1
|
Cui J, Zeng P, Zeng X, Xu Y, Wang P, Zhou J, Wang Y, Shen D. Prior Knowledge-Guided Triple-Domain Transformer-GAN for Direct PET Reconstruction From Low-Count Sinograms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4174-4189. [PMID: 38869996 DOI: 10.1109/tmi.2024.3413832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
To obtain high-quality positron emission tomography (PET) images while minimizing radiation exposure, numerous methods have been dedicated to acquiring standard-count PET (SPET) from low-count PET (LPET). However, current methods have failed to take full advantage of the different emphasized information from multiple domains, i.e., the sinogram, image, and frequency domains, resulting in the loss of crucial details. Meanwhile, they overlook the unique inner-structure of the sinograms, thereby failing to fully capture its structural characteristics and relationships. To alleviate these problems, in this paper, we proposed a prior knowledge-guided transformer-GAN that unites triple domains of sinogram, image, and frequency to directly reconstruct SPET images from LPET sinograms, namely PK-TriDo. Our PK-TriDo consists of a Sinogram Inner-Structure-based Denoising Transformer (SISD-Former) to denoise the input LPET sinogram, a Frequency-adapted Image Reconstruction Transformer (FaIR-Former) to reconstruct high-quality SPET images from the denoised sinograms guided by the image domain prior knowledge, and an Adversarial Network (AdvNet) to further enhance the reconstruction quality via adversarial training. Specifically tailored for the PET imaging mechanism, we injected a sinogram embedding module that partitions the sinograms by rows and columns to obtain 1D sequences of angles and distances to faithfully preserve the inner-structure of the sinograms. Moreover, to mitigate high-frequency distortions and enhance reconstruction details, we integrated global-local frequency parsers (GLFPs) into FaIR-Former to calibrate the distributions and proportions of different frequency bands, thus compelling the network to preserve high-frequency details. Evaluations on three datasets with different dose levels and imaging scenarios demonstrated that our PK-TriDo outperforms the state-of-the-art methods.
Collapse
|
2
|
Wang F, Wang R, Qiu H. Low-dose CT reconstruction using dataset-free learning. PLoS One 2024; 19:e0304738. [PMID: 38875181 PMCID: PMC11178168 DOI: 10.1371/journal.pone.0304738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Low-Dose computer tomography (LDCT) is an ideal alternative to reduce radiation risk in clinical applications. Although supervised-deep-learning-based reconstruction methods have demonstrated superior performance compared to conventional model-driven reconstruction algorithms, they require collecting massive pairs of low-dose and norm-dose CT images for neural network training, which limits their practical application in LDCT imaging. In this paper, we propose an unsupervised and training data-free learning reconstruction method for LDCT imaging that avoids the requirement for training data. The proposed method is a post-processing technique that aims to enhance the initial low-quality reconstruction results, and it reconstructs the high-quality images by neural work training that minimizes the ℓ1-norm distance between the CT measurements and their corresponding simulated sinogram data, as well as the total variation (TV) value of the reconstructed image. Moreover, the proposed method does not require to set the weights for both the data fidelity term and the plenty term. Experimental results on the AAPM challenge data and LoDoPab-CT data demonstrate that the proposed method is able to effectively suppress the noise and preserve the tiny structures. Also, these results demonstrate the rapid convergence and low computational cost of the proposed method. The source code is available at https://github.com/linfengyu77/IRLDCT.
Collapse
Affiliation(s)
- Feng Wang
- College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Renfang Wang
- College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Hong Qiu
- College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Chen H, Li Q, Zhou L, Li F. Deep learning-based algorithms for low-dose CT imaging: A review. Eur J Radiol 2024; 172:111355. [PMID: 38325188 DOI: 10.1016/j.ejrad.2024.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The computed tomography (CT) technique is extensively employed as an imaging modality in clinical settings. The radiation dose of CT, however, is significantly high, thereby raising concerns regarding the potential radiation damage it may cause. The reduction of X-ray exposure dose in CT scanning may result in a significant decline in imaging quality, thereby elevating the risk of missed diagnosis and misdiagnosis. The reduction of CT radiation dose and acquisition of high-quality images to meet clinical diagnostic requirements have always been a critical research focus and challenge in the field of CT. Over the years, scholars have conducted extensive research on enhancing low-dose CT (LDCT) imaging algorithms, among which deep learning-based algorithms have demonstrated superior performance. In this review, we initially introduced the conventional algorithms for CT image reconstruction along with their respective advantages and disadvantages. Subsequently, we provided a detailed description of four aspects concerning the application of deep neural networks in LDCT imaging process: preprocessing in the projection domain, post-processing in the image domain, dual-domain processing imaging, and direct deep learning-based reconstruction (DLR). Furthermore, an analysis was conducted to evaluate the merits and demerits of each method. The commercial and clinical applications of the LDCT-DLR algorithm were also presented in an overview. Finally, we summarized the existing issues pertaining to LDCT-DLR and concluded the paper while outlining prospective trends for algorithmic advancement.
Collapse
Affiliation(s)
- Hongchi Chen
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Qiuxia Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Lazhen Zhou
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Fangzuo Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
4
|
Galve P, Rodriguez-Vila B, Herraiz J, García-Vázquez V, Malpica N, Udias J, Torrado-Carvajal A. Recent advances in combined Positron Emission Tomography and Magnetic Resonance Imaging. JOURNAL OF INSTRUMENTATION 2024; 19:C01001. [DOI: 10.1088/1748-0221/19/01/c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Abstract
Hybrid imaging modalities combine two or more medical imaging techniques offering exciting new possibilities to image the structure, function and biochemistry of the human body in far greater detail than has previously been possible to improve patient diagnosis. In this context, simultaneous Positron Emission Tomography and Magnetic Resonance (PET/MR) imaging offers great complementary information, but it also poses challenges from the point of view of hardware and software compatibility. The PET signal may interfere with the MR magnetic field and vice-versa, posing several challenges and constrains in the PET instrumentation for PET/MR systems. Additionally, anatomical maps are needed to properly apply attenuation and scatter corrections to the resulting reconstructed PET images, as well motion estimates to minimize the effects of movement throughout the acquisition. In this review, we summarize the instrumentation implemented in modern PET scanners to overcome these limitations, describing the historical development of hybrid PET/MR scanners. We pay special attention to the methods used in PET to achieve attenuation, scatter and motion correction when it is combined with MR, and how both imaging modalities may be combined in PET image reconstruction algorithms.
Collapse
|
5
|
Li B, Zhang J, Wang Q, Li H, Wang Q. Three-dimensional spine reconstruction from biplane radiographs using convolutional neural networks. Med Eng Phys 2024; 123:104088. [PMID: 38365341 DOI: 10.1016/j.medengphy.2023.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 02/18/2024]
Abstract
PURPOSE The purpose of this study was to develop and evaluate a deep learning network for three-dimensional reconstruction of the spine from biplanar radiographs. METHODS The proposed approach focused on extracting similar features and multiscale features of bone tissue in biplanar radiographs. Bone tissue features were reconstructed for feature representation across dimensions to generate three-dimensional volumes. The number of feature mappings was gradually reduced in the reconstruction to transform the high-dimensional features into the three-dimensional image domain. We produced and made eight public datasets to train and test the proposed network. Two evaluation metrics were proposed and combined with four classical evaluation metrics to measure the performance of the method. RESULTS In comparative experiments, the reconstruction results of this method achieved a Hausdorff distance of 1.85 mm, a surface overlap of 0.2 mm, a volume overlap of 0.9664, and an offset distance of only 0.21 mm from the vertebral body centroid. The results of this study indicate that the proposed method is reliable.
Collapse
Affiliation(s)
- Bo Li
- Department of Electronic Engineering, Yunnan University, Kunming, China
| | - Junhua Zhang
- Department of Electronic Engineering, Yunnan University, Kunming, China.
| | - Qian Wang
- Department of Electronic Engineering, Yunnan University, Kunming, China
| | - Hongjian Li
- The First People's Hospital of Yunnan Province, China
| | - Qiyang Wang
- The First People's Hospital of Yunnan Province, China
| |
Collapse
|
6
|
Kandarpa VSS, Perelli A, Bousse A, Visvikis D. LRR-CED: low-resolution reconstruction-aware convolutional encoder–decoder network for direct sparse-view CT image reconstruction. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7bce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Sparse-view computed tomography (CT) reconstruction has been at the forefront of research in medical imaging. Reducing the total x-ray radiation dose to the patient while preserving the reconstruction accuracy is a big challenge. The sparse-view approach is based on reducing the number of rotation angles, which leads to poor quality reconstructed images as it introduces several artifacts. These artifacts are more clearly visible in traditional reconstruction methods like the filtered-backprojection (FBP) algorithm. Approach. Over the years, several model-based iterative and more recently deep learning-based methods have been proposed to improve sparse-view CT reconstruction. Many deep learning-based methods improve FBP-reconstructed images as a post-processing step. In this work, we propose a direct deep learning-based reconstruction that exploits the information from low-dimensional scout images, to learn the projection-to-image mapping. This is done by concatenating FBP scout images at multiple resolutions in the decoder part of a convolutional encoder–decoder (CED). Main results. This approach is investigated on two different networks, based on Dense Blocks and U-Net to show that a direct mapping can be learned from a sinogram to an image. The results are compared to two post-processing deep learning methods (FBP-ConvNet and DD-Net) and an iterative method that uses a total variation (TV) regularization. Significance. This work presents a novel method that uses information from both sinogram and low-resolution scout images for sparse-view CT image reconstruction. We also generalize this idea by demonstrating results with two different neural networks. This work is in the direction of exploring deep learning across the various stages of the image reconstruction pipeline involving data correction, domain transfer and image improvement.
Collapse
|
7
|
Ma R, Hu J, Sari H, Xue S, Mingels C, Viscione M, Kandarpa VSS, Li WB, Visvikis D, Qiu R, Rominger A, Li J, Shi K. An encoder-decoder network for direct image reconstruction on sinograms of a long axial field of view PET. Eur J Nucl Med Mol Imaging 2022; 49:4464-4477. [PMID: 35819497 DOI: 10.1007/s00259-022-05861-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Deep learning is an emerging reconstruction method for positron emission tomography (PET), which can tackle complex PET corrections in an integrated procedure. This paper optimizes the direct PET reconstruction from sinogram on a long axial field of view (LAFOV) PET. METHODS This paper proposes a novel deep learning architecture to reduce the biases during direct reconstruction from sinograms to images. This architecture is based on an encoder-decoder network, where the perceptual loss is used with pre-trained convolutional layers. It is trained and tested on data of 80 patients acquired from recent Siemens Biograph Vision Quadra long axial FOV (LAFOV) PET/CT. The patients are randomly split into a training dataset of 60 patients, a validation dataset of 10 patients, and a test dataset of 10 patients. The 3D sinograms are converted into 2D sinogram slices and used as input to the network. In addition, the vendor reconstructed images are considered as ground truths. Finally, the proposed method is compared with DeepPET, a benchmark deep learning method for PET reconstruction. RESULTS Compared with DeepPET, the proposed network significantly reduces the root-mean-squared error (NRMSE) from 0.63 to 0.6 (p < 0.01) and increases the structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) from 0.93 to 0.95 (p < 0.01) and from 82.02 to 82.36 (p < 0.01), respectively. The reconstruction time is approximately 10 s per patient, which is shortened by 23 times compared with the conventional method. The errors of mean standardized uptake values (SUVmean) for lesions between ground truth and the predicted result are reduced from 33.5 to 18.7% (p = 0.03). In addition, the error of max SUV is reduced from 32.7 to 21.8% (p = 0.02). CONCLUSION The results demonstrate the feasibility of using deep learning to reconstruct images with acceptable image quality and short reconstruction time. It is shown that the proposed method can improve the quality of deep learning-based reconstructed images without additional CT images for attenuation and scattering corrections. This study demonstrated the feasibility of deep learning to rapidly reconstruct images without additional CT images for complex corrections from actual clinical measurements on LAFOV PET. Despite improving the current development, AI-based reconstruction does not work appropriately for untrained scenarios due to limited extrapolation capability and cannot completely replace conventional reconstruction currently.
Collapse
Affiliation(s)
- Ruiyao Ma
- Department of Engineering Physics, Tsinghua University, and Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, China.,Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Radiation Medicine, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Bavaria, Neuherberg, Germany
| | - Jiaxi Hu
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Viscione
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Bavaria, Neuherberg, Germany
| | | | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, and Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, China.
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, and Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Visvikis D, Lambin P, Beuschau Mauridsen K, Hustinx R, Lassmann M, Rischpler C, Shi K, Pruim J. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. Eur J Nucl Med Mol Imaging 2022; 49:4452-4463. [PMID: 35809090 PMCID: PMC9606092 DOI: 10.1007/s00259-022-05891-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) will change the face of nuclear medicine and molecular imaging as it will in everyday life. In this review, we focus on the potential applications of AI in the field, both from a physical (radiomics, underlying statistics, image reconstruction and data analysis) and a clinical (neurology, cardiology, oncology) perspective. Challenges for transferability from research to clinical practice are being discussed as is the concept of explainable AI. Finally, we focus on the fields where challenges should be set out to introduce AI in the field of nuclear medicine and molecular imaging in a reliable manner.
Collapse
Affiliation(s)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Center (MUMC +), Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Center (MUMC +), Maastricht, The Netherlands
| | - Kim Beuschau Mauridsen
- Center of Functionally Integrative Neuroscience and MindLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Roland Hustinx
- GIGA-CRC in Vivo Imaging, University of Liège, GIGA, Avenue de l'Hôpital 11, 4000, Liege, Belgium
| | - Michael Lassmann
- Klinik Und Poliklinik Für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Jan Pruim
- Medical Imaging Center, Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Artificial intelligence-based PET image acquisition and reconstruction. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractConventional reconstruction techniques, such as filtered back projection (FBP) and iterative reconstruction (IR), which have been utilised widely in the image reconstruction process of computed tomography (CT) are not suitable in the case of low-dose CT applications, because of the unsatisfying quality of the reconstructed image and inefficient reconstruction time. Therefore, as the demand for CT radiation dose reduction continues to increase, the use of artificial intelligence (AI) in image reconstruction has become a trend that attracts more and more attention. This systematic review examined various deep learning methods to determine their characteristics, availability, intended use and expected outputs concerning low-dose CT image reconstruction. Utilising the methodology of Kitchenham and Charter, we performed a systematic search of the literature from 2016 to 2021 in Springer, Science Direct, arXiv, PubMed, ACM, IEEE, and Scopus. This review showed that algorithms using deep learning technology are superior to traditional IR methods in noise suppression, artifact reduction and structure preservation, in terms of improving the image quality of low-dose reconstructed images. In conclusion, we provided an overview of the use of deep learning approaches in low-dose CT image reconstruction together with their benefits, limitations, and opportunities for improvement.
Collapse
|
11
|
Pain CD, Egan GF, Chen Z. Deep learning-based image reconstruction and post-processing methods in positron emission tomography for low-dose imaging and resolution enhancement. Eur J Nucl Med Mol Imaging 2022; 49:3098-3118. [PMID: 35312031 PMCID: PMC9250483 DOI: 10.1007/s00259-022-05746-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022]
Abstract
Image processing plays a crucial role in maximising diagnostic quality of positron emission tomography (PET) images. Recently, deep learning methods developed across many fields have shown tremendous potential when applied to medical image enhancement, resulting in a rich and rapidly advancing literature surrounding this subject. This review encapsulates methods for integrating deep learning into PET image reconstruction and post-processing for low-dose imaging and resolution enhancement. A brief introduction to conventional image processing techniques in PET is firstly presented. We then review methods which integrate deep learning into the image reconstruction framework as either deep learning-based regularisation or as a fully data-driven mapping from measured signal to images. Deep learning-based post-processing methods for low-dose imaging, temporal resolution enhancement and spatial resolution enhancement are also reviewed. Finally, the challenges associated with applying deep learning to enhance PET images in the clinical setting are discussed and future research directions to address these challenges are presented.
Collapse
Affiliation(s)
- Cameron Dennis Pain
- Monash Biomedical Imaging, Monash University, Melbourne, Australia.
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia.
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Department of Data Science and AI, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Gong K, Catana C, Qi J, Li Q. Direct Reconstruction of Linear Parametric Images From Dynamic PET Using Nonlocal Deep Image Prior. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:680-689. [PMID: 34652998 PMCID: PMC8956450 DOI: 10.1109/tmi.2021.3120913] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct reconstruction methods have been developed to estimate parametric images directly from the measured PET sinograms by combining the PET imaging model and tracer kinetics in an integrated framework. Due to limited counts received, signal-to-noise-ratio (SNR) and resolution of parametric images produced by direct reconstruction frameworks are still limited. Recently supervised deep learning methods have been successfully applied to medical imaging denoising/reconstruction when large number of high-quality training labels are available. For static PET imaging, high-quality training labels can be acquired by extending the scanning time. However, this is not feasible for dynamic PET imaging, where the scanning time is already long enough. In this work, we proposed an unsupervised deep learning framework for direct parametric reconstruction from dynamic PET, which was tested on the Patlak model and the relative equilibrium Logan model. The training objective function was based on the PET statistical model. The patient's anatomical prior image, which is readily available from PET/CT or PET/MR scans, was supplied as the network input to provide a manifold constraint, and also utilized to construct a kernel layer to perform non-local feature denoising. The linear kinetic model was embedded in the network structure as a 1 ×1 ×1 convolution layer. Evaluations based on dynamic datasets of 18F-FDG and 11C-PiB tracers show that the proposed framework can outperform the traditional and the kernel method-based direct reconstruction methods.
Collapse
|
13
|
Ote K, Hashimoto F. Deep-learning-based fast TOF-PET image reconstruction using direction information. Radiol Phys Technol 2022; 15:72-82. [DOI: 10.1007/s12194-022-00652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
14
|
Gong K, Kim K, Cui J, Wu D, Li Q. The Evolution of Image Reconstruction in PET: From Filtered Back-Projection to Artificial Intelligence. PET Clin 2021; 16:533-542. [PMID: 34537129 DOI: 10.1016/j.cpet.2021.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PET can provide functional images revealing physiologic processes in vivo. Although PET has many applications, there are still some limitations that compromise its precision: the absorption of photons in the body causes signal attenuation; the dead-time limit of system components leads to the loss of the count rate; the scattered and random events received by the detector introduce additional noise; the characteristics of the detector limit the spatial resolution; and the low signal-to-noise ratio caused by the scan-time limit (eg, dynamic scans) and dose concern. The early PET reconstruction methods are analytical approaches based on an idealized mathematical model.
Collapse
Affiliation(s)
- Kuang Gong
- Department of Radiology, Center for Advanced Medical Computing and Analysis, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyungsang Kim
- Department of Radiology, Center for Advanced Medical Computing and Analysis, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianan Cui
- Department of Radiology, Center for Advanced Medical Computing and Analysis, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dufan Wu
- Department of Radiology, Center for Advanced Medical Computing and Analysis, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Quanzheng Li
- Department of Radiology, Center for Advanced Medical Computing and Analysis, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|