1
|
A Mohymen A, Farag HI, Reda SM, Monem AS, Ali SA. Impact of reconstruction algorithms at different sphere-to-background ratios on PET quantification: A phantom study. Appl Radiat Isot 2025; 220:111761. [PMID: 40043519 DOI: 10.1016/j.apradiso.2025.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/16/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Using National Electrical Manufacturers Association (NEMA) phantom, the behavior of four distinct Positron Emission Tomography/Computed Tomography (PET/CT) reconstruction algorithms was investigated. These reconstruction algorithms were (Ordered Subset Expectation Maximization (OSEM), OSEM+ (Point Spread Function) PSF, OSEM + Time of Flight (TOF), and OSEM + TOF + PSF), and the focus was on sphere sizes and SBRs using recovery coefficients as a quantitation method. The obtained results demonstrated the significant effect of TOF on Gibbs artifact and Partial Volume Effect (PVE) at various Sphere-to-Background Ratios (SBRs). TOF-based algorithms improved quantification accuracy and mitigated the influence of Gibbs artifact, particularly at higher SBRs. Compared to PSF algorithm, TOF- based algorithms effectively mitigated the impact of PVE on small-sized spheres and less dependent on SBRs. In terms of Standardized Uptake Value (SUV) quantification, SUVmean was better when utilizing TOF-based algorithms at lower SBRs, whereas SUVmax at higher SBRs. The combination of TOF and PSF produced a promising outcomes in quantifying and detecting a small-sized spheres across various SBRs, ultimately resulting in a more reliable and precise diagnostic information.
Collapse
Affiliation(s)
- Ahmed A Mohymen
- Nuclear Medicine and Radiation Therapy Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Hamed I Farag
- Nuclear Medicine and Radiation Therapy Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sameh M Reda
- Radiometry Department, National Institute of Standards, Giza, Egypt
| | - Ahmed S Monem
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Said A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Kratochwil N, Kaneshige N, Terragni G, Cala R, Schott J, van Loef E, Soundara Pandian L, Roncali E, Glodo J, Auffray E, Ariño-Estrada G. TlCl:Be,I: a high sensitivity scintillation and Cherenkov radiator for TOF-PET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2025; 9:296-303. [PMID: 40045986 PMCID: PMC11882110 DOI: 10.1109/trpms.2024.3487359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The material requirements for gamma-ray detectors for medical imaging applications are multi-fold and sensitivity is often overlooked. High effective atomic number (Zeff) Cherenkov radiators have raised the attention in the community due to their potential for harvesting prompt photons. A material with one of the highest Zeff and thus short gamma-ray attenuation length is thallium chloride (TlCl). By doping TlCl with beryllium (Be) or iodine (I), it becomes a scintillator and therefore produces scintillation photons upon gamma-ray interaction on top of the prompt Cherenkov luminescence. The scintillation response of TlCl:Be,I is investigated in terms of intensity, energy resolution, kinetics, and timing capability with and without energy discrimination. The ratio of prompt to slow scintillation photons is used to derive the intrinsic number of produced Cherenkov photons and compared with analytic calculations avoiding complex Monte-Carlo simulations. The experimentally determined number of Cherenkov photons upon 511 keV gamma excitation of 17.9 ± 4.6 photons is in line with our simple calculations yielding 14.5 photons. We observe three scintillation decay time components with an effective decay time of 60 ns. The scintillation light yield of 0.9 ph/keV is sufficient to discriminate events with low energy deposition in the crystal which is used to improve the measured coincidence time resolution from 360 ps FWHM without energy selection down to 235 ps after energy discrimination and time walk correction for 2.8 mm thick TlCl:Be,I crystals, and from 580 ps to 402 ps for 15.2 mm thick ones. Already with the first generation of doped TlCl encouraging timing capability close to other materials with lower effective atomic number has been achieved.
Collapse
Affiliation(s)
- Nicolaus Kratochwil
- Department of Biomedical Engineering, University of California at Davis (UCD), Davis, CA, United States and was with the European Organization for Nuclear Research (CERN), Meyrin, Switzerland
| | - Nathaniel Kaneshige
- Radiation Monitoring Devices (RMD) Inc, Waterdown, MA, United States and is now with Helion
| | | | - Roberto Cala
- CERN and with the University of Milano-Bicocca, Italy
| | | | | | | | - Emilie Roncali
- Department of Biomedical Engineering and with the Department of Radiology at UCD
| | | | | | - Gerard Ariño-Estrada
- Department of Biomedical Engineering at UCD and with the Institut de Física d'Altes Energies - Barcelona Institute of Science and Technology, Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Loignon-Houle F, Kratochwil N, Toussaint M, Lowis C, Ariño-Estrada G, Gonzalez AJ, Auffray E, Lecomte R. Improving timing resolution of BGO for TOF-PET: a comparative analysis with and without deep learning. EJNMMI Phys 2025; 12:2. [PMID: 39821728 PMCID: PMC11739447 DOI: 10.1186/s40658-024-00711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The renewed interest in BGO scintillators for TOF-PET is driven by the improved Cherenkov photon detection with new blue-sensitive SiPMs. However, the slower scintillation light from BGO causes significant time walk with leading edge discrimination (LED), which degrades the coincidence time resolution (CTR). To address this, a time walk correction (TWC) can be done by using the rise time measured with a second threshold. Deep learning, particularly convolutional neural networks (CNNs), can also enhance CTR by training with digitized waveforms. It remains to be explored how timing estimation methods utilizing one (LED), two (TWC), or multiple (CNN) waveform data points compare in CTR performance of BGO scintillators. RESULTS In this work, we compare classical experimental timing estimation methods (LED, TWC) with a CNN-based method using the signals from BGO crystals read out by NUV-HD-MT SiPMs and high-frequency electronics. For2 × 2 × 3 mm 3 crystals, implementing TWC results in a CTR of 129 ± 2 ps FWHM, while employing the CNN yields 115 ± 2 ps FWHM, marking improvements of 18 % and 26 %, respectively, relative to the standard LED estimator. For2 × 2 × 20 mm 3 crystals, both methods yield similar CTR (around 240 ps FWHM), offering a ∼ 15 % gain over LED. The CNN, however, exhibits better tail suppression in the coincidence time distribution. CONCLUSIONS The higher complexity of waveform digitization needed for CNNs could potentially be mitigated by adopting a simpler two-threshold approach, which appears to currently capture most of the essential information for improving CTR in longer BGO crystals. Other innovative deep learning models and training strategies may nonetheless contribute further in a near future to harnessing increasingly discernible timing features in TOF-PET detector signals.
Collapse
Affiliation(s)
- Francis Loignon-Houle
- Instituto de Instrumentación para Imagen Molecular, Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera, Valencia, 46002, Spain.
| | - Nicolaus Kratochwil
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, California, 95616, USA
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
| | - Maxime Toussaint
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 12th Avenue N, Sherbrooke, J1H 5N4, Québec, Canada
| | - Carsten Lowis
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
- RWTH Aachen University, 55 Templergraben, Aachen, 52062, Germany
| | - Gerard Ariño-Estrada
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, California, 95616, USA
- Institut de Fìsica d'Altes Energies, Barcelona Institute of Science and Technology, Edifici Cn, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Antonio J Gonzalez
- Instituto de Instrumentación para Imagen Molecular, Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera, Valencia, 46002, Spain
| | - Etiennette Auffray
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 12th Avenue N, Sherbrooke, J1H 5N4, Québec, Canada
- Imaging Research and Technology (IR&T) Inc., 2201 Tanguay St., Magog, Québec, J1X 7K3, Canada
| |
Collapse
|
4
|
Hussain D, Abbas N, Khan J. Recent Breakthroughs in PET-CT Multimodality Imaging: Innovations and Clinical Impact. Bioengineering (Basel) 2024; 11:1213. [PMID: 39768032 PMCID: PMC11672880 DOI: 10.3390/bioengineering11121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
This review presents a detailed examination of the most recent advancements in positron emission tomography-computed tomography (PET-CT) multimodal imaging over the past five years. The fusion of PET and CT technologies has revolutionized medical imaging, offering unprecedented insights into both anatomical structure and functional processes. The analysis delves into key technological innovations, including advancements in image reconstruction, data-driven gating, and time-of-flight capabilities, highlighting their impact on enhancing diagnostic accuracy and clinical outcomes. Illustrative case studies underscore the transformative role of PET-CT in lesion detection, disease characterization, and treatment response evaluation. Additionally, the review explores future prospects and challenges in PET-CT, advocating for the integration and evaluation of emerging technologies to improve patient care. This comprehensive synthesis aims to equip healthcare professionals, researchers, and industry stakeholders with the knowledge and tools necessary to navigate the evolving landscape of PET-CT multimodal imaging.
Collapse
Affiliation(s)
- Dildar Hussain
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea;
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jawad Khan
- Department of AI and Software, School of Computing, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
5
|
Yoshida E, Obata F, Yamaya T. Optical crosstalk of protective cover on MPPC array for TOF PET detector. Phys Med Biol 2024; 69:125012. [PMID: 38815615 DOI: 10.1088/1361-6560/ad5268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Objective. Time-of-flight (TOF) is an important factor that directly affects the image quality of PET systems, and various attempts have been made to improve the coincidence resolving time (CRT) of PET detectors. For independent readout detectors, the timing is acquired for each silicon photomultiplier (SiPM), so they are less sensitive to diffused scintillation light, resulting in a better CRT. Further improvement can be expected if the light can be focused on a single SiPM. However, existing SiPM arrays have a thin protective cover on the SiPM and the gap between the SiPMs is filled with either air or the protective cover, so the light must diffuse through the cover. In this work, we investigated optical crosstalk in the protective cover to improve the CRT.Approach. We used 3.1 × 3.1 × 20 mm3fast LGSO crystals and 3 mm square 8 × 8 multi pixel photon counter (MPPC) arrays. Pitch of the MPPCs was 3.2 mm and thickness of the protective cover on them was 150μm. To reduce diffusion of scintillation light in the protective cover, the part of the inactive areas on the MPPC array were optically separated using reflective material. Specifically, 50, 100, 150, and 350μm deep grid-shaped slits were made along the inactive area of the MPPCs and they were filled with BaSO4powder as the reflective material.Main results. Coincidence counts were measured with a pair of TOF detectors, and the CRT was shorter with a deeper slit depth. The CRT before improvement was 235 ps, and using the cover having the 350μm deep slits filled with reflective material lowered the CRT to 211 ps.Significance. Up to 10% of the scintillation light was diffused to other MPPCs by the protective cover, and the CRT was degraded by 10% due to optical crosstalk of the cover. The proposed method promises to improve the CRT of the TOF detector.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Fujino Obata
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
6
|
El Ouaridi A, Ait Elcadi Z, Mkimel M, Bougteb M, El Baydaoui R. The detection instrumentation and geometric design of clinical PET scanner: towards better performance and broader clinical applications. Biomed Phys Eng Express 2024; 10:032002. [PMID: 38412520 DOI: 10.1088/2057-1976/ad2d61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Positron emission tomography (PET) is a powerful medical imaging modality used in nuclear medicine to diagnose and monitor various clinical diseases in patients. It is more sensitive and produces a highly quantitative mapping of the three-dimensional biodistribution of positron-emitting radiotracers inside the human body. The underlying technology is constantly evolving, and recent advances in detection instrumentation and PET scanner design have significantly improved the medical diagnosis capabilities of this imaging modality, making it more efficient and opening the way to broader, innovative, and promising clinical applications. Some significant achievements related to detection instrumentation include introducing new scintillators and photodetectors as well as developing innovative detector designs and coupling configurations. Other advances in scanner design include moving towards a cylindrical geometry, 3D acquisition mode, and the trend towards a wider axial field of view and a shorter diameter. Further research on PET camera instrumentation and design will be required to advance this technology by improving its performance and extending its clinical applications while optimising radiation dose, image acquisition time, and manufacturing cost. This article comprehensively reviews the various parameters of detection instrumentation and PET system design. Firstly, an overview of the historical innovation of the PET system has been presented, focusing on instrumental technology. Secondly, we have characterised the main performance parameters of current clinical PET and detailed recent instrumental innovations and trends that affect these performances and clinical practice. Finally, prospects for this medical imaging modality are presented and discussed. This overview of the PET system's instrumental parameters enables us to draw solid conclusions on achieving the best possible performance for the different needs of different clinical applications.
Collapse
Affiliation(s)
- Abdallah El Ouaridi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Zakaria Ait Elcadi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Mounir Mkimel
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Mustapha Bougteb
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Redouane El Baydaoui
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| |
Collapse
|
7
|
Singh MK. A review of digital PET-CT technology: Comparing performance parameters in SiPM integrated digital PET-CT systems. Radiography (Lond) 2024; 30:13-20. [PMID: 37864986 DOI: 10.1016/j.radi.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE The objective of this study was to perform a narrative review of digital Positron emission tomography-computed tomography (PET-CT) scanners, focussing on the current development in the technology of optimized crystal size and design, the time of flight (ToF) resolution, sensitivity, and axial field of view (AFOV). KEY FINDINGS It was observed that significant developments were carried out on the optimization of scintillation crystal size which results in the improvement of spatial resolution. such developments include the upgrade in the AFOV after the integration of SiPM technology, which results in dynamic parametric imaging acquisition in PET and sensitivity boost. The improvement in ToF resolution and the better ToF resolution values, which result in a boost in adequate sensitivity and signal-to-noise ratio (SNR). Other upgrades include the use of the smallest crystal size of 2.76 × 2.76 mm, and the use of the lowest ToF resolution of 214 ps. The use of the largest AFOV of 194 cm with the highest observed NEMA sensitivity of 225 cps/kBq for the total body PET-CT system. CONCLUSION Digital PET-CT systems offer various advantages such as a reduction in radiation dose from injected radiopharmaceuticals doses and the overall PET acquisition time with an improved diagnostic certainty. This is because of the better performance of the SiPM detector. Digital PET-CT also has added benefits of the dynamic acquisition and Patlak modeling capabilities into routine clinical practice with the advancement in higher AFOV PET systems. IMPLICATION This will help the users choose the best system during the evaluation of the PET-CT for purchase in clinical and research applications. This review will further help in teaching the latest technology and developments in PET-CT systems.
Collapse
Affiliation(s)
- M K Singh
- AECC University College, Parkwood Road, Bournemouth, UK.
| |
Collapse
|
8
|
Nadig V, Hornisch M, Oehm J, Herweg K, Schulz V, Gundacker S. 16-channel SiPM high-frequency readout with time-over-threshold discrimination for ultrafast time-of-flight applications. EJNMMI Phys 2023; 10:76. [PMID: 38044383 PMCID: PMC10694125 DOI: 10.1186/s40658-023-00594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Over the past five years, ultrafast high-frequency (HF) readout concepts have advanced the timing performance of silicon photomultipliers (SiPMs). The shown impact in time-of-flight (TOF) techniques can further push the limits in light detection and ranging (LiDAR), time-of-flight positron-emission tomography (TOF-PET), time-of-flight computed tomography (TOF-CT) or high-energy physics (HEP). However, upscaling these electronics to a system-applicable, multi-channel readout, has remained a challenging task, posed by the use of discrete components and a high power consumption. To this day, there are no means to exploit the high TOF resolution of these electronics on system scale or to measure the actual timing performance limits of a full detector block. METHODS In this work, we present a 16-channel HF readout board, including leading-edge discrimination and a linearized time-over-threshold (TOT) method, which is fully compatible with a high-precision time-to-digital converters (TDCs), such as the picoTDC developed at CERN. The discrete implementation allows ideal adaptation of this readout to a broad range of detection tasks. As a first step, the functionality of the circuit has been tested using the TOFPET2 ASIC as back-end electronics to emulate the TDC, also in view of its properties as a highly scalable data acquisition solution. RESULTS The produced board is able to mitigate influences of baseline shifts in the TOFPET2 front end, which has been shown in experiments with a pulsed laser, increasing the achievable intrinsic coincidence timing resolution (CTR) of the TOFPET2 readout electronics from 70 ps (FWHM) to 62 ps (FWHM). Single-channel coincidence experiments including a [Formula: see text]-source, 2[Formula: see text]2[Formula: see text]3 mm[Formula: see text] LYSO:Ce,Ca crystals and Broadcom NUV-MT SiPMs resulted in a CTR of 118 ps (FWHM). For a 4[Formula: see text]4 matrix of 3.88[Formula: see text]3.88[Formula: see text]19 mm[Formula: see text] LYSO:Ce,Ca crystals one-to-one coupled to a 4[Formula: see text]4 array of Broadcom NUV-MT SiPMs, an average CTR of 223 ps (FWHM) was obtained. CONCLUSION The implemented 16-channel HF electronics are fully functionall and have a negligible influence on the timing performance of the back-end electronics used, here the TOFPET2 ASIC. The ongoing integration of the picoTDC with the 16-channel HF board is expected to further set the path toward sub-100 ps TOF-PET and sub-30ps TOF resolution for single-photon detection.
Collapse
Affiliation(s)
- Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Matthias Hornisch
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Jakob Oehm
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Katrin Herweg
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstraße 19, 52074, Aachen, Germany
- III. Physikalisches Institut B, RWTH Aachen University, Otto-Blumenthal-Straße, 52074, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Stefan Gundacker
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Nuyts J, Defrise M, Gundacker S, Roncali E, Lecoq P. The SNR of Positron Emission Data With Gaussian and Non-Gaussian Time-of-Flight Kernels, With Application to Prompt Photon Coincidence. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1254-1264. [PMID: 36441900 DOI: 10.1109/tmi.2022.3225433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is well known that measurement of the time-of-flight (TOF) increases the information provided by coincident events in positron emission tomography (PET). This information increase propagates through the reconstruction and improves the signal-to-noise ratio in the reconstructed images. Takehiro Tomitani has analytically computed the gain in variance in the reconstructed image, provided by a particular TOF resolution, for the center of a uniform disk and for a Gaussian TOF kernel. In this paper we extend this result, by computing the signal-to-noise ratio (SNR) contributed by individual coincidence events for two different tasks. One task is the detection of a hot spot in the center of a uniform cylinder. The second one is the same as that considered by Tomitani, i.e. the reconstruction of the central voxel in the image of a uniform cylinder. In addition, we extend the computation to non-Gaussian TOF kernels. It is found that a modification of the TOF-kernel changes the SNR for both tasks in almost exactly the same way. The proposed method can be used to compare TOF-systems with different and possibly event-dependent TOF-kernels, as encountered when prompt photons, such as Cherenkov photons are present, or when the detector is composed of different scintillators. The method is validated with simple 2D simulations and illustrated by applying it to PET detectors producing optical photons with event-dependent timing characteristics.
Collapse
|
10
|
Zatcepin A, Ziegler SI. Detectors in positron emission tomography. Z Med Phys 2023; 33:4-12. [PMID: 36208967 PMCID: PMC10082375 DOI: 10.1016/j.zemedi.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
Abstract
Positron emission tomography is a highly sensitive molecular imaging modality, based on the coincident detection of annihilation photons after positron decay. The most used detector is based on dense, fast, and luminous scintillators read out by light sensors. This review covers the various detector concepts for clinical and preclinical systems.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
11
|
Kiyokawa M, Kang HG, Yamaya T. Tracking the same fast-LGSO crystals by changing surface treatments for better coincidence timing resolution in PET. Biomed Phys Eng Express 2023; 9. [PMID: 36689772 DOI: 10.1088/2057-1976/acb552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Achieving fast coincidence timing resolution (CTR) is an important issue in clinical time-of-flight positron emission tomography (TOF-PET) to improve the reconstructed image quality. One of the major factors affecting the CTR is the crystal surface treatment, which is often parameterized as surface roughness. However, previous studies on the crystal surface treatment optimization had two limitations of crystal-by-crystal variation and worse CTR over 200 ps. Here, we report the effects of the crystal surface treatment on the performance of a 20 mm long fast-LGSO crystal based TOF detector by tracking the same crystals in the sub-180 ps CTR regime. The light collection efficiency (LCE), energy resolution (ER) and CTR of the TOF detector were evaluated with six different crystal surface treatments of chemically polished (C.P), C.P half side roughened (1/2S) treatment, and then the C.P one side roughened (1S) treatment, mechanically polished (M.P) treatment, M.P 1/2S treatment, and M.P 1S treatment. The four lateral surfaces of each crystal were wrapped by using enhanced specular reflector film while the top surface was covered by using Teflon tape. The bottom surface of the crystal was optically coupled to a silicon photomultiplier. The timing and energy signals were extracted by using a custom-made high-frequency readout circuit, and then digitized by using a waveform digitizer. All the experimental conditions were same except the crystal surface treatment. Among the six different crystal surface treatments, the M.P 1S would be the optimal crystal surface treatment which balanced enhancements in the CTR (165 ± 3 ps) and ER (10.5 ± 0.5%). Unlike the M.P 1S, the C.P 1S did not enhance the CTR and ER. Hence, the C.P without roughening would be the second-best optimal crystal surface treatment which balanced the CTR (169 ± 3 ps) and ER (10.5 ± 0.5%).
Collapse
Affiliation(s)
- Miho Kiyokawa
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan.,Department of Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan.,Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
12
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
13
|
Mohr P, Efthimiou N, Pagano F, Kratochwil N, Pizzichemi M, Tsoumpas C, Auffray E, Ziemons K. Image Reconstruction Analysis for Positron Emission Tomography With Heterostructured Scintillators. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:41-51. [PMID: 37397180 PMCID: PMC10312993 DOI: 10.1109/trpms.2022.3208615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0 × 3.1 × 15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32% for 100-μm thick plastic layers and 52% for 50 μm, the coincidence time resolution (CTR) distribution improved to 204 ± 49 and 220 ± 41 ps, respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On an NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast-to-noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.
Collapse
Affiliation(s)
- Philipp Mohr
- Factuly of Chemistry and Biotechnology, FH Aachen University of Applied Sciences, 52428 Jülich, Germany, and also with the Experimental Physics Department, European Organization for Nuclear Research (CERN), 1201 Geneva, Switzerland. He is now with the Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nikos Efthimiou
- Department Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Fiammetta Pagano
- Physics Department, University of Milano-Bicocca, 20126 Milan, Italy, and also with the Experimental Physics Department, European Organization for Nuclear Research (CERN), 1201 Geneva, Switzerland
| | - Nicolaus Kratochwil
- Experimental Physics Department, European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Marco Pizzichemi
- Physics Department, University of Milano-Bicocca, 20126 Milan, Italy, and also with the Experimental Physics Department, European Organization for Nuclear Research (CERN), 1201 Geneva, Switzerland
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands, and also with the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, LS2 9JT Leeds, U.K
| | - Etiennette Auffray
- Experimental Physics Department, European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Karl Ziemons
- Faculty of Biomedical Engineering and Technomathematics, FH Aachen University of Applied Sciences, 52428 Jülich, Germany
| |
Collapse
|
14
|
Schramm G. Reconstruction-free positron emission imaging: Fact or fiction? FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:936091. [PMID: 39354988 PMCID: PMC11440944 DOI: 10.3389/fnume.2022.936091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 10/03/2024]
Affiliation(s)
- Georg Schramm
- Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Are Quantitative Errors Reduced with Time-of-Flight Reconstruction When Using Imperfect MR-Based Attenuation Maps for 18F-FDG PET/MR Neuroimaging? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We studied whether TOF reduces error propagation from attenuation correction to PET image reconstruction in PET/MR neuroimaging, by using imperfect attenuation maps in a clinical PET/MR system with 525 ps timing resolution. Ten subjects who had undergone 18F-FDG PET neuroimaging were included. Attenuation maps using a single value (0.100 cm−1) with and without air, and a 3-class attenuation map with soft tissue (0.096 cm−1), air and bone (0.151 cm−1) were used. CT-based attenuation correction was used as a reference. Volume-of-interest (VOI) analysis was conducted. Mean bias and standard deviation across the brain was studied. Regional correlations and concordance were evaluated. Statistical testing was conducted. Average bias and standard deviation were slightly reduced in the majority (23–26 out of 35) of the VOI with TOF. Bias was reduced near the cortex, nasal sinuses, and in the mid-brain with TOF. Bland–Altman and regression analysis showed small improvements with TOF. However, the overall effect of TOF to quantitative accuracy was small (3% at maximum) and significant only for two attenuation maps out of three at 525 ps timing resolution. In conclusion, TOF might reduce the quantitative errors due to attenuation correction in PET/MR neuroimaging, but this effect needs to be further investigated on systems with better timing resolution.
Collapse
|
16
|
Adler SS, Seidel J, Choyke PL. Advances in Preclinical PET. Semin Nucl Med 2022; 52:382-402. [PMID: 35307164 PMCID: PMC9038721 DOI: 10.1053/j.semnuclmed.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
The classical intent of PET imaging is to obtain the most accurate estimate of the amount of positron-emitting radiotracer in the smallest possible volume element located anywhere in the imaging subject at any time using the least amount of radioactivity. Reaching this goal, however, is confounded by an enormous array of interlinked technical issues that limit imaging system performance. As a result, advances in PET, human or animal, are the result of cumulative innovations across each of the component elements of PET, from data acquisition to image analysis. In the report that follows, we trace several of these advances across the imaging process with a focus on small animal PET.
Collapse
Affiliation(s)
- Stephen S Adler
- Frederick National Laboratory for Cancer Research, Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Jurgen Seidel
- Contractor to Frederick National Laboratory for Cancer Research, Leidos biodical Research, Inc., Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda MD.
| |
Collapse
|
17
|
Kratochwil N, Gundacker S, Auffray E. A roadmap for sole Cherenkov radiators with SiPMs in TOF-PET. Phys Med Biol 2021; 66. [PMID: 34433139 DOI: 10.1088/1361-6560/ac212a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022]
Abstract
Time of flight positron emission tomography can strongly benefit from a very accurate time estimator given by Cherenkov radiation, which is produced upon a 511 keV positron-electron annihilation gamma interaction in heavy inorganic scintillators. While time resolution in the order of 30 ps full width at half maximum (FWHM) has been reported using MCP-PMTs and black painted Cherenkov radiators, such solutions have several disadvantages, like high cost and low detection efficiency of nowadays available MCP-PMTs. On the other hand, silicon photomultipliers (SiPMs) are not limited by those obstacles and provide high photon detection efficiency with a decent time response. Timing performance of PbF2crystals of various lengths and surface conditions coupled to SiPMs was evaluated against a reference detector with an optimized test setup using high-frequency readout and novel time walk correction, with special attention on the intrinsic limits for one detected Cherenkov photon only. The average number of detected Cherenkov photons largely depends on the crystal surface state, resulting in a tradeoff between low photon time spread, thus good timing performance, and sensitivity. An intrinsic Cherenkov photon yield of 16.5 ± 3.3 was calculated for 2 × 2 × 3 mm3sized PbF2crystals upon 511 keVγ-deposition. After time walk correction based on the slew rate of the signal, assuming two identical detector arms in coincidence, and using all events, a time resolution of 215 ps FWHM (142 ps FWHM) was obtained for 2 × 2 × 20 mm3(2 × 2 × 3 mm3) sized PbF2crystals, compared to 261 ps (190 ps) without correction. Selecting on one detected photon only, a single photon coincidence time resolution of 113 ps FWHM for black painted and 166 ps for Teflon wrapped crystals was measured for 3 mm length, compared to 145 ps (black) and 263 ps (Teflon) for 20 mm length.
Collapse
Affiliation(s)
- Nicolaus Kratochwil
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland.,University of Vienna, Universitaetsring 1, A-1010 Vienna, Austria
| | - Stefan Gundacker
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland.,Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, D-52074 Aachen, Germany
| | | |
Collapse
|