1
|
Lafond M, Payne A, Lafon C. Therapeutic ultrasound transducer technology and monitoring techniques: a review with clinical examples. Int J Hyperthermia 2024; 41:2389288. [PMID: 39134055 PMCID: PMC11375802 DOI: 10.1080/02656736.2024.2389288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
The exponential growth of therapeutic ultrasound applications demonstrates the power of the technology to leverage the combinations of transducer technology and treatment monitoring techniques to effectively control the preferred bioeffect to elicit the desired clinical effect.Objective: This review provides an overview of the most commonly used bioeffects in therapeutic ultrasound and describes existing transducer technologies and monitoring techniques to ensure treatment safety and efficacy.Methods and materials: Literature reviews were conducted to identify key choices that essential in terms of transducer design, treatment parameters and procedure monitoring for therapeutic ultrasound applications. Effective combinations of these options are illustrated through descriptions of several clinical indications, including uterine fibroids, prostate disease, liver cancer, and brain cancer, that have been successful in leveraging therapeutic ultrasound to provide effective patient treatments.Results: Despite technological constraints, there are multiple ways to achieve a desired bioeffect with therapeutic ultrasound in a target tissue. Visualizations of the interplay of monitoring modality, bioeffect, and applied acoustic parameters are presented that demonstrate the interconnectedness of the field of therapeutic ultrasound. While the clinical indications explored in this review are at different points in the clinical evaluation path, based on the ever expanding research being conducted in preclinical realms, it is clear that additional clinical applications of therapeutic ultrasound that utilize a myriad of bioeffects will continue to grow and improve in the coming years.Conclusions: Therapeutic ultrasound will continue to improve in the next decades as the combination of transducer technology and treatment monitoring techniques will continue to evolve and be translated in clinical settings, leading to more personalized and efficient therapeutic ultrasound mediated therapies.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of UT, Salt Lake City, UT, USA
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| |
Collapse
|
2
|
Ashida R, Kawabata KI, Asami R, Kitano M. Novel treatment system using endoscopic ultrasound-guided high-intensity focused ultrasound: A proof-of-concept study. Pancreatology 2024; 24:88-92. [PMID: 38036413 DOI: 10.1016/j.pan.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
AIM High-intensity focused ultrasound (HIFU) is a novel minimally invasive local treatment of solid tumors. Endoscopic ultrasound-guided HIFU (EUS-HIFU) using mechanical effects would have potential benefits, including precise detection of target lesions and enhance drug delivery. The aim of this study is to develop EUS-HIFU device and to prove our concept in porcine model using a locally injected phase change nano droplet (PCND) as the sensitizer. METHOD A phospholipid PCND contained volatile perfluoro-carbon liquids. The prototype HIFU apparatus comprised a small (20 × 20 mm) transducer with center frequency of 2.1 MHz, attachable to a linear EUS transducer. Under general anesthetic, a single porcine received EUS-guided injection of PCND. The HIFU transducer was placed laparotomically in the stomach, and the liver was ablated through the gastric wall. RESULTS PCND was injected successfully and a distinct lesion was generated at the HIFU transducer focus only in injected areas that received HIFU exposure at 4.7 kW/cm2 at a duty cycle of 5 % (mean temporal intensity, 0.245 kW/cm2) for 30 s. The generated lesions were mechanically fractionated in macroscopic view. CONCLUSION The concept of transluminal HIFU ablation using novel EUS-HIFU system was proved in a porcine animal model. This novel treatment system has great potential for future cancer treatment although further investigation in more animals and different organs are warranted.
Collapse
Affiliation(s)
- Reiko Ashida
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | | | - Rei Asami
- Imaging Technology Center, FUJIFILM Corporation, Tokyo, Japan
| | - Masayuki Kitano
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
3
|
Bigelow TA, Thomas CL, Wu H. Scan Parameter Optimization for Histotripsy Treatment of S. Aureus Biofilms on Surgical Mesh. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:341-349. [PMID: 31634828 PMCID: PMC7039400 DOI: 10.1109/tuffc.2019.2948305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a critical need to develop new noninvasive therapies to treat bacteria biofilms. Previous studies have demonstrated the effectiveness of cavitation-based ultrasound histotripsy to destroy these biofilms. In this study, the dependence of biofilm destruction on multiple scan parameters was assessed by conducting exposures at different scan speeds (0.3-1.4 beamwidths/s), step sizes (0.25-0.5 beamwidths), and the number of passes of the focus across the mesh (2-6). For each of the exposure conditions, the number of colony-forming units (CFUs) remaining on the mesh was quantified. A regression analysis was then conducted, revealing that the scan speed was the most critical parameter for biofilm destruction. Reducing the number of passes and the scan speed should allow for more efficient biofilm destruction in the future, reducing the treatment time.
Collapse
|
4
|
Bigelow TA, Thomas CL, Wu H, Itani KMF. Impact of High-Intensity Ultrasound on Strength of Surgical Mesh When Treating Biofilm Infections. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:38-44. [PMID: 30442604 PMCID: PMC6378954 DOI: 10.1109/tuffc.2018.2881358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of cavitation-based ultrasound histotripsy to treat infections on surgical mesh has shown great potential. However, any impact of the therapy on the mesh must be assessed before the therapy can be applied in the clinic. The goal of this study was to determine if the cavitation-based therapy would reduce the strength of the mesh thus compromising the functionality of the mesh. First, Staphylococcus aureus biofilms were grown on the surgical mesh samples and exposed to high-intensity ultrasound pulses. For each exposure, the effectiveness of the therapy was confirmed by counting the number of colony forming units (CFUs) on the mesh. Most of the exposed meshes had no CFUs with an average reduction of 5.4-log10 relative to the sham exposures. To quantify the impact of the exposure on mesh strength, the force required to tear the mesh and the maximum mesh expansion before damage were quantified for control, sham, and exposed mesh samples. There was no statistical difference between the exposed and sham/control mesh samples in terms of ultimate tensile strength and corresponding mesh expansion. The only statistical difference was with respect to mesh orientation relative to the applied load. The tensile strength increased by 1.36 N while the expansion was reduced by 1.33 mm between different mesh orientations.
Collapse
Affiliation(s)
- Timothy A. Bigelow
- Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50011
()
| | - Clayton L. Thomas
- Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50011
()
| | - Huaiqing Wu
- Department of Statistics, Iowa State University, Ames, IA 50011 ()
| | - Kamal MF. Itani
- VA Boston Healthcare System, Boston University and Harvard Medical School, West Roxbury, MA 02132
()
| |
Collapse
|
5
|
Bigelow TA, Thomas CL, Wu H, Itani KMF. Histotripsy Treatment of S. Aureus Biofilms on Surgical Mesh Samples Under Varying Scan Parameters. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1017-1024. [PMID: 29856719 PMCID: PMC6602080 DOI: 10.1109/tuffc.2018.2819363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cavitation-based ultrasound histotripsy has shown potential for treating infections on surgical mesh. The goal of this paper was to explore a new scan strategy while assessing the impact of scan speed, scan step size, and the number of cycles in the tone burst on the destruction of S. aureus biofilms grown on surgical mesh samples using ultrasound histotripsy pulses (150 MPa/-17 MPa). For each exposure, the number of colony forming units (CFUs) on the mesh and released onto the surrounding gel was quantified. Most of the exposed mesh samples had no CFUs, and there was a statistically significant reduction in CFUs on the mesh for each of the exposures, with an average reduction of 3.8 log10 relative to the sham. Compared with the sham, there was also a statistically significant reduction in CFUs on the gel with the highest exposures.
Collapse
|
6
|
Bigelow TA, Thomas CL, Wu H, Itani KMF. Histotripsy Treatment of S. Aureus Biofilms on Surgical Mesh Samples Under Varying Pulse Durations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64. [PMID: 28650808 PMCID: PMC5819746 DOI: 10.1109/tuffc.2017.2718841] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Prior studies demonstrated that histotripsy generated by high-intensity tone bursts to excite a bubble cloud adjacent to a medical implant can destroy the bacteria biofilm responsible for the infection. The goal of this paper was to treat Staphylococcus aureus (S. aureus) biofilms on surgical mesh samples while varying the number of cycles in the tone burst to minimize collateral tissue damage while maximizing therapy effectiveness. S. aureus biofilms were grown on 1-cm square surgical mesh samples. The biofilms were then treated in vitro using a spherically focused transducer (1.1 MHz, 12.9-cm focal length, 12.7-cm diameter) using either a sham exposure or histotripsy pulses with tone burst durations of 3, 5, or 10 cycles (pulse repetition frequency of 333 Hz, peak compressional pressure of 150 MPa, peak rarefactional pressure of 17 MPa). After treatment, the number of colony forming units (CFUs) on the mesh and the surrounding gel was independently determined. The number of CFUs remaining on the mesh for the sham exposure (4.8 ± 0.9-log10) (sample mean ± sample standard deviation-log10 from 15 observations) was statistically significantly different from the 3-cycle (1.9 ± 1.5-log10), 5-cycle (2.2 ± 1.1-log10), and 10-cycle exposures (1 ± 1.5-log10) with an average reduction in the number of CFUs of 3.1-log10. The numbers of CFUs released into the gel for both the sham and exposure groups were the same within a bound of 0.86-log10, but this interval was too large to deduce the fate of the bacteria in the biofilm following the treatment.
Collapse
|
7
|
Ashida R, Kawabata KI, Maruoka T, Asami R, Yoshikawa H, Takakura R, Ioka T, Katayama K, Tanaka S. New approach for local cancer treatment using pulsed high-intensity focused ultrasound and phase-change nanodroplets. J Med Ultrason (2001) 2015; 42:457-66. [PMID: 26576970 DOI: 10.1007/s10396-015-0634-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/06/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE The aim of this study was to investigate the combination effects of pulsed HIFU (pHIFU) and phase-change nanodroplets (PCND) as a sensitizer on efficient induction of mechanical effects of pHIFU and chemically enhanced tumor growth inhibition for local anti-tumor therapy. METHOD Changes in growth of colon 26 tumor tissue inoculated onto CDF1 mice were evaluated by the following treatments. (1) pHIFU exposure (1.1 MHz, 3.2 kW/cm(2), 300 cycles, and 50 ms interval) for 60 s, (2) PCND (1 %) injection, (3) adriamycin (4 mg/kg) injection, (4) pHIFU exposure after PCND injection, and (5) pHIFU exposure after PCND + adriamycin injection simultaneously. RESULTS Significant changes in tumor growth were observed in the group with combination of pHIFU and PCND, although single therapy did not show any significant difference. PCND enhanced mechanical tissue fractionation by pHIFU, which was detectable by Real-time tissue elastography. Moreover, the combination of pHIFU and PCND + Adriamycin suppressed the tumor growth for 2 weeks, and 3 of 4 mice did not show any sign of regrowth during the 30-day observation. CONCLUSION The combination of pHIFU and PCND exerted a significant anti-tumor effect and may be a new candidate for treatment of locally advanced cancer.
Collapse
Affiliation(s)
- Reiko Ashida
- Department of Cancer Survey and Gastrointestinal Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Ken-Ichi Kawabata
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi Koigakubo, Kokubunji, Tokyo, 180-8601, Japan.
| | - Takashi Maruoka
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi Koigakubo, Kokubunji, Tokyo, 180-8601, Japan
| | - Rei Asami
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi Koigakubo, Kokubunji, Tokyo, 180-8601, Japan
| | - Hideki Yoshikawa
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi Koigakubo, Kokubunji, Tokyo, 180-8601, Japan
| | - Rena Takakura
- Department of Cancer Prevention, Osaka Center for Cancer and Cardiovascular Diseases Prevention, Osaka, Japan
| | - Tatsuya Ioka
- Department of Cancer Survey and Gastrointestinal Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Kazuhiro Katayama
- Department of Cancer Survey and Gastrointestinal Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Sachiko Tanaka
- Department of Cancer Prevention, Osaka Center for Cancer and Cardiovascular Diseases Prevention, Osaka, Japan
| |
Collapse
|