1
|
Pagano F, Kratochwil N, Lowis C, Choong WS, Paganoni M, Pizzichemi M, Cates JW, Auffray E. Enhancing timing performance of heterostructures with double-sided readout. Phys Med Biol 2024; 69:205012. [PMID: 39321964 DOI: 10.1088/1361-6560/ad7fc8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Objective.Heterostructured scintillators offer a promising solution to balance the sensitivity and timing in TOF-PET detectors. These scintillators utilize alternating layers of materials with complementary properties to optimize performance. However, the layering compromises time resolution due to light transport issues. This study explores double-sided readout-enabling improved light collection and Depth-of-Interaction (DOI) information retrieval-to mitigate this effect and enhance the timing capabilities of heterostructures.Approach.The time resolution and DOI performances of 3 × 3 × 20 mm3BGO&EJ232 heterostructures were assessed in a single and double-sided readout (SSR and DSR, respectively) configuration using high-frequency electronics.Main results.Selective analysis of photopeak events yielded a DOI resolution of 6.4 ± 0.04 mm. Notably, the Coincidence Time Resolution (CTR) improved from 262 ± 8 ps (SSR) to 174 ± 6 ps (DSR) when measured in coincidence with a fast reference detector. Additionally, symmetrical configuration of two identical heterostructures in coincidence was tested, yielding in DSR a CTR of 254 ± 8 ps for all photopeak events and 107 ± 5 ps for the fastest events.Significance.By using high-frequency double-sided readout, we could measure DOI resolution and improve the time resolution of heterostructures of up to 40%. The DOI information resulted intrinsically captured in the average between the timestamps of the two SiPMs, without requiring any further correction.
Collapse
Affiliation(s)
- Fiammetta Pagano
- CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | | | - Carsten Lowis
- CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland
- FH Aachen University of Applied Sciences, Jülich, Germany
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Marco Paganoni
- CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Marco Pizzichemi
- CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Joshua W Cates
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | | |
Collapse
|
2
|
Feng X, Ran H, Liu H. Predicting time-of-flight with Cerenkov light in BGO: a three-stage network approach with multiple timing kernels prior. Phys Med Biol 2024; 69:175013. [PMID: 39137808 DOI: 10.1088/1361-6560/ad6ed8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.In the quest for enhanced image quality in positron emission tomography (PET) reconstruction, the introduction of time-of-flight (TOF) constraints in TOF-PET reconstruction offers superior signal-to-noise ratio. By employing BGO detectors capable of simultaneously emitting prompt Cerenkov light and scintillation light, this approach combines the high time resolution of prompt photons with the high energy resolution of scintillation light, thereby presenting a promising avenue for acquiring more precise TOF information.Approach.In Stage One, we train a raw method capable of predicting TOF information based on coincidence waveform pairs. In Stage Two, the data is categorized into 25 classes based on signal rise time, and the pre-trained raw method is utilized to obtain TOF kernels for each of the 25 classes, thereby generating prior knowledge. Within Stage Three, our proposed deep learning (DL) module, combined with a bias fine-tuning module, utilizes the kernel prior to provide bias compensation values for the data, thereby refining the first-stage outputs and obtaining more accurate TOF predictions.Main results.The three-stage network built upon the LED method resulted in improvements of 11.7 ps and 41.8 ps for full width at half maximum (FWHM) and full width at tenth maximum (FWTM), respectively. Optimal performance was achieved with FWHM of 128.2 ps and FWTM of 286.6 ps when CNN and Transformer were utilized in Stages One and Three, respectively. Further enhancements of 2.3 ps and 3.5 ps for FWHM and FWTM were attained through data augmentation methods.Significance.This study employs neural networks to compensate for the timing delays in mixed (Cerenkov and scintillation photons) signals, combining multiple timing kernels as prior knowledge with DL models. This integration yields optimal predictive performance, offering a superior solution for TOF-PET research utilizing Cerenkov signals.
Collapse
Affiliation(s)
- Xuhui Feng
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Hengjia Ran
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
3
|
Singh P, Dosovitskiy G, Bekenstein Y. Bright Innovations: Review of Next-Generation Advances in Scintillator Engineering. ACS NANO 2024; 18:14029-14049. [PMID: 38781034 PMCID: PMC11155248 DOI: 10.1021/acsnano.3c12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
This review focuses on modern scintillators, the heart of ionizing radiation detection with applications in medical diagnostics, homeland security, research, and other areas. The conventional method to improve their characteristics, such as light output and timing properties, consists of improving in material composition and doping, etc., which are intrinsic to the material. On the contrary, we review recent advancements in cutting-edge approaches to shape scintillator characteristics via photonic and metamaterial engineering, which are extrinsic and introduce controlled inhomogeneity in the scintillator's surface or volume. The methods to be discussed include improved light out-coupling using photonic crystal (PhC) coating, dielectric architecture modification producing the Purcell effect, and meta-materials engineering based on energy sharing. These approaches help to break traditional bulk scintillators' limitations, e.g., to deal with poor light extraction efficiency from the material due to a typically large refractive index mismatch or improve timing performance compared to bulk materials. In the Outlook section, modern physical phenomena are discussed and suggested as the basis for the next generations of scintillation-based detectors and technology, followed by a brief discussion on cost-effective fabrication techniques that could be scalable.
Collapse
Affiliation(s)
- Pallavi Singh
- Solid
State Institute, Technion-Israel Institute
of Technology, Haifa 32000, Israel
| | - Georgy Dosovitskiy
- Solid
State Institute, Technion-Israel Institute
of Technology, Haifa 32000, Israel
| | - Yehonadav Bekenstein
- Solid
State Institute, Technion-Israel Institute
of Technology, Haifa 32000, Israel
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 32000, Israel
- The
Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
4
|
Erroi A, Mecca S, Zaffalon ML, Frank I, Carulli F, Cemmi A, Di Sarcina I, Debellis D, Rossi F, Cova F, Pauwels K, Mauri M, Perego J, Pinchetti V, Comotti A, Meinardi F, Vedda A, Auffray E, Beverina L, Brovelli S. Ultrafast and Radiation-Hard Lead Halide Perovskite Nanocomposite Scintillators. ACS ENERGY LETTERS 2023; 8:3883-3894. [PMID: 37705701 PMCID: PMC10497040 DOI: 10.1021/acsenergylett.3c01396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
The use of scintillators for the detection of ionizing radiation is a critical aspect in many fields, including medicine, nuclear monitoring, and homeland security. Recently, lead halide perovskite nanocrystals (LHP-NCs) have emerged as promising scintillator materials. However, the difficulty of affordably upscaling synthesis to the multigram level and embedding NCs in optical-grade nanocomposites without compromising their optical properties still limits their widespread use. In addition, fundamental aspects of the scintillation mechanisms are not fully understood, leaving the scientific community without suitable fabrication protocols and rational guidelines for the full exploitation of their potential. In this work, we realize large polyacrylate nanocomposite scintillators based on CsPbBr3 NCs, which are synthesized via a novel room temperature, low waste turbo-emulsification approach, followed by their in situ transformation during the mass polymerization process. The interaction between NCs and polymer chains strengthens the scintillator structure, homogenizes the particle size distribution and passivates NC defects, resulting in nanocomposite prototypes with luminescence efficiency >90%, exceptional radiation hardness, 4800 ph/MeV scintillation yield even at low NC loading, and ultrafast response time, with over 30% of scintillation occurring in the first 80 ps, promising for fast-time applications in precision medicine and high-energy physics. Ultrafast radioluminescence and optical spectroscopy experiments using pulsed synchrotron light further disambiguate the origin of the scintillation kinetics as the result of charged-exciton and multiexciton recombination formed under ionizing excitation. This highlights the role of nonradiative Auger decay, whose potential impact on fast timing applications we anticipate via a kinetic model.
Collapse
Affiliation(s)
- Andrea Erroi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Sara Mecca
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Matteo L. Zaffalon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Isabel Frank
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland
- LMU
Munich, Geschwister-Scholl-Platz
1, 80539 Munich, Germany
| | - Francesco Carulli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Alessia Cemmi
- ENEA
Fusion and Technology for Nuclear Safety and Security Department,
Casaccia R.C., Via Anguillarese 301, 00123 Rome, Italy
| | - Ilaria Di Sarcina
- ENEA
Fusion and Technology for Nuclear Safety and Security Department,
Casaccia R.C., Via Anguillarese 301, 00123 Rome, Italy
| | - Doriana Debellis
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, 16163 Genova, Italy
| | - Francesca Rossi
- IMEM-CNR
Institute, Parco Area
delle Scienze 37/A, 43124 Parma, Italy
| | - Francesca Cova
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Kristof Pauwels
- ESRF
- The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michele Mauri
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Jacopo Perego
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Valerio Pinchetti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Angiolina Comotti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Anna Vedda
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | | | - Luca Beverina
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano - Bicocca, via R. Cozzi 55, 20126 Milan, Italy
| |
Collapse
|
5
|
Konstantinou G, Latella R, Moliner L, Zhang L, Benlloch JM, Gonzalez AJ, Lecoq P. A proof-of-concept of cross-luminescent metascintillators: testing results on a BGO:BaF 2metapixel. Phys Med Biol 2023; 68. [PMID: 36595320 DOI: 10.1088/1361-6560/acac5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Objective: Time-of-flight positron emission tomography (PET) is the next frontier in improving the effective sensitivity. To achieve superior timing for time-of-flight PET, combined with high detection efficiency and cost-effectiveness, we have studied the applicability of BaF2 in metascintillators driven by the timing of cross-luminescence photon production.Approach: Based on previous simulation studies of energy sharing and analytic multi-exponential scintillation pulse, as well as sensitivity characteristics, we have experimentally tested a pixel of 3 × 3 × 15 mm3 based on 300μm BGO and 300μm BaF2 layers. To harness the deep ultraviolet cross-luminescent light component, which carries improved timing, we use the FBK VUV SiPM. Metascintillator energy sharing is addressed through a double integration approach.Main results: We reach an energy resolution of 22%, comparable to an 18% resolution of simple BGO pixels using the same readout, through the optimized use of the integrals of the metascintillator pulse in energy sharing calculation. We measure the energy sharing extent of each pulse with a resolution of 25% and demonstrate that experimental and simulation results agree well. Based on the energy sharing, a timewalk correction is applied, exhibiting significant improvements for both the coincidence time resolution (CTR) and the shape of the timing histogram. We reach 242 ps CTR for the entire photopeak, while for a subset of 13% of the most shared events, the CTR value improves to 108 ps, comparable to the 3 × 3 × 5 mm3 LYSO:Ce:Ca reference crystal.Significance: While we are considering different ways to improve further these results, this proof-of-concept demonstrates the applicability of cross-luminescence for metascintillator designs through the application of VUV compatible SiPM coupling, and easily implementable digital algorithms. This is the first test of BaF2-based metascintillators of sufficient stoppng power to be included in a PET scanner, demonstrating the industrial applicability of such cross-luminescent metascintillators.
Collapse
Affiliation(s)
- G Konstantinou
- Multiwave Metacrystal S.A., 34 Route de la Galaise, 1228, Geneva, Switzerland.,Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - R Latella
- Multiwave Metacrystal S.A., 34 Route de la Galaise, 1228, Geneva, Switzerland.,Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - L Moliner
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - L Zhang
- Multiwave Metacrystal S.A., 34 Route de la Galaise, 1228, Geneva, Switzerland
| | - J M Benlloch
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - A J Gonzalez
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - P Lecoq
- Multiwave Metacrystal S.A., 34 Route de la Galaise, 1228, Geneva, Switzerland.,Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|