1
|
Halbach C, Rochus V, Genoe J, Rottenberg X, Cheyns D, Heremans P. Analysis of Collapse-Snapback Phenomena in Capacitive Micromachined Ultrasound Transducers. MICROMACHINES 2025; 16:160. [PMID: 40047642 PMCID: PMC11857622 DOI: 10.3390/mi16020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
The pull-in and pull-out voltages are important characteristics of Capacitive Micromachined Ultrasound Transducers (CMUTs), marking the transition between conventional and collapse operation regimes. These voltages are commonly determined using capacitance-voltage (C-V) sweeps. By modeling the operating conditions of an LCR meter in COMSOL Multiphysics®, we demonstrate that the measured capacitance comprises both static and dynamic capacitances, with the dynamic capacitance causing the appearance of a peak in the effective C-V curve. Furthermore, Laser Doppler Vibrometer (LDV) measurements and electromechanical simulations indicate the occurrence of collapse-snapback phenomena during the C-V sweeps. This study, through advanced simulations and experimental analyses, demonstrates that the transient membrane behavior significantly affects the apparent capacitance-voltage characteristics of electrostatically actuated Micro-Electromechanical Systems (MEMS).
Collapse
Affiliation(s)
- Chloé Halbach
- Interuniversity Microelectronics Centre, Kapeldreef 75, 3001 Leuven, Belgium; (V.R.); (J.G.); (X.R.); (D.C.); (P.H.)
- Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
| | - Veronique Rochus
- Interuniversity Microelectronics Centre, Kapeldreef 75, 3001 Leuven, Belgium; (V.R.); (J.G.); (X.R.); (D.C.); (P.H.)
| | - Jan Genoe
- Interuniversity Microelectronics Centre, Kapeldreef 75, 3001 Leuven, Belgium; (V.R.); (J.G.); (X.R.); (D.C.); (P.H.)
- Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
| | - Xavier Rottenberg
- Interuniversity Microelectronics Centre, Kapeldreef 75, 3001 Leuven, Belgium; (V.R.); (J.G.); (X.R.); (D.C.); (P.H.)
| | - David Cheyns
- Interuniversity Microelectronics Centre, Kapeldreef 75, 3001 Leuven, Belgium; (V.R.); (J.G.); (X.R.); (D.C.); (P.H.)
| | - Paul Heremans
- Interuniversity Microelectronics Centre, Kapeldreef 75, 3001 Leuven, Belgium; (V.R.); (J.G.); (X.R.); (D.C.); (P.H.)
- Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Annayev M, Minhaj TI, Adelegan OJ, Yamaner FY, Dayton PA, Oralkan O. Design and Fabrication of 1-D CMUT Arrays for Dual-Mode Dual-Frequency Acoustic Angiography Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:191-201. [PMID: 38090855 PMCID: PMC10832990 DOI: 10.1109/tuffc.2023.3342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
When microbubble contrast agents are excited at low frequencies (less than 5 MHz), they resonate and produce higher-order harmonics due to their nonlinear behavior. We propose a novel scheme with a capacitive micromachined ultrasonic transducer (CMUT) array to receive high-frequency microbubble harmonics in collapse mode and to transmit a low-frequency high-pressure pulse by releasing the CMUT plate from collapse and pull it back to collapse again in the same transmit-receive cycle. By patterning and etching the substrate to create glass spacers in the device cavity we can reliably operate the CMUT in collapse mode and receive high-frequency signals. Previously, we demonstrated a single-element CMUT with spacers operating in the described fashion. In this article, we present the design and fabrication of a dual-mode, dual-frequency 1-D CMUT array with 256 elements. We present two different insulating glass spacer designs in rectangular cells for the collapse mode. For the device with torus-shaped spacers, the 3 dB receive bandwidth is from 8 to 17 MHz, and the transmitted maximum peak-to-peak pressure from 32 elements at 4 mm focal depth was 2.12 MPa with a 1.21 MPa peak negative pressure, which corresponds to a mechanical index (MI) of 0.58 at 4.3 MHz. For the device with line-shaped spacers, the 3-dB receive bandwidth at 150 V dc bias extends from 10.9 to 19.2 MHz. By increasing the bias voltage to 180 V, the 3 dB bandwidth shifts, and extends from 11.7 to 20.4 MHz. The transmitting maximum peak-to-peak pressure with 32 elements at 4 mm was 2.06 MPa with a peak negative pressure of 1.19 MPa, which corresponds to an MI of 0.62 at 3.7 MHz.
Collapse
|
3
|
Wang J, Liu X, Yu Y, Li Y, Cheng C, Zhang S, Mak P, Vai M, Pun S. A Review on Analytical Modeling for Collapse Mode Capacitive Micromachined Ultrasonic Transducer of the Collapse Voltage and the Static Membrane Deflections. MICROMACHINES 2021; 12:mi12060714. [PMID: 34207176 PMCID: PMC8235715 DOI: 10.3390/mi12060714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Analytical modeling of capacitive micromachined ultrasonic transducer (CMUT) is one of the commonly used modeling methods and has the advantages of intuitive understanding of the physics of CMUTs and convergent when modeling of collapse mode CMUT. This review article summarizes analytical modeling of the collapse voltage and shows that the collapse voltage of a CMUT correlates with the effective gap height and the electrode area. There are analytical expressions for the collapse voltage. Modeling of the membrane deflections are characterized by governing equations from Timoshenko, von Kármán equations and the 2D plate equation, and solved by various methods such as Galerkin’s method and perturbation method. Analytical expressions from Timoshenko’s equation can be used for small deflections, while analytical expression from von Kármán equations can be used for both small and large deflections.
Collapse
Affiliation(s)
- JiuJiang Wang
- College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China; (J.W.); (Y.L.); (S.Z.)
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
- BeiDou and Wisdom Medical Doctor Workstation, Neijiang Normal University, Neijiang 641100, China
| | - Xin Liu
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
| | - YuanYu Yu
- College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China; (J.W.); (Y.L.); (S.Z.)
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
- BeiDou and Wisdom Medical Doctor Workstation, Neijiang Normal University, Neijiang 641100, China
- Correspondence: (Y.Y.); (P.M.); Tel.: +86-832-234-3466 (Y.Y.); +853-8822-4393 (P.M.)
| | - Yao Li
- College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China; (J.W.); (Y.L.); (S.Z.)
| | - ChingHsiang Cheng
- School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Shuang Zhang
- College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China; (J.W.); (Y.L.); (S.Z.)
- BeiDou and Wisdom Medical Doctor Workstation, Neijiang Normal University, Neijiang 641100, China
| | - PengUn Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
- Correspondence: (Y.Y.); (P.M.); Tel.: +86-832-234-3466 (Y.Y.); +853-8822-4393 (P.M.)
| | - MangI Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - SioHang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China; (X.L.); (M.V.); (S.P.)
| |
Collapse
|
4
|
Zangabad RP, Bosch JG, Mastik F, Beurskens RHSH, Henneken VA, Weekamp JW, van der Steen AFW, van Soest G. Real-Time Coded Excitation Imaging Using a CMUT-Based Side Looking Array for Intravascular Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2048-2058. [PMID: 33502975 DOI: 10.1109/tuffc.2021.3054971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides images of the vessel wall and atherosclerotic plaques. We investigate the potential for phased-array IVUS utilizing coded excitation (CE) for improving the penetration depth and image signal-to-noise ratio (SNR). It is realized on a new experimental broadband capacitive micromachined ultrasound transducer (CMUT) array, operated in collapse mode, with 96 elements placed at the circumference of a catheter tip with a 1.2- mm diameter. We characterized the array performance for CE imaging and showed that the -6-dB device bandwidth at a 30-V dc biasing is 25 MHz with a 20-MHz center frequency, with a transmit sensitivity of 37 kPa/V at that frequency. We designed a linear frequency modulation code to improve penetration depth by compensating for high-frequency attenuation while preserving resolution by a mismatched filter reconstruction. We imaged a wire phantom and a human coronary artery plaque. By assessing the image quality of the reconstructed wire phantom image, we achieved 60- and 70- μm axial resolutions using the short pulse and coded signal, respectively, and gained 8 dB in SNR for CE. Our developed system shows 20-frames/s, pixel-based beam-formed, real-time IVUS images.
Collapse
|
5
|
Mahmud MM, Wu X, Sanders JL, Biliroglu AO, Adelegan OJ, Newsome IG, Yamaner FY, Dayton PA, Oralkan O. An Improved CMUT Structure Enabling Release and Collapse of the Plate in the Same Tx/Rx Cycle for Dual-Frequency Acoustic Angiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2291-2302. [PMID: 32746179 PMCID: PMC7951756 DOI: 10.1109/tuffc.2020.3001221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This study demonstrates, in detail, the potential of using capacitive micromachined ultrasonic transducers (CMUTs) for acoustic angiography of the microvasculature. It is known that when ultrasound contrast agents (microbubbles) are excited with moderate acoustic pressure around their resonance (2-4 MHz), they produce higher order harmonics (greater than third harmonic) due to their nonlinear behavior. To date, the fundamental challenge has been the availability of a transducer that can generate the transmit signals to excite the microbubbles at low frequencies and, in the same cycle, confocally detect harmonics in the higher frequencies. We present a novel device structure and dual-mode operation of a CMUT that operates with a center frequency of 4.3 MHz and 150% bandwidth in the conventional mode for transmitting and a center frequency of 9.8 MHz and a 125.5% bandwidth in collapse mode for receiving. Output pressure of 1.7 MPapp is achieved on the surface of a single unfocused transducer. The mechanical index at the transducer surface is 0.56. FEM simulations are performed first to show the functionality of the proposed device, and then, the device fabrication is described in detail. Finally, we experimentally demonstrate the ability to detect the microbubble signals with good contrast, and the background reflection is adequately suppressed, indicating the feasibility of the presented approach for acoustic angiography.
Collapse
|
6
|
Experimental Characterization of an Embossed Capacitive Micromachined Ultrasonic Transducer Cell. MICROMACHINES 2020; 11:mi11020217. [PMID: 32093303 PMCID: PMC7074606 DOI: 10.3390/mi11020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 11/28/2022]
Abstract
Capacitive Micromachined Ultrasonic Transducer (CMUT) is a promising ultrasonic transducer in medical diagnosis and therapeutic applications that demand a high output pressure. The concept of a CMUT with an annular embossed pattern on a membrane working in collapse mode is proposed to further improve the output pressure. To evaluate the performance of an embossed CMUT cell, both the embossed and uniform membrane CMUT cells were fabricated in the same die with a customized six-mask sacrificial release process. An annular nickel pattern with the dimension of 3 μm × 2 μm (width × height) was formed on a full top electrode CMUT to realize an embossed CMUT cell. Experimental characterization was carried out with optical, electrical, and acoustic instruments on the embossed and uniform CMUT cells. The embossed CMUT cell achieved 27.1% improvement of output pressure in comparison to the uniform CMUT cell biased at 170 V voltage. The fractional bandwidths of the embossed and uniform CMUT cells were 52.5% and 41.8%, respectively. It substantiated that the embossed pattern should be placed at the vibrating center of the membrane for achieving a higher output pressure. The experimental characterization indicated that the embossed CMUT cell has better operational performance than the uniform CMUT cell in collapse region.
Collapse
|
7
|
Yildiz F, Matsunaga T, Haga Y. Fabrication and Packaging of CMUT Using Low Temperature Co-Fired Ceramic. MICROMACHINES 2018; 9:mi9110553. [PMID: 30715052 PMCID: PMC6266907 DOI: 10.3390/mi9110553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 11/23/2022]
Abstract
This paper presents fabrication and packaging of a capacitive micromachined ultrasonic transducer (CMUT) using anodically bondable low temperature co-fired ceramic (LTCC). Anodic bonding of LTCC with Au vias-silicon on insulator (SOI) has been used to fabricate CMUTs with different membrane radii, 24 µm, 25 µm, 36 µm, 40 µm and 60 µm. Bottom electrodes were directly patterned on remained vias after wet etching of LTCC vias. CMUT cavities and Au bumps were micromachined on the Si part of the SOI wafer. This high conductive Si was also used as top electrode. Electrical connections between the top and bottom of the CMUT were achieved by Au-Au bonding of wet etched LTCC vias and bumps during anodic bonding. Three key parameters, infrared images, complex admittance plots, and static membrane displacement, were used to evaluate bonding success. CMUTs with a membrane thickness of 2.6 µm were fabricated for experimental analyses. A novel CMUT-IC packaging process has been described following the fabrication process. This process enables indirect packaging of the CMUT and integrated circuit (IC) using a lateral side via of LTCC. Lateral side vias were obtained by micromachining of fabricated CMUTs and used to drive CMUTs elements. Connection electrodes are patterned on LTCC side via and a catheter was assembled at the backside of the CMUT. The IC was mounted on the bonding pad on the catheter by a flip-chip bonding process. Bonding performance was evaluated by measurement of bond resistance between pads on the IC and catheter. This study demonstrates that the LTCC and LTCC side vias scheme can be a potential approach for high density CMUT array fabrication and indirect integration of CMUT-IC for miniature size packaging, which eliminates problems related with direct integration.
Collapse
Affiliation(s)
- Fikret Yildiz
- Graduate School of Engineering, Tohoku University, 6-6 Aza-Aoba, Aramaki Aoba-ku, Sendai 980-8579, Japan.
- Faculty of Engineering, Hakkari University, Hakkari 30000, Turkey.
| | - Tadao Matsunaga
- Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aza-Aoba, Aramaki Aoba-ku, Sendai 980-8579, Japan.
| | - Yoichi Haga
- Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aza-Aoba, Aramaki Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
8
|
Khan M, Khan TM, Tasdelen AS, Yilmaz M, Atalar A, Koymen H. Optimization of a Collapsed Mode CMUT Receiver for Maximum Off-Resonance Sensitivity. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS 2018; 27:921-930. [DOI: 10.1109/jmems.2018.2857444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Pekař M, Dittmer WU, Mihajlović N, van Soest G, de Jong N. Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer. ULTRASONICS 2017; 74:144-152. [PMID: 27780034 DOI: 10.1016/j.ultras.2016.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
The information in an ultrasound image depends on the frequency that is used. In a clinical examination it may therefore be beneficial to generate ultrasound images acquired at multiple frequencies, which is difficult to achieve with conventional transducers. Capacitive micromachined ultrasonic transducers (CMUTs) offer a frequency response that is tunable by the bias voltage. In this study we investigate this frequency tunability for ultrasonic imaging. We characterized a CMUT array operated at bias voltages up to three times higher than the collapse-voltage. All elements of the array were connected to a single transmit and receive channel through a bias circuit. We quantified the transmit-receive and transmit sensitivity as a function of frequency for a range of bias voltages. Impulse response measurements show that the center frequency is modifiable between 8.7MHz and 15.3MHz with an applied bias voltage of -50V to -170V. The maximum transmit sensitivity is 52kPa/V at a center frequency of 9.0MHz with an applied bias voltage of -105V. The -3dB transmit range in center frequency accessible with the variable bias voltage is 6.7-15.5MHz. This study shows that a collapse-mode CMUT can operate efficiently at multiple center frequencies when the driving pulse and the bias voltage are optimized. We demonstrate the usefulness of frequency tuning by comparing images at different optimal combinations of driving frequency and bias voltage, acquired by linearly moving the transducer across a tissue mimicking phantom.
Collapse
Affiliation(s)
- Martin Pekař
- Philips Research, Royal Philips NV, Eindhoven, The Netherlands; Thorax Center Dept. of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
| | - Wendy U Dittmer
- Philips Research, Royal Philips NV, Eindhoven, The Netherlands
| | | | - Gijs van Soest
- Thorax Center Dept. of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Lab of Acoustical Wavefield Imaging, Dept. of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Thorax Center Dept. of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Yu Y, Pun SH, Mak PU, Cheng CH, Wang J, Mak PI, Vai MI. Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:854-863. [PMID: 27101605 DOI: 10.1109/tuffc.2016.2554612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.
Collapse
|
11
|
Yamaner FY, Zhang X, Oralkan Ö. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:972-982. [PMID: 25965687 DOI: 10.1109/tuffc.2014.006794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative design is used to demonstrate immersion operation in conventional, collapse-snapback, and collapse modes. In collapsemode operation, an output pressure of 1.67 MPa pp is shown at 7 MHz on the surface of the transducer for 60-Vpp, 3-cycle sinusoidal excitation at 30-V dc bias.
Collapse
|
12
|
Xu T, Tekes C, Degertekin F. CMUTs with high-K atomic layer deposition dielectric material insulation layer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:2121-31. [PMID: 25474786 PMCID: PMC4258900 DOI: 10.1109/tuffc.2014.006481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.
Collapse
|
13
|
Unlügedik A, Taşdelen A, Atalar A, Köymen H. Designing transmitting CMUT cells for airborne applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1899-1910. [PMID: 25389168 DOI: 10.1109/tuffc.2014.006457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a new mode of airborne operation for capacitive micromachined ultrasonic transducers (CMUT), in which the plate motion spans the entire gap without collapsing and the transducer is driven by a sinusoidal voltage without a dc bias. We present equivalent-circuit-based design fundamentals for an airborne CMUT cell and verify the design targets using fabricated CMUTs. The performance limits for silicon plates are derived. We experimentally obtain 78.9 dB//20 μPa@1 m source level at 73.7 kHz, with a CMUT cell of radius 2.05 mm driven by 71 V sinusoidal drive voltage at half the frequency. The measured quality factor is 120. We also study and discuss the interaction of the nonlinear transduction force and the nonlinearity of the plate compliance.
Collapse
|
14
|
Aydoğdu E, Ozgurluk A, Atalar A, Köymen H. Parametric nonlinear lumped element model for circular CMUTs in collapsed mode. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:173-181. [PMID: 24402904 DOI: 10.1109/tuffc.2014.6689785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a parametric equivalent circuit model for a circular CMUT in collapsed mode. First, we calculate the collapsed membrane deflection, utilizing the exact electrical force distribution in the analytical formulation of membrane deflection. Then we develop a lumped element model of collapsed membrane operation. The radiation impedance for collapsed mode is also included in the model. The model is merged with the uncollapsed mode model to obtain a simulation tool that handles all CMUT behavior, in transmit or receive. Large- and small-signal operation of a single CMUT can be fully simulated for any excitation regime. The results are in good agreement with FEM simulations.
Collapse
|
15
|
Sénégond N, Boulmé A, Plag C, Teston F, Certon D. Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1505-1518. [PMID: 25004518 DOI: 10.1109/tuffc.2013.2723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response--of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth--order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results.
Collapse
|
16
|
Yamaner FY, Olçum S, Oğuz HK, Bozkurt A, Köymen H, Atalar A. High-power CMUTs: design and experimental verification. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1276-1284. [PMID: 22718878 DOI: 10.1109/tuffc.2012.2318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array.
Collapse
Affiliation(s)
- F Yalçin Yamaner
- Electronics Engineering Department, Sabanci University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
17
|
Ozgurluk A, Atalar A, Köymen H, Olçum S. Radiation impedance of collapsed capacitive micromachined ultrasonic transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1301-1308. [PMID: 22718881 DOI: 10.1109/tuffc.2012.2321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The radiation impedance of a capacitive micromachined ultrasonic transducer (CMUT) array is a critical parameter to achieve high performance. In this paper, we present a calculation of the radiation impedance of collapsed, clamped, circular CMUTs both analytically and using finite element method (FEM) simulations. First, we model the radiation impedance of a single collapsed CMUT cell analytically by expressing its velocity profile as a linear combination of special functions for which the generated pressures are known. For an array of collapsed CMUT cells, the mutual impedance between the cells is also taken into account. The radiation impedances for arrays of 7, 19, 37, and 61 circular collapsed CMUT cells for different contact radii are calculated both analytically and by FEM simulations. The radiation resistance of an array reaches a plateau and maintains this level for a wide frequency range. The variation of radiation reactance with respect to frequency indicates an inductance-like behavior in the same frequency range. We find that the peak radiation resistance value is reached at higher kd values in the collapsed case as compared with the uncollapsed case, where k is the wavenumber and d is the center-to-center distance between two neighboring CMUT cells.
Collapse
Affiliation(s)
- Alper Ozgurluk
- Electrical and Electronics Engineering Department, Bilkent University, Ankara, Turkey
| | | | | | | |
Collapse
|