructed PET image. We have previously demonstrated via simulations that time-of-flight (TOF) reconstruction reduces the artifacts accompanying limited-angle data, and permits proton range measurement with 1-2 mm accuracy and precision. In this work we show measured results from a small proof-of-concept dual-panel PET system that uses TOF information to reconstruct PET data acquired after proton irradiation. The PET scanner comprises of two detector modules, each comprised of an array of 4×4×30 mm3 lanthanum bromide scintillator. Measurements are performed with an oxygen-rich gel-water, an adipose tissue equivalent material, and in vitro tissue phantoms. For each phantom measurement, 2 Gy dose was deposited using 54 - 100 MeV proton beams. For each phantom, a Monte Carlo simulation generating the expected distribution of PET isotope from the corresponding proton irradiation was also performed. Proton range was calculated by drawing multiple depth-profiles over a central region encompassing the proton dose deposition. For each profile, proton range was calculated using two techniques (a) 50% pick-off from the distal edge of the profile, and (b) comparing the measured and Monte Carlo profile to minimize the absolute sum of differences over the entire profile. A 10 min PET acquisition acquired with minimal delay post proton-irradiation is compared with a 10 min PET scan acquired after a 20 min delay. Measurements show that PET acquisition with minimal delay is necessary to collect 15O signal, and maximize 11C signal collection with a short PET acquisition. In comparison with the 50% pick-off technique, the shift technique is more robust and offers better precision in measuring the proton range for the different phantoms. Range measurements from PET images acquired with minimal delay, and the shift technique demonstrate the ability to achieve <1.5 mm accuracy and precision in estimating proton range.
Collapse
Affiliation(s)
| | - Boon-Keng K Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - James McDonough
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Joel S Karp
- Departments of Radiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
5
|
Tashima H, Yoshida E, Iwao Y, Wakizaka H, Mohammadi A, Nitta M, Kitagawa A, Inaniwa T, Nishikido F, Tsuji AB, Nagai Y, Seki C, Minamimoto T, Fujibayashi Y, Yamaya T. Development of a Multiuse Human-Scale Single-Ring OpenPET System. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3037055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Gao M, Chen HH, Chen FH, Hong JH, Hsiao IT, Yen TC, Mao J, Lu JJ, Wang W, D'Ascenzo N, Xie Q. First Results From All-Digital PET Dual Heads for In-Beam Beam-On Proton Therapy Monitoring. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3041857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|