1
|
Pons G, Martí J, Martí R, Ganau S, Noble JA. Breast-lesion Segmentation Combining B-Mode and Elastography Ultrasound. ULTRASONIC IMAGING 2016; 38:209-224. [PMID: 26062760 DOI: 10.1177/0161734615589287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Breast ultrasound (BUS) imaging has become a crucial modality, especially for providing a complementary view when other modalities (i.e., mammography) are not conclusive in the task of assessing lesions. The specificity in cancer detection using BUS imaging is low. These false-positive findings often lead to an increase of unnecessary biopsies. In addition, increasing sensitivity is also challenging given that the presence of artifacts in the B-mode ultrasound (US) images can interfere with lesion detection. To deal with these problems and improve diagnosis accuracy, ultrasound elastography was introduced. This paper validates a novel lesion segmentation framework that takes intensity (B-mode) and strain information into account using a Markov Random Field (MRF) and a Maximum a Posteriori (MAP) approach, by applying it to clinical data. A total of 33 images from two different hospitals are used, composed of 14 cancerous and 19 benign lesions. Results show that combining both the B-mode and strain data in a unique framework improves segmentation results for cancerous lesions (Dice Similarity Coefficient of 0.49 using B-mode, while including strain data reaches 0.70), which are difficult images where the lesions appear with blurred and not well-defined boundaries.
Collapse
Affiliation(s)
- Gerard Pons
- Department of Computer Architecture and Technology, University of Girona, Girona, Spain
| | - Joan Martí
- Department of Computer Architecture and Technology, University of Girona, Girona, Spain
| | - Robert Martí
- Department of Computer Architecture and Technology, University of Girona, Girona, Spain
| | - Sergi Ganau
- Radiology Department, UDIAT-Centre Diagnòstic, Corporació Parc Taulí, Sabadell, Spain
| | - J Alison Noble
- Department of Engineering Science, Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Lu M, Tang Y, Sun R, Wang T, Chen S, Mao R. A real time displacement estimation algorithm for ultrasound elastography. COMPUT IND 2015. [DOI: 10.1016/j.compind.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Hu Z, Zhang H, Yuan J, Lu M, Chen S, Liu H. An H∞ strategy for strain estimation in ultrasound elastography using biomechanical modeling constraint. PLoS One 2013; 8:e73093. [PMID: 24058460 PMCID: PMC3772814 DOI: 10.1371/journal.pone.0073093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022] Open
Abstract
The purpose of ultrasound elastography is to identify lesions by reconstructing the hardness characteristics of tissue reconstructed from ultrasound data. Conventional quasi-static ultrasound elastography is easily applied to obtain axial strain components along the compression direction, with the results inverted to represent the distribution of tissue hardness under the assumption of constant internal stresses. However, previous works of quasi-static ultrasound elastography have found it difficult to obtain the lateral and shear strain components, due to the poor lateral resolution of conventional ultrasound probes. The physical nature of the strain field is a continuous vector field, which should be fully described by the axial, lateral, and shear strain components, and the clinical value of lateral and shear strain components of deformed tissue is gradually being recognized by both engineers and clinicians. Therefore, a biomechanical-model-constrained filtering framework is proposed here for recovering a full displacement field at a high spatial resolution from the noisy ultrasound data. In our implementation, after the biomechanical model constraint is integrated into the state-space equation, both the axial and lateral displacement components can be recovered at a high spatial resolution from the noisy displacement measurements using a robust H∞ filter, which only requires knowledge of the worst-case noise levels in the measurements. All of the strain components can then be calculated by applying a gradient operator to the recovered displacement field. Numerical experiments on synthetic data demonstrated the robustness and effectiveness of our approach, and experiments on phantom data and in-vivo clinical data also produced satisfying results.
Collapse
Affiliation(s)
- Zhenghui Hu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Heye Zhang
- Key Lab for Health Informatics of the Chinese Academy of Sciences, Shenzhen Advanced Institutes of Technology, Chinese Academic of Sciences, Shenzhen, China
| | - Jinwei Yuan
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minhua Lu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Lu M, Zhang H, Wang J, Yuan J, Hu Z, Liu H. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography. Biomed Eng Online 2013; 12:79. [PMID: 23937814 PMCID: PMC3751923 DOI: 10.1186/1475-925x-12-79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/05/2013] [Indexed: 12/12/2022] Open
Abstract
Background The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. Methods In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young’s modulus are computed simultaneously through an extended Kalman filter (EKF). Results In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young’s modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. Conclusions The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the absolute values of Young’s modulus are estimated through the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will affect the performance, i.e., the convergence rate, and computational cost, etc.
Collapse
Affiliation(s)
- Minhua Lu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
5
|
Aghajani A, Haghpanahi M, Nikazad T. The ultrasound elastography inverse problem and the effective criteria. Proc Inst Mech Eng H 2013; 227:1203-12. [PMID: 23921546 DOI: 10.1177/0954411913494324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The elastography (elasticity imaging) is one of the recent state-of-the-art methods for diagnosis of abnormalities in soft tissue. The idea is based on the computation of the tissue elasticity distribution. This leads to the inverse elasticity problem; in that, displacement field and boundary conditions are known, and elasticity distribution of the tissue is aimed for computation. We treat this problem by the Gauss-Newton method. This iterative method results in an ill-posed problem, and therefore, regularization schemes are required to deal with this issue. The impacts of the initial guess for tissue elasticity distribution, contrast ratio between elastic modulus of tumor and normal tissue, and noise level of the input data on the estimated solutions are investigated via two different regularization methods. The numerical results show that the accuracy and speed of convergence vary when different regularization methods are applied. Also, the semi-convergence behavior has been observed and discussed. At the end, we signify the necessity of a clever initial guess and intelligent stopping criteria for the iterations. The main purpose here is to highlight some technical factors that have an influence on elasticity image quality and diagnostic accuracy, and we have tried our best to make this article accessible for a broad audience.
Collapse
Affiliation(s)
- Atefeh Aghajani
- School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | | | | |
Collapse
|
6
|
Le Floc’h S, Cloutier G, Saijo Y, Finet G, Yazdani SK, Deleaval F, Rioufol G, Pettigrew RI, Ohayon J. A four-criterion selection procedure for atherosclerotic plaque elasticity reconstruction based on in vivo coronary intravascular ultrasound radial strain sequences. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38. [PMID: 23196202 PMCID: PMC4722089 DOI: 10.1016/j.ultrasmedbio.2012.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plaque elasticity (i.e., modulogram) and morphology are good predictors of plaque vulnerability. Recently, our group developed an intravascular ultrasound (IVUS) elasticity reconstruction method which was successfully implemented in vitro using vessel phantoms. In vivo IVUS modulography, however, remains a major challenge as the motion of the heart prevents accurate strain field estimation. We therefore designed a technique to extract accurate strain fields and modulograms from recorded IVUS sequences. We identified a set of four criteria based on tissue overlapping, RF-correlation coefficient between two successive frames, performance of the elasticity reconstruction method to recover the measured radial strain, and reproducibility of the computed modulograms over the cardiac cycle. This four-criterion selection procedure (4-CSP) was successfully tested on IVUS sequences obtained in twelve patients referred for a directional coronary atherectomy intervention. This study demonstrates the potential of the IVUS modulography technique based on the proposed 4-CSP to detect vulnerable plaques in vivo.
Collapse
Affiliation(s)
- Simon Le Floc’h
- Laboratory TIMC-IMAG/DyCTiM, UJF, CNRS UMR 5525, Grenoble, France
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, and Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada
| | - Yoshifumi Saijo
- Department of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Gérard Finet
- Department of Hemodynamics and Interventional Cardiology, Hospices Civiles de Lyon and Claude Bernard University Lyon 1, INSERM Unit 886, Lyon, France
| | | | - Flavien Deleaval
- Laboratory TIMC-IMAG/DyCTiM, UJF, CNRS UMR 5525, Grenoble, France
| | - Gilles Rioufol
- Department of Hemodynamics and Interventional Cardiology, Hospices Civiles de Lyon and Claude Bernard University Lyon 1, INSERM Unit 886, Lyon, France
| | - Roderic I. Pettigrew
- Laboratory of Integrative Cardiovascular Imaging Science, NIDDK, NIH, Bethesda, Maryland, USA
| | - Jacques Ohayon
- Laboratory TIMC-IMAG/DyCTiM, UJF, CNRS UMR 5525, Grenoble, France
- University of Savoie, Polytech Annecy-Chambéry, Le Bourget du Lac, France
- Address for correspondence, Professor Jacques Ohayon, Laboratory TIMC-DynaCell, UJF, CNRS UMR 5525, InS, Grenoble, France., Fax number: (33) 456 52 00 22, Telephone number: (33) 456 52 0124,
| |
Collapse
|
7
|
Wells PNT, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 2011; 8:1521-49. [PMID: 21680780 PMCID: PMC3177611 DOI: 10.1098/rsif.2011.0054] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 05/23/2011] [Indexed: 02/06/2023] Open
Abstract
After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques-low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)-are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool.
Collapse
Affiliation(s)
- Peter N T Wells
- School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK.
| | | |
Collapse
|
8
|
Liu P, Liu D. Filter-based compounded delay estimation with application to strain imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:2078-2095. [PMID: 21989872 DOI: 10.1109/tuffc.2011.2058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ultrasonic wave interference produces local fluctuations in both the envelope, known as speckle, and phase of echoes. Furthermore, such fluctuations are correlated in space, and subsequent motion estimation from the envelope and/or phase signal produces patterned, correlated errors. Compounding, or combining information from multiple decorrelated looks, reduces such effects. We propose using a filter bank to create multiple looks to produce a compounded motion estimate. In particular, filtering in the lateral direction is shown to preserve delay estimation accuracy in the filtered sub-bands while creating decorrelation between sub-bands at the expense of some lateral resolution. For Gaussian apodization, we explicitly compute the induced signal decorrelation produced by Gabor filters. Furthermore, it is shown that lateral filtering is approximately equivalent to steering, in which filtered sub-bands correspond to signals extracted from shifted sub-apertures. Field II simulation of a point spread function verifies this claim. We use phase zero and its variants as displacement estimators for our compounded result. A simplified deformation model is used to provide computer simulations of deforming an elastic phantom. Simulations demonstrate root mean square error (RMSE) reduction in both displacement and strain of the compounded result over conventional and its laterally blurred versions. Then we apply the methods to experimental data using a commercial elastic phantom, demonstrating an improvement in strain SNR.
Collapse
Affiliation(s)
- Paul Liu
- Saset Healthcare (Chengdu) Inc., Chengdu, China.
| | | |
Collapse
|
9
|
Treece G, Lindop J, Chen L, Housden J, Prager R, Gee A. Real-time quasi-static ultrasound elastography. Interface Focus 2011; 1:540-52. [PMID: 22866230 PMCID: PMC3262269 DOI: 10.1098/rsfs.2011.0011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/25/2011] [Indexed: 12/21/2022] Open
Abstract
Ultrasound elastography is a technique used for clinical imaging of tissue stiffness with a conventional ultrasound machine. It was first proposed two decades ago, but active research continues in this area to the present day. Numerous clinical applications have been investigated, mostly related to cancer imaging, and though these have yet to prove conclusive, the technique has seen increasing commercial and clinical interest. This paper presents a review of the most widely adopted, non-quantitative, techniques focusing on technical innovations rather than clinical applications. The review is not intended to be exhaustive, concentrating instead on placing the various techniques in context according to the authors' perspective of the field.
Collapse
Affiliation(s)
- Graham Treece
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Joel Lindop
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
- Bloomberg New Energy Finance, London, UK
| | - Lujie Chen
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
- Singapore University of Technology and Design, 287 Ghim Moh Road, no. 04-00, Singapore 279623, Republic of Singapore
| | - James Housden
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Richard Prager
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Andrew Gee
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| |
Collapse
|
10
|
|
11
|
Le Floc'h S, Cloutier G, Finet G, Tracqui P, Pettigrew RI, Ohayon J. On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study. Phys Med Biol 2010; 55:5701-21. [PMID: 20826899 DOI: 10.1088/0031-9155/55/19/006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peak cap stress amplitude is recognized as a good indicator of vulnerable plaque (VP) rupture. However, such stress evaluation strongly relies on a precise, but still lacking, knowledge of the mechanical properties exhibited by the plaque components. As a first response to this limitation, our group recently developed, in a previous theoretical study, an original approach, called iMOD (imaging modulography), which reconstructs elasticity maps (or modulograms) of atheroma plaques from the estimation of strain fields. In the present in vitro experimental study, conducted on polyvinyl alcohol cryogel arterial phantoms, we investigate the benefit of coupling the iMOD procedure with the acquisition of intravascular ultrasound (IVUS) measurements for detection of VP. Our results show that the combined iMOD-IVUS strategy: (1) successfully detected and quantified soft inclusion contours with high positive predictive and sensitivity values of 89.7 ± 3.9% and 81.5 ± 8.8%, respectively, (2) estimated reasonably cap thicknesses larger than ∼300 µm, but underestimated thinner caps, and (3) quantified satisfactorily Young's modulus of hard medium (mean value of 109.7 ± 23.7 kPa instead of 145.4 ± 31.8 kPa), but overestimated the stiffness of soft inclusions (mean Young`s moduli of 31.4 ± 9.7 kPa instead of 17.6 ± 3.4 kPa). All together, these results demonstrate a promising benefit of the new iMOD-IVUS clinical imaging method for in vivo VP detection.
Collapse
Affiliation(s)
- Simon Le Floc'h
- Laboratory TIMC-DynaCell, UJF, CNRS UMR 5525, In3S, Grenoble, France
| | | | | | | | | | | |
Collapse
|