1
|
Richardson JB, Moore CJ, Gallippi CM. Quantitative Viscoelastic Response (QVisR): Direct Estimation of Viscoelasticity With Neural Networks. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:910-923. [PMID: 38781057 PMCID: PMC11299428 DOI: 10.1109/tuffc.2024.3404457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We present a machine learning method to directly estimate viscoelastic moduli from displacement time-series profiles generated by viscoelastic response (VisR) ultrasound excitations. VisR uses two colocalized acoustic radiation force (ARF) pushes to approximate tissue viscoelastic creep response and tracks displacements on-axis to measure the material relaxation. A fully connected neural network is trained to learn a nonlinear mapping from VisR displacements, the push focal depth, and the measurement axial depth to the material elastic and viscous moduli. In this work, we assess the validity of quantitative VisR (QVisR) in simulated materials, propose a method of domain adaption to phantom VisR displacements, and show in vivo estimates from a clinically acquired dataset.
Collapse
|
2
|
Chen X, Li X, Turco S, van Sloun RJG, Mischi M. Ultrasound Viscoelastography by Acoustic Radiation Force: A State-of-the-Art Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:536-557. [PMID: 38526897 DOI: 10.1109/tuffc.2024.3381529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker. Moreover, since biological tissues are inherently viscoelastic, accounting for viscosity in the tissue characterization process enhances the accuracy of the elasticity estimation. Recently, methods exploiting different acquisition and processing techniques have been proposed to perform ultrasound viscoelastography. After introducing the physics describing viscoelasticity, a comprehensive overview of the currently available USE acquisition techniques is provided, followed by a structured review of the existing viscoelasticity estimators classified according to the employed processing technique. These estimators are further reviewed from a clinical usage perspective, and current outstanding challenges are discussed.
Collapse
|
3
|
Chen Q, Li Z, Deng M, Peng J, Zhu X, Zhang C. Quantitative Evaluation of the Lumbar Multifidus Muscle by Shear Wave Dispersion in Healthy Adults: A Preliminary Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:863-872. [PMID: 38240408 DOI: 10.1002/jum.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVES To investigate the application value of shear wave dispersion (SWD) in healthy adults with the lumbar multifidus muscle (LMM), to determine the range of normal reference values, and to analyze the influences of factors on the parameter. METHODS Ninety-five healthy volunteers participated in the study, from whom 2-dimensional, shear wave elastography (SWE), and SWD images of the bilateral LMM were acquired in three positions (prone, standing, and anterior flexion). Subcutaneous fat thickness (SFH), SWE velocity, and SWD slope were measured accordingly for analyses. RESULTS The mean SWD slope of the bilateral LMM in the prone position was as follows: left: 14.8 ± 3.1 (m/second)/kHz (female) and 13.0 ± 2.5 (m/second)/kHz (male); right: 14.8 ± 3.7 (m/second)/kHz (female) and 14.2 ± 3.4 (m/second)/kHz (male). In the prone position, there was a weak negative correlation between the bilateral LMM SWD slope of activity level 2 and level 1 (β = -1.5 (2 versus 1, left), -1.9 (2 versus 1, right), all P < .05), and between the left SWD slope of activity level 3 and level 1 (β = -2.3 [3 versus 1, left], P < .05). The correlation between SWE velocity and SWD slope value changed with the position: there was a weak positive correlation in the prone position (r = 0.3 [left], 0.37 [right], both P < .05), and a moderate positive correlation in the standing and anterior flexed positions (r = 0.49-0.74, both P < .001). SFH was moderately negatively correlated with bilateral SWD slope values in the anterior flexion (left: r = -0.4, P = .01; right: r = -0.7, P < .01). CONCLUSIONS SWD imaging can be used as an adjunct tool to aid in the assessment of viscosity in LMM. Further, activity level, and position are influencing factors that should be considered in clinical practice.
Collapse
Affiliation(s)
- Qiuxiang Chen
- Department of Ultrasound, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Ultrasound, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhenzhou Li
- Department of Ultrasound, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Meifang Deng
- Department of Ultrasound, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiayu Peng
- Department of Ultrasound, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiangming Zhu
- Department of Ultrasound, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Chaoxue Zhang
- Department of Ultrasound, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Liu Z, Liu W, Chen Q, Hu Y, Li Y, Zheng X, Fang D, Liu H, Sun C. Real-Time Nondestructive Viscosity Measurement of Soft Tissue Based on Viscoelastic Response Optical Coherence Elastography. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6019. [PMID: 37687714 PMCID: PMC10488803 DOI: 10.3390/ma16176019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Viscoelasticity of the soft tissue is an important mechanical factor for disease diagnosis, biomaterials testing and fabrication. Here, we present a real-time and high-resolution viscoelastic response-optical coherence elastography (VisR-OCE) method based on acoustic radiation force (ARF) excitation and optical coherence tomography (OCT) imaging. The relationship between displacements induced by two sequential ARF loading-unloading and the relaxation time constant of the soft tissue-is established for the Kelvin-Voigt material. Through numerical simulation, the optimal experimental parameters are determined, and the influences of material parameters are evaluated. Virtual experimental results show that there is less than 4% fluctuation in the relaxation time constant values obtained when various Young's modulus and Poisson's ratios were given for simulation. The accuracy of the VisR-OCE method was validated by comparing with the tensile test. The relaxation time constant of phantoms measured by VisR-OCE differs from the tensile test result by about 3%. The proposed VisR-OCE method may provide an effective tool for quick and nondestructive viscosity testing of biological tissues.
Collapse
Affiliation(s)
- Zhixin Liu
- China Automotive Technology and Research Center, Tianjin 300300, China; (Z.L.); (W.L.)
| | - Weidong Liu
- China Automotive Technology and Research Center, Tianjin 300300, China; (Z.L.); (W.L.)
| | - Qi Chen
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Yongzheng Hu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Yurun Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Xiaoya Zheng
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Dian Fang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Hai Liu
- Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, Tianjin 300130, China;
| | - Cuiru Sun
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| |
Collapse
|
5
|
Anand KS, Torres G, Homeister JW, Caughey MC, Gallippi CM. Comparing Focused-Tracked and Plane Wave-Tracked ARFI Log(VoA) In Silico and in Application to Human Carotid Atherosclerotic Plaque, Ex Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:636-652. [PMID: 37216241 PMCID: PMC10330788 DOI: 10.1109/tuffc.2023.3278495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A significant risk factor for ischemic stroke is carotid atherosclerotic plaque that is susceptible to rupture, with rupture potential conveyed by plaque morphology. Human carotid plaque composition and structure have been delineated noninvasively and in vivo by evaluating log(VoA), a parameter derived as the decadic log of the second time derivative of displacement induced by an acoustic radiation force impulse (ARFI). In prior work, ARFI-induced displacement was measured using conventional focused tracking; however, this requires a long data acquisition period, thereby reducing framerate. We herein evaluate if ARFI log(VoA) framerate can be increased without a reduction in plaque imaging performance using plane wave tracking instead. In silico, both focused- and plane wave-tracked log(VoA) decreased with increasing echobrightness, quantified as signal-to-noise ratio (SNR), but did not vary with material elasticity for SNRs below 40 dB. For SNRs of 40-60 dB, both focused- and plane wave-tracked log(VoA) varied with SNR and material elasticity. Above 60 dB SNR, both focused- and plane wave-tracked log(VoA) varied with material elasticity alone. This suggests that log(VoA) discriminates features according to a combination of their echobrightness and mechanical property. Further, while both focused- and plane-wave tracked log(VoA) values were artifactually inflated by mechanical reflections at inclusion boundaries, plane wave-tracked log(VoA) was more strongly impacted by off-axis scattering. Applied to three excised human cadaveric carotid plaques with spatially aligned histological validation, both log(VoA) methods detected regions of lipid, collagen, and calcium (CAL) deposits. These findings support that plane wave tracking performs comparably to focused tracking for log(VoA) imaging and that plane wave-tracked log(VoA) is a viable approach to discriminating clinically relevant atherosclerotic plaque features at a 30-fold higher framerate than by focused tracking.
Collapse
|
6
|
Li N, Gaur P, Quah K, Pauly KB. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med 2022; 88:1673-1689. [PMID: 35762849 PMCID: PMC9439407 DOI: 10.1002/mrm.29309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Magnetic resonance acoustic radiation force imaging (MR-ARFI) enables focal spot localization during nonablative transcranial ultrasound therapies. As the acoustic radiation force is proportional to the applied acoustic intensity, measured MR-ARFI displacements could potentially be used to estimate the acoustic intensity at the target. However, variable brain stiffness is an obstacle. The goal of this study was to develop and assess a method to accurately estimate the acoustic intensity at the focus using MR-ARFI displacements in combination with viscoelastic properties obtained with multifrequency MR elastography (MRE). METHODS Phantoms with a range of viscoelastic properties were fabricated, and MR-ARFI displacements were acquired within each phantom using multiple acoustic intensities. Voigt model parameters were estimated for each phantom based on storage and loss moduli measured using multifrequency MRE, and these were used to predict the relationship between acoustic intensity and measured displacement. RESULTS Using assumed viscoelastic properties, MR-ARFI displacements alone could not accurately estimate acoustic intensity across phantoms. For example, acoustic intensities were underestimated in phantoms stiffer than the assumed stiffness and overestimated in phantoms softer than the assumed stiffness. This error was greatly reduced using individualized viscoelasticity measurements obtained from MRE. CONCLUSION We demonstrated that viscoelasticity information from MRE could be used in combination with MR-ARFI displacements to obtain more accurate estimates of acoustic intensity. Additionally, Voigt model viscosity parameters were found to be predictive of the relaxation rate of each phantom's time-varying displacement response, which could be used to optimize patient-specific MR-ARFI pulse sequences.
Collapse
Affiliation(s)
- Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kristin Quah
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Sarvazyan AP, Rudenko OV, Fatemi M. Acoustic Radiation Force: A Review of Four Mechanisms for Biomedical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3261-3269. [PMID: 34520353 DOI: 10.1109/tuffc.2021.3112505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiation force is a universal phenomenon in any wave motion where the wave energy produces a static or transient force on the propagation medium. The theory of acoustic radiation force (ARF) dates back to the early 19th century. In recent years, there has been an increasing interest in the biomedical applications of ARF. Following a brief history of ARF, this article describes a concise theory of ARF under four physical mechanisms of radiation force generation in tissue-like media. These mechanisms are primarily based on the dissipation of acoustic energy of propagating waves, the reflection of the incident wave, gradients of the compressional wave speeds, and the spatial variations of energy density in standing acoustic waves. Examples describing some of the practical applications of ARF under each mechanism are presented. This article concludes with a discussion on selected ideas for potential future applications of ARF in biomedicine.
Collapse
|
8
|
Urban MW, Rule AD, Atwell TD, Chen S. Novel Uses of Ultrasound to Assess Kidney Mechanical Properties. KIDNEY360 2021; 2:1531-1539. [PMID: 34939037 PMCID: PMC8691758 DOI: 10.34067/kid.0002942021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrasound is a key imaging tool for evaluating the kidney. Over the last two decades, methods to measure the mechanical properties of soft tissues have been developed and used in clinical practice, although use in the kidney has not been as widespread as for other applications. The mechanical properties of the kidney are determined by the structure and composition of the renal parenchyma and perfusion characteristics. Because pathologic processes change these factors, the mechanical properties change and can be used for diagnostic purposes and for monitoring treatment or disease progression. Ultrasound-based elastography methods for evaluating the mechanical properties of the kidney use focused ultrasound beams to perturb the kidney and then high frame-rate ultrasound methods are used to measure the resulting motion. The motion is analyzed to estimate the mechanical properties. This review will describe the principles of these methods and discuss several seminal studies related to characterizing the kidney. Additionally, an overview of the clinical use of elastography methods in native and kidney allografts will be provided. Perspectives on future developments and uses of elastography technology along with other complementary ultrasound imaging modalities will be provided.
Collapse
Affiliation(s)
| | - Andrew D. Rule
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Effects of Loading and Boundary Conditions on the Performance of Ultrasound Compressional Viscoelastography: A Computational Simulation Study to Guide Experimental Design. MATERIALS 2021; 14:ma14102590. [PMID: 34065764 PMCID: PMC8156541 DOI: 10.3390/ma14102590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
Most biomaterials and tissues are viscoelastic; thus, evaluating viscoelastic properties is important for numerous biomedical applications. Compressional viscoelastography is an ultrasound imaging technique used for measuring the viscoelastic properties of biomaterials and tissues. It analyzes the creep behavior of a material under an external mechanical compression. The aim of this study is to use finite element analysis to investigate how loading conditions (the distribution of the applied compressional pressure on the surface of the sample) and boundary conditions (the fixation method used to stabilize the sample) can affect the measurement accuracy of compressional viscoelastography. The results show that loading and boundary conditions in computational simulations of compressional viscoelastography can severely affect the measurement accuracy of the viscoelastic properties of materials. The measurement can only be accurate if the compressional pressure is exerted on the entire top surface of the sample, as well as if the bottom of the sample is fixed only along the vertical direction. These findings imply that, in an experimental validation study, the phantom design should take into account that the surface area of the pressure plate must be equal to or larger than that of the top surface of the sample, and the sample should be placed directly on the testing platform without any fixation (such as a sample container). The findings indicate that when applying compressional viscoelastography to real tissues in vivo, consideration should be given to the representative loading and boundary conditions. The findings of the present simulation study will provide a reference for experimental phantom designs regarding loading and boundary conditions, as well as guidance towards validating the experimental results of compressional viscoelastography.
Collapse
|
10
|
Wear KA. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:358-375. [PMID: 33186102 PMCID: PMC8325172 DOI: 10.1109/tuffc.2020.3037946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reports underestimation of mechanical index (MI) and nonscanned thermal index for bone near focus (TIB) due to hydrophone spatial averaging effects that occur during acoustic output measurements for clinical linear and phased arrays. TIB is the appropriate version of thermal index (TI) for fetal imaging after ten weeks from the last menstrual period according to the American Institute of Ultrasound in Medicine (AIUM). Spatial averaging is particularly troublesome for highly focused beams and nonlinear, nonscanned modes such as acoustic radiation force impulse (ARFI) and pulsed Doppler. MI and variants of TI (e.g., TIB), which are displayed in real-time during imaging, are often not corrected for hydrophone spatial averaging because a standardized method for doing so does not exist for linear and phased arrays. A novel analytic inverse-filter method to correct for spatial averaging for pressure waves from linear and phased arrays is derived in this article (Part I) and experimentally validated in a companion article (Part II). A simulation was developed to estimate potential spatial-averaging errors for typical clinical ultrasound imaging systems based on the theoretical inverse filter and specifications for 124 scanner/transducer combinations from the U.S. Food and Drug Administration (FDA) 510(k) database from 2015 to 2019. Specifications included center frequency, aperture size, acoustic output parameters, hydrophone geometrical sensitive element diameter, etc. Correction for hydrophone spatial averaging using the inverse filter suggests that maximally achievable values for MI, TIB, thermal dose ( t 43 ), and spatial-peak-temporal-average intensity ( [Formula: see text]) for typical clinical systems are potentially higher than uncorrected values by (means ± standard deviations) 9% ± 4% (ARFI MI), 19% ± 15% (ARFI TIB), 50% ± 41% (ARFI t 43 ), 43% ± 39% (ARFI [Formula: see text]), 7% ± 5% (pulsed Doppler MI), 15% ± 11% (pulsed Doppler TIB), 42% ± 31% (pulsed Doppler t 43 ), and 33% ± 27% (pulsed Doppler [Formula: see text]). These values correspond to frequencies of 3.2 ± 1.3 (ARFI) and 4.1 ± 1.4 MHz (pulsed Doppler), and the model predicts that they would increase with frequency. Inverse filtering for hydrophone spatial averaging significantly improves the accuracy of estimates of MI, TIB, t 43 , and [Formula: see text] for ARFI and pulsed Doppler signals.
Collapse
|
11
|
Hobson EC, Li W, Juliar BA, Putnam AJ, Stegemann JP, Deng CX. Resonant acoustic rheometry for non-contact characterization of viscoelastic biomaterials. Biomaterials 2021; 269:120676. [PMID: 33485213 DOI: 10.1016/j.biomaterials.2021.120676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
Resonant Acoustic Rheometry (RAR) is a new, non-contact technique to characterize the mechanical properties of soft and viscoelastic biomaterials, such as hydrogels, that are used to mimic the extracellular matrix in tissue engineering. RAR uses a focused ultrasound pulse to generate a microscale perturbation at the sample surface and tracks the ensuing surface wave using pulse-echo ultrasound. The frequency spectrum of the resonant surface waves is analyzed to extract viscoelastic material properties. In this study, RAR was used to characterize fibrin, gelatin, and agarose hydrogels. Single time point measurements of gelled samples with static mechanical properties showed that RAR provided consistent quantitative data and measured intrinsic material characteristics independent of ultrasound parameters. RAR was also used to longitudinally track dynamic changes in viscoelastic properties over the course of fibrin gelation, revealing distinct phase and material property transitions. Application of RAR was verified using finite element modeling and the results were validated against rotational shear rheometry. Importantly, RAR circumvents some limitations of conventional rheology methods and can be performed in a high-throughput manner using conventional labware. Overall, these studies demonstrate that RAR can be a valuable tool to noninvasively quantify the viscoelastic mechanical properties of soft hydrogel biomaterials.
Collapse
Affiliation(s)
- Eric C Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Benjamin A Juliar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
12
|
Manuel TJ, Kusunose J, Zhan X, Lv X, Kang E, Yang A, Xiang Z, Caskey CF. Ultrasound neuromodulation depends on pulse repetition frequency and can modulate inhibitory effects of TTX. Sci Rep 2020; 10:15347. [PMID: 32948791 PMCID: PMC7501284 DOI: 10.1038/s41598-020-72189-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Ultrasound is gaining traction as a neuromodulation method due to its ability to remotely and non-invasively modulate neuronal activity with millimeter precision. However, there is little consensus about optimal ultrasound parameters required to elicit neuromodulation and how specific parameters drive mechanisms that underlie ultrasound neuromodulation. We address these questions in this work by performing a study to determine effective ultrasound parameters in a transgenic mouse brain slice model that enables calcium imaging as a quantitative readout of neuronal activity for ultrasound neuromodulation. We report that (1) calcium signaling increases with the application of ultrasound; (2) the neuronal response rate to ultrasound is dependent on pulse repetition frequency (PRF); and (3) ultrasound can reversibly alter the inhibitory effects of tetrodotoxin (TTX) in pharmacological studies. This study offers mechanistic insight into the PRF dependence of ultrasound neuromodulation and the nature of ultrasound/ion channel interaction.
Collapse
Affiliation(s)
- Thomas J Manuel
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jiro Kusunose
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyan Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Xiaohui Lv
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Ellison Kang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Aaron Yang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
Hossain MM, Gallippi CM. Viscoelastic Response Ultrasound Derived Relative Elasticity and Relative Viscosity Reflect True Elasticity and Viscosity: In Silico and Experimental Demonstration. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1102-1117. [PMID: 31899421 PMCID: PMC7341692 DOI: 10.1109/tuffc.2019.2962789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Viscoelastic response (VisR) ultrasound characterizes the viscoelastic properties of tissue by fitting acoustic radiation force (ARF)-induced displacements in the region of ARF excitation to a 1-D mass-spring-damper (MSD) model. Elasticity and viscosity are calculated separately but relative to the applied ARF amplitude. We refer to these parameters as "relative elasticity (RE)" and "relative viscosity (RV)." We herein test the hypothesis that RE and RV linearly correlate to true elasticity and viscosity in tissue. VisR imaging was simulated in 144 homogeneous viscoelastic materials with varying elasticities and viscosities. Derived RE linearly correlated with material elasticity and varied by an average of 2.52% when the material viscosity changed from 0.1 to 1.3 Pa · s. Derived RV linearly correlated with material viscosity but varied by an average of 102.5% when material elasticity changed from 3.33 to 20 kPa. The effect of elasticity on RV measurement was compensated using the slope of the linear relationship between RV and natural frequency ( ωtextn ). After compensation, RV [Formula: see text] (elasticity compensated RV) linearly correlated with material viscosity and varied by less than 1.00% on average when the modeled shear elastic modulus changed from 3.3 to 20 kPa. In addition to elasticity compensation, variation in ARF amplitude over depth was compensated, yielding REDC and [Formula: see text]. REDC and [Formula: see text] successfully contrasted elastic and viscous inclusions, respectively, in three simulated phantoms. Experimentally, in the homogeneous oil-in-gelatin phantoms and excised livers, REDC linearly correlated with shear wave dispersion ultrasound vibrometry (SDUV) derived shear elastic modulus, and [Formula: see text] linearly correlated with SDUV-derived shear viscosity. In excised livers containing viscoelastic oil-in-gelatin inclusions, the inclusions were successfully contrasted from the liver background by both REDC and [Formula: see text]. These results suggest that RE and RV are relevant for qualitatively assessing the elastic and viscous properties of tissue.
Collapse
|
14
|
Otesteanu CF, Chintada BR, Rominger MB, Sanabria SJ, Goksel O. Spectral Quantification of Nonlinear Elasticity Using Acoustoelasticity and Shear-Wave Dispersion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1845-1855. [PMID: 31398118 DOI: 10.1109/tuffc.2019.2933952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissue biomechanical properties are known to be sensitive to pathological changes. Accordingly, various techniques have been developed to estimate tissue mechanical properties. Shear-wave elastography (SWE) measures shear-wave speed (SWS) in tissues, which can be related to shear modulus. Although viscosity or stress-strain nonlinearity may act as confounder of SWE, their explicit characterization may also provide additional information about tissue composition as a contrast modality. Viscosity can be related to frequency dispersion of SWS, which can be characterized using multi-frequency measurements, herein called spectral SWE (SSWE). Additionally, nonlinear shear modulus can be quantified and parameterized based on SWS changes with respect to applied stress, a phenomenon called acoustoelasticity (AE). In this work, we characterize the nonlinear parameters of tissue as a function of excitation frequency by utilizing both AE and SSWE together. For this, we apply incremental amounts of quasi-static stress on a medium, while imaging and quantifying SWS dispersion via SSWE. Results from phantom and ex vivo porcine liver experiments demonstrate the feasibility of measuring frequency-dependent nonlinear parameters using the proposed method. SWS propagation in porcine liver tissue was observed to change from 1.8 m/s at 100 Hz to 3.3 m/s at 700 Hz, while increasing by approximately 25% from a strain of 0% to 12% across these frequencies.
Collapse
|
15
|
Hossain MM, Detwiler RK, Chang EH, Caughey MC, Fisher MW, Nichols TC, Merricks EP, Raymer RA, Whitford M, Bellinger DA, Wimsey LE, Gallippi CM. Mechanical Anisotropy Assessment in Kidney Cortex Using ARFI Peak Displacement: Preclinical Validation and Pilot In Vivo Clinical Results in Kidney Allografts. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:551-562. [PMID: 30106723 PMCID: PMC8232042 DOI: 10.1109/tuffc.2018.2865203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The kidney is an anisotropic organ, with higher elasticity along versus across nephrons. The degree of mechanical anisotropy in the kidney may be diagnostically relevant if properly exploited; however, if improperly controlled, anisotropy may confound stiffness measurements. The purpose of this study is to demonstrate the clinical feasibility of acoustic radiation force (ARF)-induced peak displacement (PD) measures for both exploiting and obviating mechanical anisotropy in the cortex of human kidney allografts, in vivo. Validation of the imaging methods is provided by preclinical studies in pig kidneys, in which ARF-induced PD values were significantly higher ( , Wilcoxon) when the transducer executing asymmetric ARF was oriented across versus along the nephrons. The ratio of these PD values obtained with the transducer oriented across versus along the nephrons strongly linearly correlated ( R2 = 0.95 ) to the ratio of shear moduli measured by shear wave elasticity imaging. On the contrary, when a symmetric ARF was implemented, no significant difference in PD was observed ( p > 0.01 ). Similar results were demonstrated in vivo in the kidney allografts of 14 patients. The symmetric ARF produced PD measures with no significant difference ( p > 0.01 ) between along versus across alignments, but the asymmetric ARF yielded PD ratios that remained constant over a six-month observation period post-transplantation, consistent with stable serum creatinine level and urine protein-to-creatinine ratio in the same patient population ( p > 0.01 ). The results of this pilot in vivo clinical study suggest the feasibility of 1) implementing symmetrical ARF to obviate mechanical anisotropy in the kidney cortex when anisotropy is a confounding factor and 2) implementing asymmetric ARF to exploit mechanical anisotropy when mechanical anisotropy is a potentially relevant biomarker.
Collapse
|
16
|
Urban MW. Production of acoustic radiation force using ultrasound: methods and applications. Expert Rev Med Devices 2018; 15:819-834. [PMID: 30350736 DOI: 10.1080/17434440.2018.1538782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acoustic radiation force (ARF) is used in many biomedical applications. The transfer of momentum in acoustic waves can be used in a multitude of ways to perturb tissue and manipulate cells. AREAS COVERED This review will briefly cover the acoustic theory related to ARF, particularly that related to application in tissues. The use of ARF in measurement of mechanical properties will be treated in detail with emphasis on the spatial and temporal modulation of the ARF. Additional topics covered will be the manipulation of particles with ARF, correction of phase aberration with ARF, modulation of cellular behavior with ARF, and bioeffects related to ARF use. EXPERT COMMENTARY The use of ARF can be tailored to specific applications for measurements of mechanical properties or correction of focusing for ultrasound beams. Additionally, noncontact manipulation of particles and cells with ARF enables a wide array of applications for tissue engineering and biosensing.
Collapse
Affiliation(s)
- Matthew W Urban
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
17
|
Kumar V, Denis M, Gregory A, Bayat M, Mehrmohammadi M, Fazzio R, Fatemi M, Alizad A. Viscoelastic parameters as discriminators of breast masses: Initial human study results. PLoS One 2018; 13:e0205717. [PMID: 30312358 PMCID: PMC6185851 DOI: 10.1371/journal.pone.0205717] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022] Open
Abstract
Shear wave elastography is emerging as a clinically valuable diagnostic tool to differentiate between benign and malignant breast masses. Elastography techniques assume that soft tissue can be modelled as a purely elastic medium. However, this assumption is often violated as soft tissue exhibits viscoelastic properties. In order to explore the role of viscoelastic parameters in suspicious breast masses, a study was conducted on a group of patients using shear wave dispersion ultrasound vibrometry in the frequency range of 50–400 Hz. A total of 43 female patients with suspicious breast masses were recruited before their scheduled biopsy. Of those, 15 patients did not meet the data selection criteria. Voigt model based shear elasticity showed a significantly (p = 7.88x10-6) higher median value for the 13 malignant masses (16.76±13.10 kPa) compared to 15 benign masses (1.40±1.12 kPa). Voigt model based shear viscosity was significantly different (p = 4.13x10-5) between malignant (8.22±3.36 Pa-s) and benign masses (2.83±1.47 Pa-s). Moreover, the estimated time constant from the Voigt model, which is dependent on both shear elasticity and viscosity, differed significantly (p = 6.13x10-5) between malignant (0.68±0.33 ms) and benign masses (3.05±1.95 ms). Results suggest that besides elasticity, viscosity based parameters like shear viscosity and time constant can also be used to differentiate between malignant and benign breast masses.
Collapse
Affiliation(s)
- Viksit Kumar
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Max Denis
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Adriana Gregory
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Mahdi Bayat
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Mohammad Mehrmohammadi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Robert Fazzio
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
18
|
Hossain MM, Selzo MR, Hinson RM, Baggesen LM, Detwiler RK, Chong WK, Burke LM, Caughey MC, Fisher MW, Whitehead SB, Gallippi CM. Evaluating Renal Transplant Status Using Viscoelastic Response (VisR) Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1573-1584. [PMID: 29754702 PMCID: PMC6026561 DOI: 10.1016/j.ultrasmedbio.2018.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/20/2018] [Accepted: 03/16/2018] [Indexed: 05/03/2023]
Abstract
Chronic kidney disease is most desirably and cost-effectively treated by renal transplantation, but graft survival is a major challenge. Although irreversible graft damage can be averted by timely treatment, intervention is delayed when early graft dysfunction goes undetected by standard clinical metrics. A more sensitive and specific parameter for delineating graft health could be the viscoelastic properties of the renal parenchyma, which are interrogated non-invasively by Viscoelastic Response (VisR) ultrasound, a new acoustic radiation force (ARF)-based imaging method. Assessing the performance of VisR imaging in delineating histologically confirmed renal transplant pathologies in vivo is the purpose of the study described here. VisR imaging was performed in patients with (n = 19) and without (n = 25) clinical indication for renal allograft biopsy. The median values of VisR outcome metrics (τ, relative elasticity [RE] and relative viscosity [RV]) were calculated in five regions of interest that were manually delineated in the parenchyma (outer, center and inner) and in the pelvis (outer and inner). The ratios of a given VisR metric for all possible region-of-interest combinations were calculated, and the corresponding ratios were statistically compared between biopsied patients subdivided by diagnostic categories versus non-biopsied, control allografts using the two-sample Wilcoxon test (p <0.05). Although τ ratios non-specifically differentiated allografts with vascular disease, tubular/interstitial scarring, chronic allograft nephropathy and glomerulonephritis from non-biopsied control allografts, RE distinguished only allografts with vascular disease and tubular/interstitial scarring, and RV distinguished only vascular disease. These results suggest that allografts with scarring and vascular disease can be identified using non-invasive VisR RE and RV metrics.
Collapse
Affiliation(s)
- Md Murad Hossain
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Mallory R Selzo
- Ultrasound Business Unit, Siemens Healthcare, Issaquah, Washington, USA
| | - Robert M Hinson
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Leslie M Baggesen
- Kaiser Permanente, Northern California Regional Program Office, Berkeley, California, USA
| | - Randal K Detwiler
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Wui K Chong
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren M Burke
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melissa C Caughey
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melrose W Fisher
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Sonya B Whitehead
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caterina M Gallippi
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
19
|
Amador Carrascal C, Chen S, Urban MW, Greenleaf JF. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:3-13. [PMID: 29283342 PMCID: PMC5749644 DOI: 10.1109/tuffc.2017.2768184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.
Collapse
|
20
|
van Sloun RJG, Wildeboer RR, Wijkstra H, Mischi M. Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1666-1673. [PMID: 28841556 DOI: 10.1109/tuffc.2017.2743231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Estimation of soft tissue elasticity is of interest in several clinical applications. For instance, tumors and fibrotic lesions are notoriously stiff compared with benign tissue. A fully quantitative measure of lesion stiffness can be obtained by shear wave (SW) elastography. This method uses an acoustic radiation force to produce laterally propagating SWs that can be tracked to obtain the velocity, which in turn is related to Young's modulus. However, not only elasticity, but also viscosity plays an important role in the propagation process of SWs. In fact, viscosity itself is a parameter of diagnostic value for the detection and characterization of malignant lesions. In this paper, we describe a new method that enables imaging viscosity from SW elastography by local model-based system identification. By testing the method on simulated data sets and performing in vitro experiments, we show that the ability of the proposed technique to generate parametric maps of the viscoelastic material properties from SW measurements, opening up new possibilities for noninvasive tissue characterization.
Collapse
|
21
|
Lv Z, Wang QM, Liu FL, Zhang PP, Gao XH, Guo Y, Zhang XY. Noninvasive evaluation of corneal viscoelasticity based on displacement in response to acoustic radiation force. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1417-1420. [PMID: 29060143 DOI: 10.1109/embc.2017.8037099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Noninvasive assessment of corneal mechanical properties in vivo will help to the understanding of the pathogenesis and early diagnosis of ectatic corneal disorders. This study presented a noninvasive method that assesses the corneal biomechanical properties by exciting the cornea with acoustic radiation force and monitoring its displacement using a dual-frequency confocal transducer. A 3.85-MHz pushing element was used to induce localized tissue displacement, and the displacement was detected by the 12.8-MHz detecting elements using pulse-echo methods. Under constant acoustic radiation force, 0the tissue displacement are directly correlated with tissue biomechanical properties, a set of parameters were extracted from local displacement waveform, including relaxation time constant (τ), relative elasticity (RE) and relative viscosity (RV). In order to obtain corneal samples with different mechanical properties, the fresh bovine eyes were performed by collagen cross-linking (CXL). The result indicated that the estimated τ in untreated corneas were statistically significantly different (p<;0.05) from those of treated corneas and the estimation of τ varied significantly with different degrees of CXL. It is possible to develop a non-invasive, effective and efficient method with high spatial resolution.
Collapse
|
22
|
Ingle A, Varghese T, Sethares W. Efficient 3-D Reconstruction in Ultrasound Elastography via a Sparse Iteration Based on Markov Random Fields. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:491-499. [PMID: 27913340 PMCID: PMC5441567 DOI: 10.1109/tuffc.2016.2633429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Percutaneous needle-based liver ablation procedures are becoming increasingly common for the treatment of small isolated tumors in hepatocellular carcinoma patients who are not candidates for surgery. Rapid 3-D visualization of liver ablations has potential clinical value, because it can enable interventional radiologists to plan and execute needle-based ablation procedures with real time feedback. Ensuring the right volume of tissue is ablated is desirable to avoid recurrence of tumors from residual untreated cancerous cells. Shear wave velocity (SWV) measurements can be used as a surrogate for tissue stiffness to distinguish stiffer ablated regions from softer untreated tissue. This paper extends the previously reported sheaf reconstruction method to generate complete 3-D visualizations of SWVs without resorting to an approximate intermediate step of reconstructing transverse C planes. The noisy data are modeled using a Markov random field, and a computationally tractable reconstruction algorithm that can handle grids with millions of points is developed. Results from simulated ellipsoidal inclusion data show that this algorithm outperforms standard nearest neighbor interpolation by an order of magnitude in mean squared reconstruction error. Results from the phantom experiments show that it also provides a higher contrast-to-noise ratio by almost 2 dB and better signal-to-noise ratio in the stiff inclusion by over 2 dB compared with nearest neighbor interpolation and has lower computational complexity than linear and spline interpolation.
Collapse
Affiliation(s)
- Atul Ingle
- Corresponding author (Atul Ingle) , phone: 408-823-7537
| | - Tomy Varghese
- Departments of Medical Physics, University of Wisconsin School of Medicine and Public Health and Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI, 53706 USA
| | - William Sethares
- Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI, 53706 USA
| |
Collapse
|
23
|
Selzo MR, Moore CJ, Hossain MM, Palmeri ML, Gallippi CM. On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1276-87. [PMID: 27046848 PMCID: PMC5016215 DOI: 10.1109/tuffc.2016.2539323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.
Collapse
|