1
|
Juang EK, De Koninck LH, Vuong KS, Gnanaskandan A, Hsiao CT, Averkiou MA. Controlled Hyperthermia With High-Intensity Focused Ultrasound and Ultrasound Contrast Agent Microbubbles in Porcine Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1852-1860. [PMID: 37246049 PMCID: PMC10330369 DOI: 10.1016/j.ultrasmedbio.2023.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE The objective of this work was to study microbubble-enhanced temperature elevation with high-intensity focused ultrasound (HIFU) at different acoustic pressures and under image guidance. The microbubbles were administered with either local or vascular injections (that mimic systemic injections) in perfused and non-perfused ex vivo porcine liver under ultrasound image guidance. METHODS Porcine liver was insonified for 30 s with a single-element HIFU transducer (0.9 MHz, 0.413 ms, 82% duty cycle, focal pressures of 0.6-3.5 MPa). Contrast microbubbles were injected either locally or through the vasculature. A needle thermocouple at the focus measured temperature elevation. Diagnostic ultrasound (Philips iU22, C5-1 probe) guided placement of the thermocouple and delivery of microbubbles and monitored the procedure in real time. RESULTS At lower acoustic pressures (0.6 and 1.2 MPa) in non-perfused liver, inertial cavitation of the injected microbubbles led to greater temperatures at the focus compared with HIFU-only treatments. At higher pressures (2.4 and 3.5 MPa) native inertial cavitation in the tissue (without injecting microbubbles) resulted in temperature elevations similar to those after injecting microbubbles. The heated area was larger when using microbubbles at all pressures. In the presence of perfusion, only local injections provided a sufficiently high concentration of microbubbles necessary for significant temperature enhancement. CONCLUSION Local injections of microbubbles provide a higher concentration of microbubbles in a smaller area, avoiding acoustic shadowing, and can lead to higher temperature elevation at lower pressures and increase the size of the heated area at all pressures.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lance H De Koninck
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kaleb S Vuong
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Aswin Gnanaskandan
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | | |
Collapse
|
2
|
Quadri SA, Waqas M, Khan I, Khan MA, Suriya SS, Farooqui M, Fiani B. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 2018; 44:E16. [DOI: 10.3171/2017.11.focus17610] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since Lynn and colleagues first described the use of focused ultrasound (FUS) waves for intracranial ablation in 1942, many strides have been made toward the treatment of several brain pathologies using this novel technology. In the modern era of minimal invasiveness, high-intensity focused ultrasound (HIFU) promises therapeutic utility for multiple neurosurgical applications, including treatment of tumors, stroke, epilepsy, and functional disorders. Although the use of HIFU as a potential therapeutic modality in the brain has been under study for several decades, relatively few neuroscientists, neurologists, or even neurosurgeons are familiar with it. In this extensive review, the authors intend to shed light on the current use of HIFU in different neurosurgical avenues and its mechanism of action, as well as provide an update on the outcome of various trials and advances expected from various preclinical studies in the near future. Although the initial technical challenges have been overcome and the technology has been improved, only very few clinical trials have thus far been carried out. The number of clinical trials related to neurological disorders is expected to increase in the coming years, as this novel therapeutic device appears to have a substantial expansive potential. There is great opportunity to expand the use of HIFU across various medical and surgical disciplines for the treatment of different pathologies. As this technology gains recognition, it will open the door for further research opportunities and innovation.
Collapse
Affiliation(s)
- Syed A. Quadri
- California Institute of Neuroscience, Thousand Oaks, California
| | - Muhammad Waqas
- California Institute of Neuroscience, Thousand Oaks, California
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Inamullah Khan
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Sajid S. Suriya
- California Institute of Neuroscience, Thousand Oaks, California
| | - Mudassir Farooqui
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Brian Fiani
- Department of Neurosurgery, Institute of Clinical Orthopedic and Neurosciences, Desert Regional Medical Center, Palm Springs, California
| |
Collapse
|
3
|
Bader KB, Haworth KJ, Shekhar H, Maxwell AD, Peng T, McPherson DD, Holland CK. Efficacy of histotripsy combined with rt-PA in vitro. Phys Med Biol 2016; 61:5253-74. [PMID: 27353199 DOI: 10.1088/0031-9155/61/14/5253] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Histotripsy, a form of therapeutic ultrasound that uses the mechanical action of microbubble clouds for tissue ablation, is under development to treat chronic deep vein thrombosis (DVT). We hypothesize that combining thrombolytic agents with histotripsy will enhance clot lysis. Recombinant tissue plasminogen activator (rt-PA) and rt-PA-loaded echogenic liposomes that entrain octafluoropropane microbubbles (OFP t-ELIP) were used in combination with highly shocked histotripsy pulses. Fully retracted porcine venous clots, with similar features of DVT occlusions, were exposed either to histotripsy pulses alone (peak negative pressures of 7-20 MPa), histotripsy and OFP t-ELIP, or histotripsy and rt-PA. Microbubble cloud activity was monitored with passive cavitation imaging during histotripsy exposure. The power levels of cavitation emissions from within the clot were not statistically different between treatment types, likely due to the near instantaneous rupture and destruction of OFP t-ELIP. The thrombolytic efficacy was significantly improved in the presence of rt-PA. These results suggest the combination of histotripsy and rt-PA could serve as a potent therapeutic strategy for the treatment of DVT.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Yao Y, Yang K, Cao Y, Zhou X, Xu J, Liu J, Wang Q, Wang Z, Wang D. Comparison of the synergistic effect of lipid nanobubbles and SonoVue microbubbles for high intensity focused ultrasound thermal ablation of tumors. PeerJ 2016; 4:e1716. [PMID: 26925336 PMCID: PMC4768712 DOI: 10.7717/peerj.1716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/30/2016] [Indexed: 01/20/2023] Open
Abstract
Microbubbles (MBs) are considered as an important enhancer for high intensity focused ultrasound (HIFU) treatment of benign or malignant tumors. Recently, different sizes of gas-filled bubbles have been investigated to improve the therapeutic efficiency of HIFU thermal ablation and reduce side effects associated with ultrasound power and irradiation time. However, nanobubbles (NBs) as an ultrasound contrast agent for synergistic therapy of HIFU thermal ablation remain controversial due to their small nano-size in diameter. In this study, phospholipid-shell and gas-core NBs with a narrow size range of 500-600 nm were developed. The synergistic effect of NBs for HIFU thermal ablation was carefully studied both in excised bovine livers and in breast tumor models of rabbits, and made a critical comparison with that of commercial SonoVue microbubbles (SonoVue MBs). In addition, the pathological changes of the targeted area in tumor tissue after HIFU ablation were further investigated. Phosphate buffer saline (PBS) was used as the control. Under the same HIFU parameters, the quantitative echo intensity of B-mode ultrasound image and the volume of coagulative necrosis in lipid NBs groups were significantly higher and larger than that in PBS groups, but could not be demonstrated a difference to that in SonoVue MBs groups both ex vivo and in vivo. These results showed that the synergistic effect of lipid NBs for HIFU thermal ablation were similar with that of SonoVue MBs, and further indicate that lipid NBs could potentially become an enhancer for HIFU thermal ablation of tumors.
Collapse
Affiliation(s)
- Yuanzhi Yao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Ke Yang
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xuan Zhou
- Department of Emergency, Chinese PLA General Hospital, Beijing, China
| | - Jinshun Xu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianxin Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qi Wang
- Institute of Ultrasound Engineering in Medical of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Dong Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Yoshida K, Obata K, Tsukamoto A, Ushida T, Watanabe Y. Limited damage of tissue mimic caused by a collapsing bubble under low-frequency ultrasound exposure. ULTRASONICS 2014; 54:1603-1609. [PMID: 24751130 DOI: 10.1016/j.ultras.2014.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/27/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
In this study, we investigated the bubble induced serious damage to tissue mimic exposed to 27-kHz ultrasound. The initial bubble radius ranged from 80 to 100 μm, which corresponded approximately to the experimentally-evaluated resonant radius of the given ultrasound frequency. The tissue mimic consisted of 10 wt% gelatine gel covered with cultured canine kidney epithelial cells. The collapsing bubble behaviour during the ultrasound exposure with negative peak pressures of several hundred kPa was captured by a high-speed camera system. After ultrasound exposure, a cell viability test was conducted based on microscopic bright-field images and fluorescence images for living and dead cells. In the viability test, cells played a role in indicating the damaged area. The bubble oscillations killed the cells, and on occasion detached layers of cultured cells from the gel. The damaged area was comparable or slightly larger than the initial bubble size, and smaller than the maximum bubble size. We concluded that only a small area in close proximity to the bubble could be damaged even above transient cavitation threshold.
Collapse
Affiliation(s)
- Kenji Yoshida
- Laboratory of Ultrasonic Electronics, Doshisha University, 610-0321 Kyotanabe, Kyoto, Japan; Center for Frontier Medical Engineering, Chiba University, 263-8522 Chiba, Japan.
| | - Kazuya Obata
- Laboratory of Ultrasonic Electronics, Doshisha University, 610-0321 Kyotanabe, Kyoto, Japan
| | - Akira Tsukamoto
- Department of Applied Physics, National Defense Academy of Japan, 239-8686 Yokosuka, Kanagawa, Japan
| | - Takashi Ushida
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 113-0033 Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Watanabe
- Laboratory of Ultrasonic Electronics, Doshisha University, 610-0321 Kyotanabe, Kyoto, Japan
| |
Collapse
|
6
|
Zhu M, Jiang L, Fabiilli ML, Zhang A, Fowlkes JB, Xu LX. Treatment of murine tumors using acoustic droplet vaporization-enhanced high intensity focused ultrasound. Phys Med Biol 2013; 58:6179-91. [PMID: 23948709 DOI: 10.1088/0031-9155/58/17/6179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High intensity focused ultrasound (HIFU) can be applied focally and noninvasively to thermally ablate solid tumors. Long treatment times are typically required for large tumors, which can expose patients to certain risks while potentially decreasing the therapeutic efficacy of the treatment. Acoustic droplet vaporization (ADV) is a promising modality that can enhance the efficacy of tumor treatment using HIFU. In this study, the therapeutic effects of combined HIFU and ADV was evaluated in mice bearing subcutaneously-implanted 4T1 tumors. Histological examination showed that the combination of HIFU and ADV generated a mean necrotic area in the tumor that was 2.9-fold larger than with HIFU alone. A significant enhancement of necrosis was found in the periphery of the tumor, where the blood supply was abundant. Seven days after treatment, the tumors treated with combined HIFU and ADV were 30-fold smaller in volume than tumors treated with HIFU alone. The study demonstrates the potential advantage of combining HIFU and ADV in tumor treatment.
Collapse
Affiliation(s)
- Meili Zhu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
7
|
Medel R, Monteith SJ, Elias WJ, Eames M, Snell J, Sheehan JP, Wintermark M, Jolesz FA, Kassell NF. Magnetic resonance-guided focused ultrasound surgery: Part 2: A review of current and future applications. Neurosurgery 2013; 71:755-63. [PMID: 22791029 DOI: 10.1227/neu.0b013e3182672ac9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a novel combination of technologies that is actively being realized as a noninvasive therapeutic tool for a myriad of conditions. These applications are reviewed with a focus on neurological use. A combined search of PubMed and MEDLINE was performed to identify the key events and current status of MRgFUS, with a focus on neurological applications. MRgFUS signifies a potentially ideal device for the treatment of neurological diseases. As it is nearly real time, it allows monitored provision of treatment location and energy deposition; is noninvasive, thereby limiting or eliminating disruption of normal tissue; provides focal delivery of therapeutic agents; enhances radiation delivery; and permits modulation of neural function. Multiple clinical applications are currently in clinical use and many more are under active preclinical investigation. The therapeutic potential of MRgFUS is expanding rapidly. Although clinically in its infancy, preclinical and early-phase I clinical trials in neurosurgery suggest a promising future for MRgFUS. Further investigation is necessary to define its true potential and impact.
Collapse
Affiliation(s)
- Ricky Medel
- Department of Neurosurgery, University of Virginia Health Sciences Center, University of University, Charlottesville, Virginia 22902, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Borrelli MJ, O'Brien WD, Bernock LJ, Williams HR, Hamilton E, Wu J, Oelze ML, Culp WC. Production of uniformly sized serum albumin and dextrose microbubbles. ULTRASONICS SONOCHEMISTRY 2012; 19:198-208. [PMID: 21689961 PMCID: PMC3152625 DOI: 10.1016/j.ultsonch.2011.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 03/21/2011] [Accepted: 05/15/2011] [Indexed: 05/05/2023]
Abstract
Uniformly-sized preparations with average microbubble (MB) diameters from 1 to 7 μm were produced reliably by sonicating decafluorobutane-saturated solutions of serum albumin and dextrose. Detailed protocols for producing and size-separating the MBs are presented, along with the effects that changing each production parameter (serum albumin concentration, sonication power, sonication time, etc.) had on MB size distribution and acoustic stability. These protocols can be used to produce MBs for experimental applications or serve as templates for developing new protocols that yield MBs with physical and acoustic properties better suited to specific applications. Size stability and ultrasonic performance quality control tests were developed to assure that successive MB preparations perform identically and to distinguish the physical and acoustic properties of identically sized MBs produced with different serum albumin-dextrose formulations and sonication parameters. MBs can be stored at 5 °C for protracted periods (2 weeks to one year depending on formulation).
Collapse
Affiliation(s)
- Michael J Borrelli
- Department of Radiology, University of Arkansas for Medical Sciences, 4301 West Markham Street Slot #556, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Seo J. Optimal dosage of ultrasound contrast agent for ultrasound surgery: thermal effect of linear plane wave. ULTRASONICS 2009; 49:565-568. [PMID: 19345389 DOI: 10.1016/j.ultras.2009.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/02/2008] [Accepted: 02/03/2009] [Indexed: 05/27/2023]
Abstract
The optimal dosage of ultrasound contrast agent model for ultrasound surgery was explored. A specific ultrasound contrast agent Albunex was chosen for simulation. The model was developed based on a dilute bubbly liquid model proposed by Ye and Ding [Z. Ye, L. Ding, Acoustic dispersion and attenuation relations in bubbly mixture, J. Acoust. Soc. Am. 98 (3) (1995) 1629-1636]. The numerical simulation suggests that 2 MHz is more efficient than 1 MHz to thermally treat cancer in deep tissue with the optimal dosage of 3 ml. On the other hand, the simulation also suggests 3 MHz center frequency with the optimal dosage of 1.6 ml is adequate for prostate cancer treatment with transrectal equipment. The simulation is expected to valid up to 2 MPa incident pressure due to the limitation of the linearized UCA model. Even though it is developed from a single ultrasound contrast agent, this model is expected to be useful for any ultrasound contrast agent as long as the necessary parameters are provided.
Collapse
|
10
|
Luo W, Zhou X, Yu M, He G, Zheng X, Li Q, Liu Q, Han Z, Zhang J, Qian Y. Ablation of high-intensity focused ultrasound assisted with SonoVue on Rabbit VX2 liver tumors: sequential findings with histopathology, immunohistochemistry, and enzyme histochemistry. Ann Surg Oncol 2009; 16:2359-68. [PMID: 19475452 DOI: 10.1245/s10434-009-0419-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/07/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND We investigated sequential effects of HIFU ablation combined with contrast agent SonoVue by using histopathology examination, immunohistochemistry, and enzyme histochemistry. MATERIALS AND METHODS Forty rabbits with VX2 liver tumors were subjected to HIFU ablation. Before ablation, a bolus injection of 0.2 mL SonoVue was administrated in group II (n = 20), and normal saline solution was injected in group I (n = 20). On day 0, 3, 7, and 14 after ablation, 5 animals in each group were sacrificed. The tissue in ablated zone, transient zone (within 3 mm around ablated area), and surrounding zone (beyond 3 mm around ablated area) were collected. Coagulated volume measurement, hematoxylin-eosin staining, immunohistochemistry of Ki 67, Bcl-2, CD54, and MMP-2 to determine cell proliferation and tissue repair, and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and succinic dehydrogenase (SDH) staining to evaluate tissue viability were performed. RESULTS The coagulated volume in group II at each time point was larger than that in group I (P < .05). After day 3, hematoxylin-eosin staining demonstrated necrosis in ablated zones and increasing surrounding fibra bands in group I and group II, while increasing expression of Ki 67, Bcl-2, CD54, and MMP-2 in transient zones was detected using immunohistochemistry in both groups (P > .05). NADPH-d and SDH staining showed dramatic decrease of enzyme activities in ablated zones immediately after ablation, while residual viable tissues in ablated zones of group II were less than those of group I (P < .05). CONCLUSION Contrast agent SonoVue enables improvement of HIFU ablation on rabbit VX2 liver tumors.
Collapse
Affiliation(s)
- Wen Luo
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hall TL, Fowlkes JB, Cain CA. A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2007; 54:569-75. [PMID: 17375825 DOI: 10.1109/tuffc.2007.279] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A feedback method for obtaining real-time information on the mechanical disruption of tissue through ultrasound cavitation is presented. This method is based on a substantial reduction in ultrasound imaging backscatter from the target volume as the tissue structure is broken down. Ex-vivo samples of porcine liver were exposed to successive high-intensity ultrasound pulses at a low duty cycle to induce mechanical disruption of tissue parenchyma through cavitation (referred to as histotripsy). At the conclusion of treatment, B-scan imaging backscatter was observed to have decreased by 22.4 +/- 2.3 dB in the target location. Treated samples of tissue were found to contain disrupted tissue corresponding to the imaged hypoechoic volume with no remaining discernable structure and a sharp boundary. The observed, substantial backscatter reduction may be an effective feedback mechanism for assessing treatment efficacy in ultrasound surgery using pulsed ultrasound to create cavitation.
Collapse
Affiliation(s)
- Timothy L Hall
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
12
|
Luo W, Zhou X, Tian X, Ren X, Zheng M, Gu K, He G. Enhancement of ultrasound contrast agent in high-intensity focused ultrasound ablation. Adv Ther 2006; 23:861-8. [PMID: 17276954 DOI: 10.1007/bf02850207] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-intensity focused ultrasound (HIFU) is becoming an increasingly attractive modality for ablation. Enhancement of HIFU is an important issue that has been discussed and investigated worldwide. Ultrasound contrast agents are considered to constitute an efficient medium for changing acoustic characteristics and improving energy deposition in the focal region. The role of microbubbles in inducing enhanced heating, cavitation, and other related events in HIFU ablation has been investigated, with the goal of improving coagulation necrosis volume or decreasing acoustic power and exposure duration. Consequently, with the use of ultrasound contrast agents, applications of HIFU are expected to become more efficient, safe, and accurate and to produce fewer adverse effects. This paper reviews studies that have been conducted to investigate the enhancement of ultrasound contrast agents in HIFU ablation through experiments that were carried out in vitro and in vivo; an analysis of results of this enhancement mechanism is provided.
Collapse
Affiliation(s)
- Wen Luo
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|