1
|
Pan Y, Qiang Y, Liang W, Huang W, Wang N, Wang X, Zhang Z, Qiu W, Zheng H. A transcranial multiple waves suppression method for plane wave imaging based on Radon transform. ULTRASONICS 2024; 143:107405. [PMID: 39059257 DOI: 10.1016/j.ultras.2024.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Transcranial ultrasound imaging presents a significant challenge due to the intricate interplay between ultrasound waves and the heterogeneous human skull. The skull's presence induces distortion, refraction, multiple scattering, and reflection of ultrasound signals, thereby complicating the acquisition of high-quality images. Extracting reflections from the entire waveform is crucial yet exceedingly challenging, as intracranial reflections are often obscured by strong amplitude direct waves and multiple scattering. In this paper, a multiple wave suppression method for ultrasound plane wave imaging is proposed to mitigate the impact of skull interference. Drawing upon prior research, we developed an enhanced high-resolution linear Radon transform using the maximum entropy principle and Bayesian method, facilitating wavefield separation. We detailed the process of wave field separation in the Radon domain through simulation of a model with a high velocity layer. When plane waves emitted at any steering angles, both multiple waves and first arrival waves manifested as distinct energy points. In the brain simulation, we contrasted the characteristic differences between skull reflection and brain-internal signal in Radon domain, and demonstrated that multiples suppression method reduces side and grating lobe levels by approximately 30 dB. Finally, we executed in vitro experiments using a monkey skull to separate weak intracranial reflection signals from strong skull reflections, enhancing the contrast-to-noise ratio by 85 % compared to conventional method using full waveform. This study deeply explores the effect of multiples on effective signal separation, addresses the complexity of wavefield separation, and verifies its efficacy through imaging, thereby significantly advancing ultrasound transcranial imaging techniques.
Collapse
Affiliation(s)
- Yue Pan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Qiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenjie Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenyue Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ningyuan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xingying Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiqiang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Riis T, Feldman D, Losser A, Mickey B, Kubanek J. Device for Multifocal Delivery of Ultrasound Into Deep Brain Regions in Humans. IEEE Trans Biomed Eng 2024; 71:660-668. [PMID: 37695955 PMCID: PMC10803076 DOI: 10.1109/tbme.2023.3313987] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Low-intensity focused ultrasound provides the means to noninvasively stimulate or release drugs in specified deep brain targets. However, successful clinical translations require hardware that maximizes acoustic transmission through the skull, enables flexible electronic steering, and provides accurate and reproducible targeting while minimizing the use of MRI. We have developed a device that addresses these practical requirements. The device delivers ultrasound through the temporal and parietal skull windows, which minimize the attenuation and distortions of the ultrasound by the skull. The device consists of 252 independently controlled elements, which provides the ability to modulate multiple deep brain targets at a high spatiotemporal resolution, without the need to move the device or the subject. And finally, the device uses a mechanical registration method that enables accurate deep brain targeting both inside and outside of the MRI. Using this method, a single MRI scan is necessary for accurate targeting; repeated subsequent treatments can be performed reproducibly in an MRI-free manner. We validated these functions by transiently modulating specific deep brain regions in two patients with treatment-resistant depression.
Collapse
|
3
|
Riis T, Feldman D, Mickey B, Kubanek J. Controlled noninvasive modulation of deep brain regions in humans. COMMUNICATIONS ENGINEERING 2024; 3:13. [PMCID: PMC10956068 DOI: 10.1038/s44172-023-00146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/29/2023] [Indexed: 10/06/2024]
Abstract
Transcranial focused ultrasound provides noninvasive and reversible approaches for precise and personalized manipulations of brain circuits, with the potential to transform our understanding of brain function and treatments of brain dysfunction. However, effective applications in humans have been limited by the human head, which attenuates and distorts ultrasound severely and unpredictably. This has led to uncertain ultrasound intensities delivered into the brain. Here, we address this lingering barrier using a direct measurement approach that can be repeatedly applied to the human brain. The approach uses an ultrasonic scan of the head to measure and compensate for the attenuation of the ultrasound by all obstacles within the ultrasound path. No other imaging modality is required and the method is parameter-free and personalized to each subject. The approach accurately restores operators’ intended intensities inside ex-vivo human skulls. Moreover, the approach is critical for effective modulation of deep brain regions in humans. When applied, the approach modulates fMRI Blood Oxygen Level Dependent (BOLD) activity in disease-relevant deep brain regions. This tool unlocks the potential of emerging approaches based on low-intensity ultrasound for controlled manipulations of neural circuits in humans. Transcranial focused ultrasound has had limited applications in humans due to the unpredictable distortions of ultrasound by the human head. Thomas Riis and colleagues report an approach which enables direct correction for the attenuation of ultrasound by the skull and hair, thus enabling controlled ultrasound therapies in humans.
Collapse
Affiliation(s)
- Thomas Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
| | - Daniel Feldman
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84102 USA
| | - Brian Mickey
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84102 USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
| |
Collapse
|
4
|
Leonov D, Kulberg N, Yakovleva T, Solovyova P, Costa-Júnior JFS, Saikia MJ. Innovative aberration correction in ultrasound diagnostics with direct phase estimation for enhanced image quality. Phys Eng Sci Med 2023; 46:1765-1778. [PMID: 37796368 DOI: 10.1007/s13246-023-01338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
The paper addresses a crucial challenge in medical radiology and introduces a novel general approach, which utilises applied mathematics and information technology techniques, for aberration correction in ultrasound diagnostics. Ultrasound imaging of inhomogeneous media inherently suffers from variations in ultrasonic speed between tissue. The characteristics of aberrations are unique to each patient due to tissue morphology. This study proposes a new phase aberration correction method based on the Fourier transform and leveraging of the synthetic aperture mode. The proposed method enables correction after the emission and reception of ultrasonic wave, allowing for the estimation of aberration profiles for different parts of the sonogram. To demonstrate the method's performance, this study included the conducting of experiments using a commercially available quality control phantom, an ex-vivo temporal human bone, and specially designed distortion layers. At a frequency of 2 MHz, the experiments demonstrated an increase of two-and-three-quarters in echo signal intensity and a decrease of nearly two-fold in the width of the angular distribution compared to the pre-correction state. However, it is important to note that the implementation of the method has a limitation, as it requires an aperture synthesis mode and access to raw RF data, which restricts use in common scanners. To ensure the reproducibility of the results, this paper provides public access to an in-house C + + code for aberration correction following the proposed method, as well as the dataset used in this study.
Collapse
Affiliation(s)
- Denis Leonov
- Moscow Center for Diagnostics and Telemedicine, Moscow, Russia.
- National Research University "Moscow Power Engineering Institute", Moscow, Russia.
| | - Nicholas Kulberg
- Federal Research Centre "Computer Science and Control" of the Russian Academy of Sciences, Moscow, Russia
| | - Tatyana Yakovleva
- Federal Research Centre "Computer Science and Control" of the Russian Academy of Sciences, Moscow, Russia
| | - Polina Solovyova
- National Research University "Moscow Power Engineering Institute", Moscow, Russia
| | | | - Manob Jyoti Saikia
- Department of Electrical Engineering, University of North Florida, Jacksonville, FL, 32224, USA
| |
Collapse
|
5
|
Bureau F, Robin J, Le Ber A, Lambert W, Fink M, Aubry A. Three-dimensional ultrasound matrix imaging. Nat Commun 2023; 14:6793. [PMID: 37880210 PMCID: PMC10600255 DOI: 10.1038/s41467-023-42338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Matrix imaging paves the way towards a next revolution in wave physics. Based on the response matrix recorded between a set of sensors, it enables an optimized compensation of aberration phenomena and multiple scattering events that usually drastically hinder the focusing process in heterogeneous media. Although it gave rise to spectacular results in optical microscopy or seismic imaging, the success of matrix imaging has been so far relatively limited with ultrasonic waves because wave control is generally only performed with a linear array of transducers. In this paper, we extend ultrasound matrix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much sharper estimation of the transmission matrix that links each transducer and each medium voxel. Here, we first present an experimental proof of concept on a tissue-mimicking phantom through ex-vivo tissues and then, show the potential of 3D matrix imaging for transcranial applications.
Collapse
Affiliation(s)
- Flavien Bureau
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Justine Robin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Physics for Medicine, ESPCI Paris, PSL University, INSERM, CNRS, Paris, France
| | - Arthur Le Ber
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - William Lambert
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Hologic / SuperSonic Imagine, 135 Rue Emilien Gautier, 13290, Aix-en-Provence, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.
| |
Collapse
|
6
|
Robins TC, Cueto C, Cudeiro J, Bates O, Agudo OC, Strong G, Guasch L, Warner M, Tang MX. Dual-Probe Transcranial Full-Waveform Inversion: A Brain Phantom Feasibility Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2302-2315. [PMID: 37474432 PMCID: PMC7616382 DOI: 10.1016/j.ultrasmedbio.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE Despite being a low-cost, portable and safe medical imaging technique, transcranial ultrasound imaging is not used widely in adults because of the severe degradation and distortion of signals caused by the skull. Full-waveform inversion (FWI) has recently been found to have potential as an effective method for transcranial ultrasound tomography to obtain high-quality, subwavelength-resolution acoustic models of the brain using low-frequency ultrasound data. In this study is the first demonstration of this method in recovering a high-resolution 2-D reconstruction of a brain and skull ultrasound imaging phantom using experimentally acquired data. METHODS A 2:5 scale brain phantom encased within a 3-D-printed skull-mimicking layer was created to simulate a clinical transcranial imaging target. To obtain tomographic ultrasound data on the brain and skull phantom, a tomographic ultrasound acquisition system was designed and implemented using commercially available low-frequency cardiac probes. FWI reconstructions of the brain and skull phantom were performed using the acquired tomographic data and were compared with corresponding synthetic reconstructions. This comparison was used to evaluate the feasibility of the proposed imaging system when employing different transducer array configurations. RESULTS We demonstrate the successful FWI reconstruction of the brain phantom within the skull mimic from experimentally acquired tomographic ultrasound data. To mitigate the effects of the skull-mimicking material, a reflection-matching algorithm was applied to model the morphology of the skull layer prior to performing the inversion. CONCLUSION The findings of this study provide a promising step toward the clinical use of FWI for transcranial ultrasound imaging in adults.
Collapse
Affiliation(s)
- Thomas Caradoc Robins
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK.
| | - Carlos Cueto
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| | - Javier Cudeiro
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Oscar Bates
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| | - Oscar Calderon Agudo
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - George Strong
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Lluis Guasch
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Michael Warner
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| |
Collapse
|
7
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
8
|
Ali R, Brevett T, Zhuang L, Bendjador H, Podkowa AS, Hsieh SS, Simson W, Sanabria SJ, Herickhoff CD, Dahl JJ. Aberration correction in diagnostic ultrasound: A review of the prior field and current directions. Z Med Phys 2023; 33:267-291. [PMID: 36849295 PMCID: PMC10517407 DOI: 10.1016/j.zemedi.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 02/27/2023]
Abstract
Medical ultrasound images are reconstructed with simplifying assumptions on wave propagation, with one of the most prominent assumptions being that the imaging medium is composed of a constant sound speed. When the assumption of a constant sound speed are violated, which is true in most in vivoor clinical imaging scenarios, distortion of the transmitted and received ultrasound wavefronts appear and degrade the image quality. This distortion is known as aberration, and the techniques used to correct for the distortion are known as aberration correction techniques. Several models have been proposed to understand and correct for aberration. In this review paper, aberration and aberration correction are explored from the early models and correction techniques, including the near-field phase screen model and its associated correction techniques such as nearest-neighbor cross-correlation, to more recent models and correction techniques that incorporate spatially varying aberration and diffractive effects, such as models and techniques that rely on the estimation of the sound speed distribution in the imaging medium. In addition to historical models, future directions of ultrasound aberration correction are proposed.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Thurston Brevett
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Louise Zhuang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hanna Bendjador
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony S Podkowa
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott S Hsieh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Walter Simson
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergio J Sanabria
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; University of Deusto/ Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Carl D Herickhoff
- Department of Biomedical Engineering, University of Memphis, TN, USA
| | - Jeremy J Dahl
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Vienneau EP, Ozgun KA, Byram BC. Spatiotemporal Coherence to Quantify Sources of Image Degradation in Ultrasonic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1337-1352. [PMID: 35175919 PMCID: PMC9083333 DOI: 10.1109/tuffc.2022.3152717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Thermal noise and acoustic clutter signals degrade ultrasonic image quality and contribute to unreliable clinical assessment. When both noise and clutter are prevalent, it is difficult to determine which one is a more significant contributor to image degradation because there is no way to separately measure their contributions in vivo. Efforts to improve image quality often rely on an understanding of the type of image degradation at play. To address this, we derived and validated a method to quantify the individual contributions of thermal noise and acoustic clutter to image degradation by leveraging spatial and temporal coherence characteristics. Using Field II simulations, we validated the assumptions of our method, explored strategies for robust implementation, and investigated its accuracy and dynamic range. We further proposed a novel robust approach for estimating spatial lag-one coherence. Using this robust approach, we determined that our method can estimate the signal-to-thermal noise ratio (SNR) and signal-to-clutter ratio (SCR) with high accuracy between SNR levels of -30 to 40 dB and SCR levels of -20 to 15 dB. We further explored imaging parameter requirements with our Field II simulations and determined that SNR and SCR can be estimated accurately with as few as two frames and sixteen channels. Finally, we demonstrate in vivo feasibility in brain imaging and liver imaging, showing that it is possible to overcome the constraints of in vivo motion using high-frame rate M-Mode imaging.
Collapse
|
10
|
Jing B, Lindsey BD. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2734-2748. [PMID: 34140169 DOI: 10.1016/j.ultrasmedbio.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
With the advancement of aberration correction techniques, transcranial ultrasound imaging has exhibited great potential in applications such as imaging neurological function and guiding therapeutic ultrasound. However, the feasibility of transcranial imaging varies among individuals because of the differences in skull acoustic properties. To better understand the fundamental mechanisms underlying the variation in imaging performance, the effect of the structure of the porous trabecular bone on transcranial imaging performance (i.e., target localization errors and resolution) was investigated for the first time through the use of elastic wave simulations and experiments. Simulation studies using high-resolution computed tomography data from ex vivo skull samples revealed that imaging at large incidence angles reduced the target localization error for skulls having low porosity; however, as skull porosity increased, large angles of incidence resulted in degradation of resolution and increased target localization errors. Experimental results indicate that imaging at normal incidence introduced a localization error of 1.85 ± 0.10 mm, while imaging at a large incidence angle (40°) resulted in an increased localization error of 6.54 ± 1.33 mm and caused a single point target to no longer appear as a single, coherent target in the resulting image, which is consistent with simulation results. This first investigation of the effects of skull microstructure on transcranial ultrasound imaging indicates that imaging performance is highly dependent on the porosity of the skull, particularly at non-normal angles of incidence.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
11
|
Rotational-invariant speckle-scanning ultrasonography through thick bones. Sci Rep 2021; 11:14178. [PMID: 34244534 PMCID: PMC8270910 DOI: 10.1038/s41598-021-93488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Ultrasonography is a major medical imaging technique that has been broadly applied in many disease diagnoses. However, due to strong aberration and scattering in the human skull, high-resolution transcranial ultrasonic imaging remains a grand challenge. Here, we explore the rotational-invariant property of ultrasonic speckle and develop high-resolution speckle-scanning ultrasonography to image sub-millimeter-sized features through thick bones. We experimentally validate the rotational invariance of ultrasonic speckle. Based on this property, we scan a random ultrasonic speckle pattern across an object sandwiched between two thick bones so that the object features can be encoded to the ultrasonic waves. After receiving the transmitted ultrasonic waves, we reconstruct the image of the object using an iterative phase retrieval algorithm. We successfully demonstrate imaging of hole and tube features sized as fine as several hundreds of microns between two 0.5 ~ 1-cm-thick bones. With 2.5-MHz excitation and the third-harmonic detection, we measure the spatial resolution as 352 µm. Rotational-invariant speckle-scanning ultrasonography offers a new approach to image through thick bones and paves an avenue towards high-resolution ultrasonic imaging of the human brain.
Collapse
|
12
|
|
13
|
Jiang C, Li Y, Xu K, Ta D. Full-Matrix Phase Shift Migration Method for Transcranial Ultrasonic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:72-83. [PMID: 32795967 DOI: 10.1109/tuffc.2020.3016382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A spectrum-domain method, called full-matrix phase shift migration (FM-PSM), is presented for transcranial ultrasound phase correction and imaging with ideal synthetic aperture focusing technology. The simulated data obtained using the pseudospectral time-domain method are used to evaluate the feasibility of the method. The experimental data measured from a 3-D printed skull phantom are used to evaluate the algorithm performance in terms of resolution, contrast-to-noise ratio (CNR), and eccentricity comparing with the classical ray-tracing delay and sum (DAS) method. In wire imaging experiment, FM-PSM has a lateral resolution of 0.22 mm and ray-tracing DAS has a lateral resolution of 0.24 mm measured at -6-dB drop using a transducer with a center frequency of 6.25 MHz. In cylinder imaging experiment, FM-PSM has a CNR of 2.14 and ray-tracing DAS has a CNR of 1.82, which illustrates about 17% improvement. For a J -element array and an output image with pixels M ×N (lateral × axial), the computational cost of the DAS is of O(J ×M2×N2) ; on the contrary, it reduces to O(J ×M ×N2) with the proposed FM-PSM. The results suggest that FM-PSM is an efficiency method for transcranial ultrasonic imaging.
Collapse
|
14
|
Qiu W, Bouakaz A, Konofagou EE, Zheng H. Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:6-20. [PMID: 32866096 DOI: 10.1109/tuffc.2020.3019932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of new ultrasound technologies has improved our understanding of the brain functions and offered new opportunities for the treatment of brain diseases. Ultrasound has become a valuable tool in preclinical animal and clinical studies as it not only provides information about the structure and function of brain tissues but can also be used as a therapy alternative for brain diseases. High-resolution cerebral flow images with high sensitivity can be acquired using novel functional ultrasound and super-resolution ultrasound imaging techniques. The noninvasive treatment of essential tremors has been clinically approved and it has been demonstrated that the ultrasound technology can revolutionize the currently existing treatment methods. Microbubble-mediated ultrasound can remotely open the blood-brain barrier enabling targeted drug delivery in the brain. More recently, ultrasound neuromodulation received a great amount of attention due to its noninvasive and deep penetration features and potential therapeutic benefits. This review provides a thorough introduction to the current state-of-the-art research on brain ultrasound and also introduces basic knowledge of brain ultrasound including the acoustic properties of the brain/skull and engineering techniques for ultrasound. Ultrasound is expected to play an increasingly important role in the diagnosis and therapy of brain diseases.
Collapse
|
15
|
Jing B, Lindsey BD. Phase Modulation Beamforming for Ultrafast Plane-Wave Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2003-2011. [PMID: 32396082 PMCID: PMC7539262 DOI: 10.1109/tuffc.2020.2993763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to improve the spatial resolution for high-frame-rate imaging, a new image formation approach is proposed based on introducing very weak aberration into received data, then combining the multiple results by taking the pixel-wise standard deviation of multiple aberrated images and subtracting the result from the delay-and-sum image. This approach is demonstrated in simulations, tissue-mimicking phantom experiments, and in vivo imaging. Simulations indicate the lateral full-width half-maximum (FWHM) of targets decreases by 38.24% ± 6.38%. In imaging wire targets in a tissue-mimicking phantom at 7.8 MHz, wire target FWHM decreases by 35.91% ± 5.39%. However, contrast was observed to decrease by 1.23 dB and contrast-to-noise ratio (CNR) by 18.5% in phantom studies due to the subtraction of similar images, which increases the number of dark pixels in the image. Finally, the proposed technique is tested in vivo, with images showing improvements similar to those in tissue-mimicking phantoms, including increased separation between closely spaced targets.
Collapse
|
16
|
Soulioti DE, Espindola D, Dayton PA, Pinton GF. Super-Resolution Imaging Through the Human Skull. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:25-36. [PMID: 31494546 DOI: 10.1109/tuffc.2019.2937733] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-resolution transcranial ultrasound imaging in humans has been a persistent challenge for ultrasound due to the imaging degradation effects from aberration and reverberation. These mechanisms depend strongly on skull morphology and have high variability across individuals. Here, we demonstrate the feasibility of human transcranial super-resolution imaging using a geometrical focusing approach to efficiently concentrate energy at the region of interest, and a phase correction focusing approach that takes the skull morphology into account. It is shown that using the proposed focused super-resolution method, we can image a 208- [Formula: see text] microtube behind a human skull phantom in both an out-of-plane and an in-plane configuration. Individual phase correction profiles for the temporal region of the human skull were calculated and subsequently applied to transmit-receive a custom focused super-resolution imaging sequence through a human skull phantom, targeting the 208- [Formula: see text] diameter microtube at 68.5 mm in depth and at 2.5 MHz. Microbubble contrast agents were diluted to a concentration of 1.6×106 bubbles/mL and perfused through the microtube. It is shown that by correcting for the skull aberration, the RF signal amplitude from the tube improved by a factor of 1.6 in the out-of-plane focused emission case. The lateral registration error of the tube's position, which in the uncorrected case was 990 [Formula: see text], was reduced to as low as 50 [Formula: see text] in the corrected case as measured in the B-mode images. Sensitivity in microbubble detection for the phase-corrected case increased by a factor of 1.48 in the out-of-plane imaging case, while, in the in-plane target case, it improved by a factor of 1.31 while achieving an axial registration correction from an initial 1885- [Formula: see text] error for the uncorrected emission, to a 284- [Formula: see text] error for the corrected counterpart. These findings suggest that super-resolution imaging may be used far more generally as a clinical imaging modality in the brain.
Collapse
|
17
|
Guo S, Zhuo J, Li G, Gandhi D, Dayan M, Fishman P, Eisenberg H, Melhem ER, Gullapalli RP. Feasibility of ultrashort echo time images using full-wave acoustic and thermal modeling for transcranial MRI-guided focused ultrasound (tcMRgFUS) planning. ACTA ACUST UNITED AC 2019; 64:095008. [DOI: 10.1088/1361-6560/ab12f7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Gerhardson T, Sukovich JR, Pandey AS, Hall TL, Cain CA, Xu Z. Catheter Hydrophone Aberration Correction for Transcranial Histotripsy Treatment of Intracerebral Hemorrhage: Proof-of-Concept. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1684-1697. [PMID: 28880166 PMCID: PMC5681355 DOI: 10.1109/tuffc.2017.2748050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Histotripsy is a minimally invasive ultrasound therapy that has shown rapid liquefaction of blood clots through human skullcaps in an in vitro intracerebral hemorrhage model. However, the efficiency of these treatments can be compromised if the skull-induced aberrations are uncorrected. We have developed a catheter hydrophone which can perform aberration correction (AC) and drain the liquefied clot following histotripsy treatment. Histotripsy pulses were delivered through an excised human skullcap using a 256-element, 500-kHz hemisphere array transducer with a 15-cm focal distance. A custom hydrophone was fabricated using a mm PZT-5h crystal interfaced to a coaxial cable and integrated into a drainage catheter. An AC algorithm was developed to correct the aberrations introduced between histotripsy pulses from each array element. An increase in focal pressure of up to 60% was achieved at the geometric focus and 27%-62% across a range of electronic steering locations. The sagittal and axial -6-dB beam widths decreased from 4.6 to 2.2 mm in the sagittal direction and 8 to 4.4 mm in the axial direction, compared to 1.5 and 3 mm in the absence of aberration. After performing AC, lesions with diameters ranging from 0.24 to 1.35 mm were generated using electronic steering over a mm grid in a tissue-mimicking phantom. An average volume of 4.07 ± 0.91 mL was liquefied and drained after using electronic steering to treat a 4.2-mL spherical volume in in vitro bovine clots through the skullcap.
Collapse
|
19
|
Jones RM, Hynynen K. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging. Phys Med Biol 2016; 61:23-36. [PMID: 26605827 PMCID: PMC5022767 DOI: 10.1088/0031-9155/61/1/23] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n = 4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections. Although presented in an imaging context, our results may also be applicable to the problem of transmit focusing through the skull.
Collapse
Affiliation(s)
- Ryan M. Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Jakovljevic M, Byram BC, Hyun D, Dahl JJ, Trahey GE. Short-lag spatial coherence imaging on matrix arrays, part II: Phantom and in vivo experiments. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1113-22. [PMID: 24960701 PMCID: PMC4234201 DOI: 10.1109/tuffc.2014.3011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In Part I of the paper, we demonstrated through simulation the potential of volumetric short-lag spatial coherence (SLSC) imaging to improve visualization of hypoechoic targets in three dimensions. Here, we demonstrate the application of volumetric SLSC imaging in phantom and in vivo experiments using a clinical 3-D ultrasound scanner and matrix array. Using a custom single-channel acquisition tool, we collected partially beamformed channel data from the fully sampled matrix array at high speeds and created matched Bmode and SLSC volumes of a vessel phantom and in vivo liver vasculature. 2-D and 3-D images rendered from the SLSC volumes display reduced clutter and improved visibility of the vessels when compared with their B-mode counterparts. We use concurrently acquired color Doppler volumes to confirm the presence of the vessels of interest and to define the regions inside the vessels used in contrast and contrast-to-noise ratio (CNR) calculations. SLSC volumes show higher CNR values than their matched B-mode volumes, while the contrast values appear to be similar between the two imaging methods.
Collapse
|
21
|
Lindsey BD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:90-101. [PMID: 24239360 PMCID: PMC3849324 DOI: 10.1016/j.ultrasmedbio.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/20/2013] [Accepted: 09/01/2013] [Indexed: 05/03/2023]
Abstract
With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell's law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency.
Collapse
Affiliation(s)
- Brooks D. Lindsey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Stephen W. Smith
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Wang T, Jing Y. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study. Phys Med Biol 2013; 58:6663-81. [PMID: 24018632 DOI: 10.1088/0031-9155/58/19/6663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents a numerical study for ultrasound transcranial imaging. To correct for the phase aberration from the skull, two critical steps are needed prior to brain imaging. In the first step, the skull shape and speed of sound are acquired by either CT scans or ultrasound scans. In the ultrasound scan approach, phased array and double focusing technique are utilized, which are able to estimate the thickness of the skull with a maximum error of around 10% and the average speed of sound in the skull is underestimated by less than 2%. In the second step, the fast marching method is used to compute the phase delay based on the known skull shape and sound speed from the first step, and the computation can be completed in seconds for 2D problems. The computed phase delays are then used in combination with the conventional delay-and-sum algorithm for generating B-mode images. Images of wire phantoms with CT or ultrasound scan-based phase correction are shown to have much less artifact than the ones without correction. Errors of deducing speed of sound from CT scans are also discussed regarding its effect on the transcranial ultrasound images. Assuming the speed of sound grows linearly with the density, this study shows that, the CT-based phase correction approach can provide clear images of wire phantoms even if the speed of sound is overestimated by 400 m s(-1), or the linear coefficient is overestimated by 40%. While in this study, ultrasound scan-based phase correction performs almost equally well with the CT-based approach, potential problems are identified and discussed.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
24
|
Lindsey BD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW. Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:721-34. [PMID: 23415287 PMCID: PMC3764922 DOI: 10.1016/j.ultrasmedbio.2012.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/19/2023]
Abstract
Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%-29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging-the ultrasound brain helmet-and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|