1
|
Gao M, Daube-Witherspoon ME, Karp JS, Surti S. Total-Body PET System Designs with Axial and Transverse Gaps: A Study of Lesion Quantification and Detectability. J Nucl Med 2025; 66:323-329. [PMID: 39819688 PMCID: PMC11800738 DOI: 10.2967/jnumed.124.267769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
High-sensitivity total-body PET enables faster scans, lower doses, and dynamic multiorgan imaging. However, the higher system cost of a scanner with a long axial field of view (AFOV) hinders its wider application. This paper investigates the impact on the lesion quantification and detectability of cost-effective total-body PET sparse designs. Methods: Using the PennPET Explorer (PPEx) as a model, 3 sparse configurations with the same 142-cm AFOV were considered, including designs with only axial gaps (AGs), only transverse gaps (TGs), and a mixture of AGs and TGs (MG), with retained detector fractions (DFs) ranging from 71% to 40%. Human data from the PPEx were used to emulate sparse designs by discarding lines of response as a proxy for missing detectors. We embedded lesion events in the resultant list data with varying uptakes in the lung and liver before reconstruction. A generalized scan statistics methodology was used to measure lesion detectability and quantification as a function of lesion uptake and scan duration. Results: Relative to a fully populated system, an AG design with 71% performs well but is susceptible to image artifacts as the DF decreases to 58%. A TG design performs well with a DF of 58% but requires twice the scan time to achieve similar lesion detectability and is susceptible to transverse field-of-view truncation below 60 cm as the DF is further decreased. An MG design with a DF of 58% requires 3 times the scan time to achieve similar lesion detectability, and with no evidence of artifacts even as the DF is decreased to 40%. Conclusion: Sparse designs with artifact-free images can provide comparable lesion quantification and detectability to the fully populated PPEx after compensating for the reduced sensitivity with increased scan time. Because an AG design is more susceptible to image artifacts with a lower DF, a system with only AGs is not an optimal choice for dramatic cost reduction. A TG design provides a higher relative sensitivity than AG or MG designs for a given DF, leading to a shorter scan time to achieve comparable lesion detectability. However, the increased truncation of the transverse field of view with decreasing DF limits this design choice. An MG design allows for the greatest cost reduction (lowest DF) if the scan duration is increased to compensate for the higher loss in sensitivity. Sparse designs of PET with a long AFOV provide a technologic solution for introducing such systems at reduced cost into routine clinical use.
Collapse
Affiliation(s)
- Min Gao
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Baran J, Krzemien W, Parzych S, Raczyński L, Bała M, Coussat A, Chug N, Czerwiński E, Curceanu CO, Dadgar M, Dulski K, Eliyan K, Gajewski J, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Klimaszewski K, Korcyl G, Kozik T, Kumar D, Niedźwiecki S, Panek D, Perez Del Rio E, Ruciński A, Sharma S, Shivani, Shopa RY, Skurzok M, Stępień E, Tayefiardebili F, Tayefiardebili K, Wiślicki W, Moskal P. Realistic total-body J-PET geometry optimization: Monte Carlo study. Med Phys 2025. [PMID: 39853786 DOI: 10.1002/mp.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators. However, the high acquisition cost reduces the accessibility of TB PET technology. Several efforts are ongoing to mitigate this problem. Among the alternatives, the Jagiellonian PET (J-PET) technology, based on axially arranged plastic scintillator strips, offers a low-cost alternative solution for TB PET. PURPOSE The work aimed to compare five total-body J-PET geometries with plastic scintillators suitable for multi-organ and positronium tomography as a possible next-generation J-PET scanner design. METHODS We present comparative studies of performance characteristics of the cost-effective total-body PET scanners using J-PET technology. We investigated in silico five TB scanner geometries, varying the number of rings, scanner radii, and other parameters. Monte Carlo simulations of the anthropomorphic XCAT phantom, the extended 2-m sensitivity line source and positronium sensitivity phantoms were used to assess the performance of the geometries. Two hot spheres were placed in the lungs and in the liver of the XCAT phantom to mimic the pathological changes. We compared the sensitivity profiles and performed quantitative analysis of the reconstructed images by using quality metrics such as contrast recovery coefficient, background variability and root mean squared error. The studies are complemented by the determination of sensitivity for the positronium lifetime tomography and the relative cost analysis of the studied setups. RESULTS The analysis of the reconstructed XCAT images reveals the superiority of the seven-ring scanners over the three-ring setups. However, the three-ring scanners would be approximately 2-3 times cheaper. The peak sensitivity values for two-gamma vary from 20 to 34 cps/kBq and are dominated by the differences in geometrical acceptance of the scanners. The sensitivity curves for the positronium tomography have a similar shape to the two-gamma sensitivity profiles. The peak values are lower compared to the two-gamma cases, from about 20-28 times, with a maximum value of 1.66 cps/kBq. This can be contrasted with the 50-cm one-layer J-PET modular scanner used to perform the first in-vivo positronium imaging with a sensitivity of 0.06 cps/kBq. CONCLUSIONS The results show the feasibility of multi-organ imaging of all the systems to be considered for the next generation of TB J-PET designs. Among the scanner parameters, the most important ones are related to the axial field-of-view coverage. The two-gamma sensitivity and XCAT image reconstruction analyzes show the advantage of seven-ring scanners. However, the cost of the scintillator materials and SiPMs is more than two times higher for the longer modalities compared to the three-ring solutions. Nevertheless, the relative cost for all the scanners is about 10-4 times lower compared to the cost of the uExplorer. These properties coupled together with J-PET cost-effectiveness and triggerless acquisition mode enabling three-gamma positronium imaging, make the J-PET technology an attractive solution for broad application in clinics.
Collapse
Affiliation(s)
- Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemien
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Mateusz Bała
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Aurélien Coussat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Jan Gajewski
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Dominik Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Ewa Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefiardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefiardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Wei Q, Wang Y, Huang X, Li D, Zheng Y, Wang P, Sun X, Chai P, Han X, Liu S, Feng B, Zhou W, Zeng X, Zhu M, Zhang Z, Wei L. Performance evaluation of a small-animal PET scanner with 213 mm axis using NEMA NU 4-2008. Med Phys 2025; 52:530-541. [PMID: 39432708 DOI: 10.1002/mp.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Long-axis positron emission tomography (PET) has emerged as one of the recent research directions in PET due to its ability to significantly enhance sensitivity and counting performance for low-dose imaging, rapid imaging, and whole-body dynamic imaging. PURPOSE The PET system presented in this study is a long-axis animal PET based on lutetium-yttrium orthosilicate and silicon photomultiplier, designed for whole-body imaging in rats. It features a diameter of 143 mm and an axial length of 213.3 mm. This study evaluated the performance of this PET system in accordance with the National Electrical Manufacturers Association (NEMA) NU 4-2008 standards. METHODS The performance evaluation was conducted according to the NEMA NU 4-2008 standards in terms of spatial resolution, sensitivity, counting rate performance, scatter fraction (SF) and image quality. In addition, a rat imaging study was conducted to assess the imaging capability of this PET system. RESULTS The average energy resolution of the PET system was 12.87%, the average coincidence timing resolution was 751 ps. The FWHM of spatial resolution reconstructed by filtered back projection and 3D-OSEM-PSF algorithm at 5 mm radial offset from the axial center were 1.65 and 0.88 mm. The peak absolute sensitivity measured by a point source at the center of the field of view was evaluated as 6.71% (361-661 keV) and 10.31% (250-750 keV). For the mouse-like phantom, the SF was 11.0% and the peak noise equivalent counting rate (NECR) was 1193 kcps at 94.2 MBq (2.54 mCi). For the rat-like phantom, the SF was 26.8% and the NECR was 682.5 kcps at 78.6 MBq (2.12 mCi). CONCLUSIONS The performance measurement results demonstrate that this PET system exhibits high sensitivity and count rate performance, making it potential for high-quality whole-body dynamic imaging of rats.
Collapse
Affiliation(s)
- Qing Wei
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Yingjie Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xianchao Huang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Daowu Li
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Yushuang Zheng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Peilin Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiaoli Sun
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Pei Chai
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiaorou Han
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Shuangquan Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Baotong Feng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Wei Zhou
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiangtao Zeng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Meiling Zhu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Zhiming Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Long Wei
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| |
Collapse
|
4
|
Godinez F, Mingels C, Bayerlein R, Mehadji B, Nardo L. Total Body PET/CT: Future Aspects. Semin Nucl Med 2025; 55:107-115. [PMID: 39542814 PMCID: PMC11977673 DOI: 10.1053/j.semnuclmed.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024]
Abstract
Total-body (TB) positron emission tomography (PET) scanners are classified by their axial field of view (FOV). Long axial field of view (LAFOV) PET scanners can capture images from eyes to thighs in a one-bed position, covering all major organs with an axial FOV of about 100 cm. However, they often miss essential areas like distal lower extremities, limiting their use beyond oncology.TB-PET is reserved for scanners with a FOV of 180 cm or longer, allowing coverage of most of the body. LAFOV PET technology emerged about 40 years ago but gained traction recently due to advancements in data acquisition and cost. Early research highlighted its benefits, leading to the first FDA-cleared TB-PET/CT device in 2019 at UC Davis. Since then, various LAFOV scanners with enhanced capabilities have been developed, improving image quality, reducing acquisition times, and allowing for dynamic imaging. The uEXPLORER, the first LAFOV scanner, has a 194 cm active PET AFOV, far exceeding traditional scanners. The Panorama GS and others have followed suit in optimizing FOVs. Despite slow adoption due to the COVID pandemic and costs, over 50 LAFOV scanners are now in use globally. This review explores the future of LAFOV technology based on recent literature and experiences, covering its clinical applications, implications for radiation oncology, challenges in managing PET data, and expectations for technological advancements.
Collapse
Affiliation(s)
- Felipe Godinez
- Department of Radiology, University of California Davis, Sacramento, CA.
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Reimund Bayerlein
- Department of Biomedical Engineering, University of California Davis, Davis, CA
| | - Brahim Mehadji
- Department of Radiology, University of California Davis, Sacramento, CA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA
| |
Collapse
|
5
|
Sun Y, Cheng Z, Qiu J, Lu W. Performance and application of the total-body PET/CT scanner: a literature review. EJNMMI Res 2024; 14:38. [PMID: 38607510 PMCID: PMC11014840 DOI: 10.1186/s13550-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The total-body positron emission tomography/computed tomography (PET/CT) system, with a long axial field of view, represents the state-of-the-art PET imaging technique. Recently, the total-body PET/CT system has been commercially available. The total-body PET/CT system enables high-resolution whole-body imaging, even under extreme conditions such as ultra-low dose, extremely fast imaging speed, delayed imaging more than 10 h after tracer injection, and total-body dynamic scan. The total-body PET/CT system provides a real-time picture of the tracers of all organs across the body, which not only helps to explain normal human physiological process, but also facilitates the comprehensive assessment of systemic diseases. In addition, the total-body PET/CT system may play critical roles in other medical fields, including cancer imaging, drug development and immunology. MAIN BODY Therefore, it is of significance to summarize the existing studies of the total-body PET/CT systems and point out its future direction. This review collected research literatures from the PubMed database since the advent of commercially available total-body PET/CT systems to the present, and was divided into the following sections: Firstly, a brief introduction to the total-body PET/CT system was presented, followed by a summary of the literature on the performance evaluation of the total-body PET/CT. Then, the research and clinical applications of the total-body PET/CT were discussed. Fourthly, deep learning studies based on total-body PET imaging was reviewed. At last, the shortcomings of existing research and future directions for the total-body PET/CT were discussed. CONCLUSION Due to its technical advantages, the total-body PET/CT system is bound to play a greater role in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Zhaoping Cheng
- Department of PET-CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taian, 271000, China.
| |
Collapse
|
6
|
El Ouaridi A, Ait Elcadi Z, Mkimel M, Bougteb M, El Baydaoui R. The detection instrumentation and geometric design of clinical PET scanner: towards better performance and broader clinical applications. Biomed Phys Eng Express 2024; 10:032002. [PMID: 38412520 DOI: 10.1088/2057-1976/ad2d61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Positron emission tomography (PET) is a powerful medical imaging modality used in nuclear medicine to diagnose and monitor various clinical diseases in patients. It is more sensitive and produces a highly quantitative mapping of the three-dimensional biodistribution of positron-emitting radiotracers inside the human body. The underlying technology is constantly evolving, and recent advances in detection instrumentation and PET scanner design have significantly improved the medical diagnosis capabilities of this imaging modality, making it more efficient and opening the way to broader, innovative, and promising clinical applications. Some significant achievements related to detection instrumentation include introducing new scintillators and photodetectors as well as developing innovative detector designs and coupling configurations. Other advances in scanner design include moving towards a cylindrical geometry, 3D acquisition mode, and the trend towards a wider axial field of view and a shorter diameter. Further research on PET camera instrumentation and design will be required to advance this technology by improving its performance and extending its clinical applications while optimising radiation dose, image acquisition time, and manufacturing cost. This article comprehensively reviews the various parameters of detection instrumentation and PET system design. Firstly, an overview of the historical innovation of the PET system has been presented, focusing on instrumental technology. Secondly, we have characterised the main performance parameters of current clinical PET and detailed recent instrumental innovations and trends that affect these performances and clinical practice. Finally, prospects for this medical imaging modality are presented and discussed. This overview of the PET system's instrumental parameters enables us to draw solid conclusions on achieving the best possible performance for the different needs of different clinical applications.
Collapse
Affiliation(s)
- Abdallah El Ouaridi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Zakaria Ait Elcadi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Mounir Mkimel
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Mustapha Bougteb
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Redouane El Baydaoui
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| |
Collapse
|
7
|
Schmidt FP, Mannheim JG, Linder PM, Will P, Kiefer LS, Conti M, la Fougère C, Rausch I. Impact of the maximum ring difference on image quality and noise characteristics of a total-body PET/CT scanner. Z Med Phys 2023:S0939-3889(23)00113-7. [PMID: 37867050 DOI: 10.1016/j.zemedi.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
The sensitivity of a PET system highly depends on the axial acceptance angle or maximum ring difference (MRD), which can be particularly high for total-body scanners due to their larger axial field of views (aFOVs). This study aims to evaluate the impact on image quality (IQ) and noise performance when MRD85 (18°), the current standard for clinical use, is increased to MRD322 (52°) for the Biograph Vision Quadra (Siemens Healthineers). METHODS Studies with a cylindrical phantom covering the 106 cm aFOV and an IEC phantom filled with 18F, 68Ga and 89Zr were performed for acquisition times from 60 to 1800 s and activity concentrations from 0.4 to 3 kBq/ml to assess uniformity, contrast recovery coefficients (CRCs) and to characterize noise by coefficient of variation (CV). Spatial resolution was compared for both MRDs by sampling a quadrant of the FOV with a point source. Further IQ, CV, liver SUVmean and SUVmax were compared for a cohort of 5 patients scanned with [18F]FDG (3 MBq/kg, 1 h p.i.) from 30 to 300 s. RESULTS CV was improved by a factor of up to 1.49 and is highest for short acquisition times, peaks at the center field of view and mitigates parabolic in axial direction with no difference to MRD85 beyond the central 80 cm. No substantial differences between the two evaluated MRDs in regards to uniformity, SUVmean or CRC for the different isotopes were observed. A degradation of the average spatial resolution of 0.9 ± 0.2 mm in the central 40 cm FOV was determined with MRD322. Depending on the acquisition time MRD322 resulted in a decrease of SUVmax between 23.8% (30 s) and 9.0% (300 s). CONCLUSION Patient and phantom studies revealed that scan time could be lowered by approximately a factor of two with MRD322 while maintaining similar noise performance. The moderate degradation in spatial resolution for MRD322 is worth to exploit the full potential of the Quadra by either shorten scan times or leverage noise performance in particular for low count scenarios such as ultra-late imaging or dynamic studies with high temporal resolution.
Collapse
Affiliation(s)
- F P Schmidt
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen, Germany.
| | - J G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - P M Linder
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany
| | - P Will
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany
| | - L S Kiefer
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany
| | - M Conti
- Siemens Medical Solutions USA Inc., Molecular Imaging, Knoxville, TN, USA
| | - C la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, University hospital Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - I Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Vandenberghe S, Muller FM, Withofs N, Dadgar M, Maebe J, Vervenne B, Akl MA, Xue S, Shi K, Sportelli G, Belcari N, Hustinx R, Vanhove C, Karp JS. Walk-through flat panel total-body PET: a patient-centered design for high throughput imaging at lower cost using DOI-capable high-resolution monolithic detectors. Eur J Nucl Med Mol Imaging 2023; 50:3558-3571. [PMID: 37466650 PMCID: PMC10547652 DOI: 10.1007/s00259-023-06341-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Long axial field-of-view (LAFOV) systems have a much higher sensitivity than standard axial field-of-view (SAFOV) PET systems for imaging the torso or full body, which allows faster and/or lower dose imaging. Despite its very high sensitivity, current total-body PET (TB-PET) throughput is limited by patient handling (positioning on the bed) and often a shortage of available personnel. This factor, combined with high system costs, makes it hard to justify the implementation of these systems for many academic and nearly all routine nuclear medicine departments. We, therefore, propose a novel, cost-effective, dual flat panel TB-PET system for patients in upright standing positions to avoid the time-consuming positioning on a PET-CT table; the walk-through (WT) TB-PET. We describe a patient-centered, flat panel PET design that offers very efficient patient throughput and uses monolithic detectors (with BGO or LYSO) with depth-of-interaction (DOI) capabilities and high intrinsic spatial resolution. We compare system sensitivity, component costs, and patient throughput of the proposed WT-TB-PET to a SAFOV (= 26 cm) and a LAFOV (= 106 cm) LSO PET systems. METHODS Patient width, height (= top head to start of thighs) and depth (= distance from the bed to front of patient) were derived from 40 randomly selected PET-CT scans to define the design dimensions of the WT-TB-PET. We compare this new PET system to the commercially available Siemens Biograph Vision 600 (SAFOV) and Siemens Quadra (LAFOV) PET-CT in terms of component costs, system sensitivity, and patient throughput. System cost comparison was based on estimating the cost of the two main components in the PET system (Silicon Photomultipliers (SiPMs) and scintillators). Sensitivity values were determined using Gate Monte Carlo simulations. Patient throughput times (including CT and scout scan, patient positioning on bed and transfer) were recorded for 1 day on a Siemens Vision 600 PET. These timing values were then used to estimate the expected patient throughput (assuming an equal patient radiotracer injected activity to patients and considering differences in system sensitivity and time-of-flight information) for WT-TB-PET, SAFOV and LAFOV PET. RESULTS The WT-TB-PET is composed of two flat panels; each is 70 cm wide and 106 cm high, with a 50-cm gap between both panels. These design dimensions were justified by the patient sizes measured from the 40 random PET-CT scans. Each panel consists of 14 × 20 monolithic BGO detector blocks that are 50 × 50 × 16 mm in size and are coupled to a readout with 6 × 6 mm SiPMs arrays. For the WT-TB-PET, the detector surface is reduced by a factor of 1.9 and the scintillator volume by a factor of 2.2 compared to LAFOV PET systems, while demonstrating comparable sensitivity and much better uniform spatial resolution (< 2 mm in all directions over the FOV). The estimated component cost for the WT-TB-PET is 3.3 × lower than that of a 106 cm LAFOV system and only 20% higher than the PET component costs of a SAFOV. The estimated maximum number of patients scanned on a standard 8-h working day increases from 28 (for SAFOV) to 53-60 (for LAFOV in limited/full acceptance) to 87 (for the WT-TB-PET). By scanning faster (more patients), the amount of ordered activity per patient can be reduced drastically: the WT-TB-PET requires 66% less ordered activity per patient than a SAFOV. CONCLUSIONS We propose a monolithic BGO or LYSO-based WT-TB-PET system with DOI measurements that departs from the classical patient positioning on a table and allows patients to stand upright between two flat panels. The WT-TB-PET system provides a solution to achieve a much lower cost TB-PET approaching the cost of a SAFOV system. High patient throughput is increased by fast patient positioning between two vertical flat panel detectors of high sensitivity. High spatial resolution (< 2 mm) uniform over the FOV is obtained by using DOI-capable monolithic scintillators.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Florence M Muller
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hôpital, Avenue de Hôpital, 1, 4000, Liège 1, Belgium
| | - Meysam Dadgar
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jens Maebe
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Boris Vervenne
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Maya Abi Akl
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hôpital, Avenue de Hôpital, 1, 4000, Liège 1, Belgium
| | - Giancarlo Sportelli
- Dipartimento Di Fisica "E. Fermi", Università Di Pisa, Italy and with the Instituto Nazionale Di Fisica Nucleare, Sezione Di Pisa, 56127, Pisa, Italy
| | - Nicola Belcari
- Dipartimento Di Fisica "E. Fermi", Università Di Pisa, Italy and with the Instituto Nazionale Di Fisica Nucleare, Sezione Di Pisa, 56127, Pisa, Italy
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hôpital, Avenue de Hôpital, 1, 4000, Liège 1, Belgium
| | - Christian Vanhove
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Joel S Karp
- Physics and Instrumentation, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Surti S, Werner ME, Karp JS. Evaluation of cost-effective system designs for long axial field-of-view PET scanners. Phys Med Biol 2023; 68:10.1088/1361-6560/accf5d. [PMID: 37084744 PMCID: PMC10231377 DOI: 10.1088/1361-6560/accf5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/21/2023] [Indexed: 04/23/2023]
Abstract
Objective. Current commercial positron emission tomography (PET) scanners have excellent performance and diagnostic image quality primarily due to improvements in scanner sensitivity and time-of-flight (TOF) resolution. Recent years have seen the development of total-body PET scanners with longer axial field-of-view (AFOV) that increase sensitivity for single organ imaging, and also image more of the patient in a single bed position thereby enabling multi-organ dynamic imaging. While studies have shown significant capabilities of these systems, cost will be a major factor in their widespread adoption in the clinic. Here we evaluate alternative designs that achieve many advantages of long AFOV PET while utilizing cost-effective detector hardware.Approach. We utilize Monte Carlo simulations and clinically relevant lesion detectability metric to study the impact of scintillator type lutetium oxyorthosilicate or bismuth germanate (LSO or BGO), scintillator thickness (10-20 mm), and TOF resolution on resultant image quality in a 72 cm long scanner. Detector TOF resolution was varied based on current scanner performance, as well as expected future performance from detector designs that currently hold most promise for scaling into a scanner.Main results. Results indicate that BGO is competitive with LSO (both 20 mm thick) if we assume that it uses TOF (e.g. Cerenkov timing with 450 ps fwhm and Lorentzian distribution) and the LSO scanner has TOF resolution similar to the latest PMT-based scanners (∼500-650 ps). Alternatively, a system using 10 mm thick LSO with 150 ps TOF resolution can also provide similar performance. Both these alternative systems can provide cost savings (25%-33%) relative to a scanner using 20 mm LSO with ∼50% of effective sensitivity, but still 500%-700% higher than a conventional AFOV scanner.Significance. Our results have relevance to the development of long AFOV PET, where reduced cost of these alternative designs can provide wider accessibility for use in situations requiring imaging of multiple organs simultaneously.
Collapse
Affiliation(s)
- Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Matthew E Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
10
|
Dai B, Daube-Witherspoon ME, McDonald S, Werner ME, Parma MJ, Geagan MJ, Viswanath V, Karp JS. Performance evaluation of the PennPET explorer with expanded axial coverage. Phys Med Biol 2023; 68:095007. [PMID: 36958051 PMCID: PMC10450774 DOI: 10.1088/1361-6560/acc722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/25/2023]
Abstract
Objective.This work evaluated the updated PennPET Explorer total-body (TB) PET scanner, which was extended to 6 rings with updated readout firmware to achieve a 142 cm axial field of view (AFOV) without 7.6 cm inter-ring axial gaps.Approach.National Electrical Manufacturers Association (NEMA) NU 2-2018 measurements were performed with modifications including longer phantoms for sensitivity and count-rate measurements and additional positions for spatial resolution and image quality. A long uniform phantom and the clinical trials network (CTN) phantom were also used.Main results.The total sensitivity increased to 140 kcps MBq-1for a 70 cm line, a gain of 1.8x compared to the same system with axial gaps; an additional 47% increase in total counts was observed with a 142 cm line at the same activity per cm. The noise equivalent count rate (NECR) increased by 1.8x without axial gaps. The peak NECR is 1550 kcps at 25 kBq cc-1for a 140 cm phantom; due to increased randoms, the NECR is lower than with a 70 cm phantom, for which NECR is 2156 kcps cc-1at 25 kBq cc-1and continues increasing. The time-of-flight resolution is 250 ps, increasing by <10 ps at the highest activity. The axial spatial resolution degrades by 0.6 mm near the center of the AFOV, compared to 4 mm resolution near the end. The NEMA image quality phantom showed consistent contrast recovery throughout the AFOV. A long uniform phantom demonstrated axial uniformity of uptake and noise, and the CTN phantom demonstrated quantitative accuracy for both18F and89Zr.Significance. The performance evaluation of the updated PennPET Explorer demonstrates significant gains compared to conventional scanners and shows where the current NEMA standard needs to be updated for TB-PET systems. The comparisons of systems with and without inter-ring gaps demonstrate the performance trade-offs of a more cost-effective TB-PET system with incomplete detector coverage.
Collapse
Affiliation(s)
- Bing Dai
- Department of Radiology, University
of Pennsylvania, Philadelphia, United States of
America
| | | | - Stephen McDonald
- Department of Radiology, University
of Pennsylvania, Philadelphia, United States of
America
| | - Matthew E Werner
- Department of Radiology, University
of Pennsylvania, Philadelphia, United States of
America
| | - Michael J Parma
- Department of Radiology, University
of Pennsylvania, Philadelphia, United States of
America
| | - Michael J Geagan
- Department of Radiology, University
of Pennsylvania, Philadelphia, United States of
America
| | - Varsha Viswanath
- Department of Radiology, University
of Pennsylvania, Philadelphia, United States of
America
| | - Joel S Karp
- Department of Radiology, University
of Pennsylvania, Philadelphia, United States of
America
| |
Collapse
|
11
|
Vandenberghe S, Karakatsanis NA, Akl MA, Maebe J, Surti S, Dierckx RA, Pryma DA, Nehmeh SA, Bouhali O, Karp JS. The potential of a medium-cost long axial FOV PET system for nuclear medicine departments. Eur J Nucl Med Mol Imaging 2023; 50:652-660. [PMID: 36178535 DOI: 10.1007/s00259-022-05981-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Total body positron emission tomography (TB-PET) has recently been introduced in nuclear medicine departments. There is a large interest in these systems, but for many centers, the high acquisition cost makes it very difficult to justify their current operational budget. Here, we propose medium-cost long axial FOV scanners as an alternative. METHODS Several medium-cost long axial FOV designs are described with their advantages and drawbacks. We describe their potential for higher throughput, more cost-effective scanning, a larger group of indications, and novel research opportunities. The wider spread of TB-PET can also lead to the fast introduction of new tracers (at a low dose), new methodologies, and optimized workflows. CONCLUSIONS A medium-cost TB-PET would be positioned between the current standard PET-CT and the full TB-PET systems in investment but recapitulate most advantages of full TB-PET. These systems could be more easily justified financially in a standard academic or large private nuclear medicine department and still have ample research options.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Medical Image and Signal Processing, Ghent University, Corneel Heymans Laan 10, 9000, Ghent, Belgium.
| | | | - Maya Abi Akl
- Medical Image and Signal Processing, Ghent University, Corneel Heymans Laan 10, 9000, Ghent, Belgium
- Science Program, Texas A&M University at Qatar, Doha, Qatar
| | - Jens Maebe
- Medical Image and Signal Processing, Ghent University, Corneel Heymans Laan 10, 9000, Ghent, Belgium
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Rudi A Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Sadek A Nehmeh
- Weill Cornell Medical College, Cornell University, NY, USA
| | | | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
12
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
13
|
Daube-Witherspoon ME, Pantel AR, Pryma DA, Karp JS. Total-body PET: a new paradigm for molecular imaging. Br J Radiol 2022; 95:20220357. [PMID: 35993615 PMCID: PMC9733603 DOI: 10.1259/bjr.20220357] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
Total body (TB) positron emission tomography (PET) instruments have dramatically changed the paradigm of PET clinical and research studies due to their very high sensitivity and capability to image dynamic radiopharmaceutical distributions in the major organs of the body simultaneously. In this manuscript, we review the design of these systems and discuss general challenges and trade-offs to maximize the performance gains of current TB-PET systems. We then describe new concepts and technology that may impact future TB-PET systems. The manuscript summarizes what has been learned from the initial sites with TB-PET and explores potential research and clinical applications of TB-PET. The current generation of TB-PET systems range in axial field-of-view (AFOV) from 1 to 2 m and serve to illustrate the benefits and opportunities of a longer AFOV for various applications in PET. In only a few years of use these new TB-PET systems have shown that they will play an important role in expanding the field of molecular imaging and benefiting clinical practice.
Collapse
Affiliation(s)
| | - Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, United States
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, United States
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
14
|
Karakatsanis NA, Nehmeh MH, Conti M, Bal G, González AJ, Nehmeh SA. Physical performance of adaptive axial FOV PET scanners with a sparse detector block rings or a checkerboard configuration. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6aa1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Using Monte-Carlo simulations, we evaluated the physical performance of a hypothetical state-of-the-art clinical PET scanner with adaptive axial field-of-view (AFOV) based on the validated GATE model of the Siemens Biograph VisionTM PET/CT scanner. Approach. Vision consists of 16 compact PET rings, each consisting of 152 mini-blocks of 5 × 5 Lutetium Oxyorthosilicate crystals (3.2 × 3.2 × 20 mm3). The Vision 25.6 cm AFOV was extended by adopting (i) a sparse mini-block ring (SBR) configuration of 49.6 cm AFOV, with all mini-block rings interleaved with 16 mm axial gaps, or (ii) a sparse mini-block checkerboard (SCB) configuration of 51.2 cm AFOV, with all mini-blocks interleaved with gaps of 16 mm (transaxial) × 16 mm (axial) width in checkerboard pattern. For sparse configurations, a ‘limited’ continuous bed motion (limited-CBM) acquisition was employed to extend AFOVs by 2.9 cm. Spatial resolution, sensitivity, image quality (IQ), NECR and scatter fraction were assessed per NEMA NU2-2012. Main Results. All IQ phantom spheres were distinguishable with all configurations. SBR and SCB percent contrast recovery (% CR) and background variability (% BV) were similar (p-value > 0.05). Compared to Vision, SBR and SCB %CRs were similar (p-values > 0.05). However, SBR and SCB %BVs were deteriorated by 30% and 26% respectively (p-values < 0.05). SBR, SCB and Vision exhibited system sensitivities of 16.6, 16.8, and 15.8 kcps MBq−1, NECRs of 311 kcps @35 kBq cc−1, 266 kcps @25.8 kBq cc−1, and 260 kcps @27.8 kBq cc−1, and scatter fractions of 31.2%, 32.4%, and 32.6%, respectively. SBR and SCB exhibited a smoother sensitivity reduction and noise enhancement rate from AFOV center to its edges. SBR and SCB attained comparable spatial resolution in all directions (p-value > 0.05), yet, up to 1.5 mm worse than Vision (p-values < 0.05). Significance. The proposed sparse configurations may offer a clinically adoptable solution for cost-effective adaptive AFOV PET with either highly-sensitive or long-AFOV acquisitions.
Collapse
|
15
|
Tiwari A, Merrick M, Graves SA, Sunderland J. Monte Carlo evaluation of hypothetical long axial field-of-view PET scanner using GE discovery MI PET front-end architecture. Med Phys 2021; 49:1139-1152. [PMID: 34954831 DOI: 10.1002/mp.15422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The development of total-body PET scanners is of growing interest in the PET community. Investigation into the imaging properties of a hypothetical extended axial field-of-view (AFOV) GE Healthcare SiPM-based Discovery MI (DMI) system architecture has not yet been performed. In this work, we assessed its potential as a whole-body scanner using Monte Carlo simulations. The aim of this work was to (1) develop and validate a Monte Carlo model of a 4-ring scanner and (2) extend its AFOV up to 2 m to evaluate performance gain through NEMA-based evaluation. METHODS The DMI 4-ring geometry and its pulse digitization scheme were modeled within the GATE Monte Carlo platform using published literature. The GATE scanner model was validated by comparing results against published NEMA performance measurements. Following the validation of the 4-ring model, the model was extended to simulate 8, 20, 30, and 40-ring systems. Spatial resolution, sensitivity, NECR, and scatter fraction were characterized with modified NEMA NU-2 2018 standards; however, the image quality measurements were not acquired due to computational limitations. Spatial resolutions were simulated for all scanner ring configurations using point sources to examine the effects of parallax errors. NEMA count rates were estimated using a standard 70 cm scatter phantom and an extended version of scatter phantom of length 200 cm with (1-800) MBq of 18 F for all scanners. Sensitivity was evaluated using NEMA methods with a 70 cm standard and a 200 cm long line source. RESULTS The average FWHM of the radial/tangential/axial spatial resolution reconstructed with filtered back-projection at 1 and 10 cm from the scanner center were 3.94/4.10/4.41 mm and 5.29/4.89/5.90 mm for the 4-ring scanner. Sensitivity was determined to be 14.86 cps/kBq at the center of the FOV for the 4-ring scanner using a 70 cm line source. Sensitivity enhancement up to 21-fold and 60-fold were observed for 1 m and 2 m AFOV scanners compared to 4-ring scanner using a 200 cm long line source. Spatial resolution simulations in a 2 m AFOV scanner suggest a maximum degradation of ∼23.8% in the axial resolution compared to the 4-ring scanner. However, the transverse resolution was found to be relatively constant when increasing the axial acceptance angle up to ±70°. The peak NECR was 212.92 kcps at 22.70 kBq/mL with a scatter fraction of 38.9% for a 4-ring scanner with a 70 cm scatter phantom. Comparison of peak NECR using the 200 cm long scatter phantom relative to the 4-ring scanner resulted in a NECR gain of 15 for the 20-ring and 28 for the 40-ring geometry. Spatial resolution, sensitivity, and scatter fraction showed an agreement within ∼7% compared with published measured values. CONCLUSIONS The 4-ring DMI scanner simulation was successfully validated against published NEMA measurements. Sensitivity and NECR performance of extended 1 and 2 meters AFOV scanners based upon the DMI architecture were subsequently simulated. Increases in sensitivity and count-rate performance are consistent with prior simulation studies utilizing extensions of the Siemens mCT architecture and published NEMA measurements with the uEXPLORER system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashok Tiwari
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA, 52242, USA
| | - Michael Merrick
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
| | - Stephen A Graves
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA.,Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - John Sunderland
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA, 52242, USA.,Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| |
Collapse
|
16
|
Schaart DR, Schramm G, Nuyts J, Surti S. Time of Flight in Perspective: Instrumental and Computational Aspects of Time Resolution in Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:598-618. [PMID: 34553105 PMCID: PMC8454900 DOI: 10.1109/trpms.2021.3084539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first time-of-flight positron emission tomography (TOF-PET) scanners were developed as early as in the 1980s. However, the poor light output and low detection efficiency of TOF-capable detectors available at the time limited any gain in image quality achieved with these TOF-PET scanners over the traditional non-TOF PET scanners. The discovery of LSO and other Lu-based scintillators revived interest in TOF-PET and led to the development of a second generation of scanners with high sensitivity and spatial resolution in the mid-2000s. The introduction of the silicon photomultiplier (SiPM) has recently yielded a third generation of TOF-PET systems with unprecedented imaging performance. Parallel to these instrumentation developments, much progress has been made in the development of image reconstruction algorithms that better utilize the additional information provided by TOF. Overall, the benefits range from a reduction in image variance (SNR increase), through allowing joint estimation of activity and attenuation, to better reconstructing data from limited angle systems. In this work, we review these developments, focusing on three broad areas: 1) timing theory and factors affecting the time resolution of a TOF-PET system; 2) utilization of TOF information for improved image reconstruction; and 3) quantification of the benefits of TOF compared to non-TOF PET. Finally, we offer a brief outlook on the TOF-PET developments anticipated in the short and longer term. Throughout this work, we aim to maintain a clinically driven perspective, treating TOF as one of multiple (and sometimes competitive) factors that can aid in the optimization of PET imaging performance.
Collapse
Affiliation(s)
- Dennis R Schaart
- Section Medical Physics & Technology, Radiation Science and Technology Department, Delft University of Technology, 2629 JB Delft, The Netherlands
| | - Georg Schramm
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, 3000 Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, 3000 Leuven, Belgium
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|