1
|
Batchelor DB, Armistead FJ, Ingram N, Peyman SA, McLaughlan JR, Coletta PL, Evans SD. The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13943-13954. [PMID: 36322191 PMCID: PMC9671049 DOI: 10.1021/acs.langmuir.2c02303] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1-10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 μm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models.
Collapse
Affiliation(s)
- Damien
V. B. Batchelor
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Fern J. Armistead
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Nicola Ingram
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, LeedsLS9 7TF, United Kingdom
- Faculty
of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sally A. Peyman
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - James R. McLaughlan
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, LeedsLS9 7TF, United Kingdom
- Faculty
of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - P. Louise Coletta
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, LeedsLS9 7TF, United Kingdom
| | - Stephen D. Evans
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
2
|
Ingram N, McVeigh LE, Abou-Saleh RH, Batchelor DVB, Loadman PM, McLaughlan JR, Markham AF, Evans SD, Coletta PL. A Single Short 'Tone Burst' Results in Optimal Drug Delivery to Tumours Using Ultrasound-Triggered Therapeutic Microbubbles. Pharmaceutics 2022; 14:pharmaceutics14030622. [PMID: 35335995 PMCID: PMC8953493 DOI: 10.3390/pharmaceutics14030622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Advanced drug delivery systems, such as ultrasound-mediated drug delivery, show great promise for increasing the therapeutic index. Improvements in delivery by altering the ultrasound parameters have been studied heavily in vitro but relatively little in vivo. Here, the same therapeutic microbubble and tumour type are used to determine whether altering ultrasound parameters can improve drug delivery. Liposomes were loaded with SN38 and attached via avidin: biotin linkages to microbubbles. The whole structure was targeted to the tumour vasculature by the addition of anti-vascular endothelial growth factor receptor 2 antibodies. Tumour drug delivery and metabolism were quantified in SW480 xenografts after application of an ultrasound trigger to the tumour region. Increasing the trigger duration from 5 s to 2 min or increasing the number of 5 s triggers did not improve drug delivery, nor did changing to a chirp trigger designed to stimulate a greater proportion of the microbubble population, although this did show that the short tone trigger resulted in greater release of free SN38. Examination of ultrasound triggers in vivo to improve drug delivery is justified as there are multiple mechanisms at play that may not allow direct translation from in vitro findings. In this setting, a short tone burst gives the best ultrasound parameters for tumoural drug delivery.
Collapse
Affiliation(s)
- Nicola Ingram
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- Correspondence: (N.I.); (P.L.C.)
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
| | - Radwa H. Abou-Saleh
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
- Nanoscience and Technology Group, Faculty of Science, Galala University, Galala 43711, Egypt
- Department of Physics, Mansoura University, Mansoura 35516, Egypt
| | - Damien V. B. Batchelor
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK;
| | - James R. McLaughlan
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander F. Markham
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
| | - Stephen D. Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- Correspondence: (N.I.); (P.L.C.)
| |
Collapse
|
3
|
An Open Access Chamber Designed for the Acoustic Characterisation of Microbubbles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbubbles are used as contrast agents in clinical ultrasound for Left Ventricular Opacification (LVO) and perfusion imaging. They are also the subject of promising research in therapeutics as a drug delivery mechanism or for sonoporation and co-administration. For maximum efficacy in these applications, it is important to understand the acoustic characteristics of the administered microbubbles. Despite this, there is significant variation in the experimental procedures and equipment used to measure the acoustic properties of microbubble populations. A chamber was designed to facilitate acoustic characterisation experiments and was manufactured using additive manufacturing techniques. The design has been released to allow wider uptake in the research community. The efficacy of the chamber for acoustic characterisation has been explored with an experiment to measure the scattering of SonoVue® microbubbles at the fundamental frequency and second harmonic under interrogation from emissions in the frequency range of 1.6 to 6.4 MHz. The highest overall scattering values were measured at 1.6 MHz and decreased as the frequency increased, a result which is in agreement with previously published measurements. Statistical analysis of the acoustic scattering measurements have been performed and a significant difference, at the 5% significance level, was found between the samples containing contrast agent and the control sample containing only deionised water. These findings validate the proposed design for measuring the acoustic scattering characteristics of ultrasound contrast agents.
Collapse
|
4
|
Batchelor DV, Armistead FJ, Ingram N, Peyman SA, Mclaughlan JR, Coletta PL, Evans SD. Nanobubbles for therapeutic delivery: Production, stability and current prospects. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Ingram N, McVeigh LE, Abou-Saleh RH, Maynard J, Peyman SA, McLaughlan JR, Fairclough M, Marston G, Valleley EMA, Jimenez-Macias JL, Charalambous A, Townley W, Haddrick M, Wierzbicki A, Wright A, Volpato M, Simpson PB, Treanor DE, Thomson NH, Loadman PM, Bushby RJ, Johnson BR, Jones PF, Evans JA, Freear S, Markham AF, Evans SD, Coletta PL. Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues. Theranostics 2020; 10:10973-10992. [PMID: 33042265 PMCID: PMC7532679 DOI: 10.7150/thno.49670] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Most cancer patients receive chemotherapy at some stage of their treatment which makes improving the efficacy of cytotoxic drugs an ongoing and important goal. Despite large numbers of potent anti-cancer agents being developed, a major obstacle to clinical translation remains the inability to deliver therapeutic doses to a tumor without causing intolerable side effects. To address this problem, there has been intense interest in nanoformulations and targeted delivery to improve cancer outcomes. The aim of this work was to demonstrate how vascular endothelial growth factor receptor 2 (VEGFR2)-targeted, ultrasound-triggered delivery with therapeutic microbubbles (thMBs) could improve the therapeutic range of cytotoxic drugs. Methods: Using a microfluidic microbubble production platform, we generated thMBs comprising VEGFR2-targeted microbubbles with attached liposomal payloads for localised ultrasound-triggered delivery of irinotecan and SN38 in mouse models of colorectal cancer. Intravenous injection into tumor-bearing mice was used to examine targeting efficiency and tumor pharmacodynamics. High-frequency ultrasound and bioluminescent imaging were used to visualise microbubbles in real-time. Tandem mass spectrometry (LC-MS/MS) was used to quantitate intratumoral drug delivery and tissue biodistribution. Finally, 89Zr PET radiotracing was used to compare biodistribution and tumor accumulation of ultrasound-triggered SN38 thMBs with VEGFR2-targeted SN38 liposomes alone. Results: ThMBs specifically bound VEGFR2 in vitro and significantly improved tumor responses to low dose irinotecan and SN38 in human colorectal cancer xenografts. An ultrasound trigger was essential to achieve the selective effects of thMBs as without it, thMBs failed to extend intratumoral drug delivery or demonstrate enhanced tumor responses. Sensitive LC-MS/MS quantification of drugs and their metabolites demonstrated that thMBs extended drug exposure in tumors but limited exposure in healthy tissues, not exposed to ultrasound, by persistent encapsulation of drug prior to elimination. 89Zr PET radiotracing showed that the percentage injected dose in tumors achieved with thMBs was twice that of VEGFR2-targeted SN38 liposomes alone. Conclusions: thMBs provide a generic platform for the targeted, ultrasound-triggered delivery of cytotoxic drugs by enhancing tumor responses to low dose drug delivery via combined effects on circulation, tumor drug accumulation and exposure and altered metabolism in normal tissues.
Collapse
Affiliation(s)
- Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Radwa H. Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
- Department of Physics, Faculty of Science, Mansoura University, Egypt
| | - Juliana Maynard
- Medicines Discovery Catapult, Mereside, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
| | - James R. McLaughlan
- Faculty of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | - Michael Fairclough
- Wolfson Molecular Imaging Centre, University of Manchester, Palatine Road, Manchester, M20 3LI, United Kingdom
| | - Gemma Marston
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Elizabeth M. A. Valleley
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Jorge L. Jimenez-Macias
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - William Townley
- Medicines Discovery Catapult, Mereside, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Mereside, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Antonia Wierzbicki
- Institute of Cancer Therapeutics, University of Bradford, BD7 1DP, United Kingdom
| | - Alexander Wright
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Milène Volpato
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Peter B. Simpson
- Medicines Discovery Catapult, Mereside, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Darren E. Treanor
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Neil H. Thomson
- School of Dentistry, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, University of Bradford, BD7 1DP, United Kingdom
| | - Richard J. Bushby
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Benjamin R.G. Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
| | - Pamela F. Jones
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - J. Anthony Evans
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Steven Freear
- Faculty of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | - Alexander F. Markham
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Stephen D. Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9JT, United Kingdom
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
6
|
Batchelor DVB, Abou-Saleh RH, Coletta PL, McLaughlan JR, Peyman SA, Evans SD. Nested Nanobubbles for Ultrasound-Triggered Drug Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29085-29093. [PMID: 32501014 PMCID: PMC7333229 DOI: 10.1021/acsami.0c07022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Because of their size (1-10 μm), microbubble-based drug delivery agents suffer from confinement to the vasculature, limiting tumor penetration and potentially reducing the drug efficacy. Nanobubbles (NBs) have emerged as promising candidates for ultrasound-triggered drug delivery because of their small size, allowing drug delivery complexes to take advantage of the enhanced permeability and retention effect. In this study, we describe a simple method for production of nested-nanobubbles (Nested-NBs) by encapsulation of NBs (∼100 nm) within drug-loaded liposomes. This method combines the efficient and well-established drug-loading capabilities of liposomes while utilizing NBs as an acoustic trigger for drug release. Encapsulation was characterized using transmission electron microscopy with an encapsulation efficiency of 22 ± 2%. Nested-NBs demonstrated echogenicity using diagnostic B-mode imaging, and acoustic emissions were monitored during high-intensity focused ultrasound (HIFU) in addition to monitoring of model drug release. Results showed that although the encapsulated NBs were destroyed by pulsed HIFU [peak negative pressure (PNP) 1.54-4.83 MPa], signified by loss of echogenicity and detection of inertial cavitation, no model drug release was observed. Changing modality to continuous wave (CW) HIFU produced release across a range of PNPs (2.01-3.90 MPa), likely because of a synergistic effect of mechanical and increased thermal stimuli. Because of this, we predict that our NBs contain a mixed population of both gaseous and liquid core particles, which upon CW HIFU undergo rapid phase conversion, triggering liposomal drug release. This hypothesis was investigated using previously described models to predict the existence of droplets and their phase change potential and the ability of this phase change to induce liposomal drug release.
Collapse
Affiliation(s)
| | - Radwa H. Abou-Saleh
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- Department
of Physics, Mansoura University, Mansoura, Egypt
| | - P. Louise Coletta
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
| | - James. R. McLaughlan
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
- School
of Electronic and Electrical Engineering, University of Leeds, Leeds, U.K.
| | - Sally A. Peyman
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
| | - Stephen D. Evans
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- . Phone/Fax: (+44) (0)113 343 3852
| |
Collapse
|
7
|
Bourn MD, Batchelor DVB, Ingram N, McLaughlan JR, Coletta PL, Evans SD, Peyman SA. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. J Control Release 2020; 326:13-24. [PMID: 32562855 DOI: 10.1016/j.jconrel.2020.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Drug penetration into solid tumours remains a major challenge in the effective treatment of cancer. Microbubble (MB) mediated sonoporation offers a potential solution to this by enhancing the uptake of drugs into cells. Additionally, in using an ultrasound (US) trigger, drug delivery can be localised to the tumour, thus reducing the off-site toxicity associated with systemic delivery. The majority of in vitro studies involving the observation of MB-enhanced drug efficacy have been conducted on 2D monolayer cell cultures, which are known to be poor models for in vivo tumours. 3D spheroid cultures allow for the production of multicellular cultures complete with extracellular matrix (ECM) components. These cultures effectively recreate many of the physiological features of the tumour microenvironment and have been shown to be far superior to previous 2D monolayer models. However, spheroids are typically handled in well-plates in which the fluid environment is static, limiting the physiological relevance of the model. The combination of 3D cultures and microfluidics would allow for the production of a dynamic system in which spheroids are subjected to in vivo like fluid flow and shear stresses. This study presents a microfluidic device containing an array of spheroid traps, into which multiple pre-grown colorectal cancer (CRC) spheroids were loaded. Reservoirs interfaced with the chip use hydrostatic pressure to passively drive flow through the system and subject spheroids to capillary like flow velocities. The use of reservoirs also enabled multiple chips to be run in parallel, allowing for the screening of multiple therapeutic treatments (n = 690 total spheroids analysed). This microfluidic platform was used to investigate MB enhanced drug delivery and showed that co-delivery of 3 μM doxorubicin (DOX) + MB + US reduced spheroid viability to 48 ± 2%, compared to 75 ± 5% observed with 3 μM DOX alone. Delivery of drug loaded MBs (DLMBs), in which DOX-loaded liposomes (DOX-LS) were conjugated to MBs, reduced spheroid viability to 62 ± 3%, a decrease compared to the 75 ± 3% viability observed with DOX-LS in the absence of MBs + US.
Collapse
Affiliation(s)
- Matthew D Bourn
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom; Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, United Kingdom
| | - Damien V B Batchelor
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola Ingram
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, United Kingdom
| | - James R McLaughlan
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, United Kingdom; School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | - P Louise Coletta
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, United Kingdom
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sally A Peyman
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom; Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, United Kingdom.
| |
Collapse
|
8
|
Nair A, Ingram N, Verghese ET, Wijetunga I, Markham AF, Wyatt J, Prasad KR, Coletta PL. CD105 is a prognostic marker and valid endothelial target for microbubble platforms in cholangiocarcinoma. Cell Oncol (Dordr) 2020; 43:835-845. [PMID: 32468445 PMCID: PMC7581571 DOI: 10.1007/s13402-020-00530-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose The current treatment outcomes in cholangiocarcinoma are poor with cure afforded only by surgical extirpation. The efficacy of targeting the tumoural endothelial marker CD105 in cholangiocarcinoma, as a basis for potential microbubble-based treatment, is unknown and was explored here. Methods Tissue expression of CD105 was quantified using immunohistochemistry in 54 perihilar cholangiocarcinoma samples from patients who underwent resection in a single centre over a ten-year period, and analysed against clinicopathological data. In vitro flow assays using microbubbles functionalised with CD105 antibody were conducted to ascertain specificity of binding to murine SVR endothelial cells. Finally, CD105-microbubbles were intravenously administered to 10 Balb/c nude mice bearing heterotopic subcutaneous human extrahepatic cholangiocarcinoma (TFK-1 and EGI-1) xenografts after which in vivo binding was assessed following contrast-enhanced destruction replenishment ultrasound application. Results Though not significantly associated with any examined clinicopathological variable, we found that higher CD105 expression was independently associated with poorer patient survival (median 12 vs 31 months; p = 0.002). In vitro studies revealed significant binding of CD105-microbubbles to SVR endothelial cells in comparison to isotype control (p = 0.01), as well as in vivo to TFK-1 (p = 0.02) and EGI-1 (p = 0.04) mouse xenograft vasculature. Conclusion Our results indicate that CD105 is a biomarker eminently suitable for cholangiocarcinoma targeting using functionalised microbubbles.
Collapse
Affiliation(s)
- Amit Nair
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Nicola Ingram
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Eldo T Verghese
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Imeshi Wijetunga
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Alexander F Markham
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Judy Wyatt
- Department of Histopathology, St James's University Hospital, Leeds, LS9 7TF, UK
| | - K Rajendra Prasad
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds, LS9 7TF, UK
| | - P Louise Coletta
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| |
Collapse
|
9
|
Cowley J, McGinty S. A mathematical model of sonoporation using a liquid-crystalline shelled microbubble. ULTRASONICS 2019; 96:214-219. [PMID: 30739724 DOI: 10.1016/j.ultras.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
In recent years there has been a great deal of interest in using thin shelled microbubbles as a transportation mechanism for localised drug delivery, particularly for the treatment of various types of cancer. The technique used for such site-specific drug delivery is sonoporation. Despite there being numerous experimental studies on sonoporation, the mathematical modelling of this technique has still not been extensively researched. Presently there exists a very small body of work that models both hemispherical and spherical shelled microbubbles sonoporating due to acoustic microstreaming. Acoustic microstreaming is believed to be the dominant mechanism for sonoporation via shelled microbubbles. Rather than considering the shell of the microbubble to be composed of a thin protein, which is typical in the literature, in this paper we consider the shell to be a liquid-crystalline material. Up until now there have been no studies reported in the literature pertaining to sonoporation of a liquid-crystalline shelled microbubble. A mathematical expression is derived for the maximum wall shear stress, illustrating its dependency on the shell's various material parameters. A sensitivity analysis is performed for the wall shear stress considering the shell's thickness; its local density; the elastic constant of the liquid-crystalline material; the interfacial surface tension and; the shell's viscoelastic properties. In some cases, our results indicate that a liquid-crystalline shelled microbubble may yield a maximum wall shear stress that is two orders of magnitude greater than the stress generated by commercial shelled microbubbles that are currently in use within the scientific community. In conclusion, our preliminary analysis suggests that using liquid-crystalline shelled microbubbles may significantly enhance the efficiency of site-specific drug delivery.
Collapse
Affiliation(s)
- James Cowley
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
10
|
Nie L, Harput S, Cowell DMJ, Carpenter TM, Mclaughlan JR, Freear S. Combining Acoustic Trapping With Plane Wave Imaging for Localized Microbubble Accumulation in Large Vessels. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1193-1204. [PMID: 29969392 DOI: 10.1109/tuffc.2018.2838332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The capability of accumulating microbubbles using ultrasound could be beneficial for enhancing targeted drug delivery. When microbubbles are used to deliver a therapeutic payload, there is a need to track them, for a localized release of the payload. In this paper, a method for localizing microbubble accumulation with fast image guidance is presented. A linear array transducer performed trapping of microbubble populations interleaved with plane wave imaging, through the use of a composite pulse sequence. The acoustic trap in the pressure field was created parallel with the direction of flow in a model of a vessel section. The acoustic trapping force resultant from the large gradients in the acoustic field was engendered to directly oppose the flowing microbubbles. This was demonstrated numerically with field simulations, and experimentally using an Ultrasound Array Research Platform II. SonoVue microbubbles at clinically relevant concentrations were pumped through a tissue-mimicking flow phantom and exposed to either the acoustic trap or a control ultrasonic field composed of a single-peak acoustic radiation force beam. Under the flow condition at a shear rate of 433 s-1, the use of the acoustic trap led to lower speed estimations ( ) in the center of the acoustic field, and an enhancement of 71% ± 28%( ) in microbubble image brightness.
Collapse
|
11
|
Boni E, Yu ACH, Freear S, Jensen JA, Tortoli P. Ultrasound Open Platforms for Next-Generation Imaging Technique Development. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1078-1092. [PMID: 29993364 PMCID: PMC6057541 DOI: 10.1109/tuffc.2018.2844560] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 05/22/2023]
Abstract
Open platform (OP) ultrasound systems are aimed primarily at the research community. They have been at the forefront of the development of synthetic aperture, plane wave, shear wave elastography, and vector flow imaging. Such platforms are driven by a need for broad flexibility of parameters that are normally preset or fixed within clinical scanners. OP ultrasound scanners are defined to have three key features including customization of the transmit waveform, access to the prebeamformed receive data, and the ability to implement real-time imaging. In this paper, a formative discussion is given on the development of OPs from both the research community and the commercial sector. Both software- and hardware-based architectures are considered, and their specifications are compared in terms of resources and programmability. Software-based platforms capable of real-time beamforming generally make use of scalable graphics processing unit architectures, whereas a common feature of hardware-based platforms is the use of field-programmable gate array and digital signal processor devices to provide additional on-board processing capacity. OPs with extended number of channels (>256) are also discussed in relation to their role in supporting 3-D imaging technique development. With the increasing maturity of OP ultrasound scanners, the pace of advancement in ultrasound imaging algorithms is poised to be accelerated.
Collapse
|
12
|
Fix SM, Novell A, Yun Y, Dayton PA, Arena CB. An evaluation of the sonoporation potential of low-boiling point phase-change ultrasound contrast agents in vitro. J Ther Ultrasound 2017; 5:7. [PMID: 28127427 PMCID: PMC5260003 DOI: 10.1186/s40349-017-0085-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phase-change ultrasound contrast agents (PCCAs) offer a solution to the inherent limitations associated with using microbubbles for sonoporation; they are characterized by prolonged circulation lifetimes, and their nanometer-scale sizes may allow for passive accumulation in solid tumors. As a first step towards the goal of extravascular cell permeabilization, we aim to characterize the sonoporation potential of a low-boiling point formulation of PCCAs in vitro. METHODS Parameters to induce acoustic droplet vaporization and subsequent microbubble cavitation were optimized in vitro using high-speed optical microscopy. Sonoporation of pancreatic cancer cells in suspension was then characterized at a range of pressures (125-600 kPa) and pulse lengths (5-50 cycles) using propidium iodide as an indicator molecule. RESULTS We achieved sonoporation efficiencies ranging from 8 ± 1% to 36 ± 4% (percent of viable cells), as evidenced by flow cytometry. Increasing sonoporation efficiency trended with increasing pulse length and peak negative pressure. CONCLUSIONS We conclude that PCCAs can be used to induce the sonoporation of cells in vitro, and our results warrant further investigation into the use of PCCAs as extravascular sonoporation agents in vivo.
Collapse
Affiliation(s)
- Samantha M Fix
- Eshelman School of Pharmacy, University of North Carolina Chapel Hill, Chapel Hill, NC USA
| | - Anthony Novell
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC USA
| | - Yeoheung Yun
- FIT BEST Laboratory, Chemical, Biological and Bioengineering Department, North Carolina A&T State University, Greensboro, NC USA
| | - Paul A Dayton
- Eshelman School of Pharmacy, University of North Carolina Chapel Hill, Chapel Hill, NC USA.,Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC USA
| | - Christopher B Arena
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC USA.,Laboratory for Therapeutic Directed Energy, Department of Physics, Elon University, Elon, NC USA
| |
Collapse
|
13
|
McLaughlan JR, Harput S, Abou-Saleh RH, Peyman SA, Evans S, Freear S. Characterisation of Liposome-Loaded Microbubble Populations for Subharmonic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:346-356. [PMID: 27789045 DOI: 10.1016/j.ultrasmedbio.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Therapeutic microbubbles could make an important contribution to the diagnosis and treatment of cancer. Acoustic characterisation was performed on microfluidic generated microbubble populations that either were bare or had liposomes attached. Through the use of broadband attenuation techniques (3-8 MHz), the shell stiffness was measured to be 0.72 ± 0.01 and 0.78 ± 0.05 N/m and shell friction was 0.37 ± 0.05 and 0.74 ± 0.05 × 10-6 kg/s for bare and liposome-loaded microbubbles, respectively. Acoustic scatter revealed that liposome-loaded microbubbles had a lower subharmonic threshold, occurring from a peak negative pressure of 50 kPa, compared with 200 kPa for equivalent bare microbubbles. It was found that liposome loading had a negligible effect on the destruction threshold for this microbubble type, because at a mechanical index >0.4 (570 kPa), 80% of both populations were destroyed.
Collapse
Affiliation(s)
- James R McLaughlan
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK; Division of Biomedical Imaging, University of Leeds, Leeds, UK.
| | - Sevan Harput
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Radwa H Abou-Saleh
- School of Physics and Astronomy, University of Leeds, Leeds, UK; Department of Physics, Faculty of Science, Mansoura University, Mansoura City, Egypt
| | - Sally A Peyman
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Stephen Evans
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
14
|
van Rooij T, Skachkov I, Beekers I, Lattwein KR, Voorneveld JD, Kokhuis TJ, Bera D, Luan Y, van der Steen AF, de Jong N, Kooiman K. Viability of endothelial cells after ultrasound-mediated sonoporation: Influence of targeting, oscillation, and displacement of microbubbles. J Control Release 2016; 238:197-211. [DOI: 10.1016/j.jconrel.2016.07.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
|
15
|
Peyman SA, McLaughlan JR, Abou-Saleh RH, Marston G, Johnson BRG, Freear S, Coletta PL, Markham AF, Evans SD. On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging. LAB ON A CHIP 2016; 16:679-87. [PMID: 26689151 DOI: 10.1039/c5lc01394a] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 μm or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo. However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10(6) particles per s and at high concentration, typically >10(11) particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C4F10 due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition.
Collapse
Affiliation(s)
- Sally A Peyman
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Leow RS, Wan JMF, Yu ACH. Membrane blebbing as a recovery manoeuvre in site-specific sonoporation mediated by targeted microbubbles. J R Soc Interface 2015; 12:rsif.2015.0029. [PMID: 25694544 DOI: 10.1098/rsif.2015.0029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Site-specific perforation of the plasma membrane can be achieved through ultrasound-triggered cavitation of a single microbubble positioned adjacent to the cell. However, for this perforation approach (sonoporation), the recovery manoeuvres invoked by the cell are unknown. Here, we report new findings on how membrane blebbing can be a recovery manoeuvre that may take place in sonoporation episodes whose pores are of micrometres in diameter. Each sonoporation site was created using a protocol involving single-shot ultrasound exposure (frequency: 1 MHz; pulse length: 30 cycles; peak negative pressure: 0.45 MPa) which triggered inertial cavitation of a single targeted microbubble (diameter: 1-5 µm). Over this process, live confocal microscopy was conducted in situ to monitor membrane dynamics, model drug uptake kinetics and cytoplasmic calcium ion (Ca(2+)) distribution. Results show that blebbing would occur at a recovering sonoporation site after its resealing, and it may emerge elsewhere along the membrane periphery. The bleb size was correlated with the pre-exposure microbubble diameter, and 99% of blebbing cases at sonoporation sites were inflicted by microbubbles larger than 1.5 µm diameter (analysed over 124 sonoporation episodes). Blebs were not observed at irreversible sonoporation sites or when sonoporation site repair was inhibited via extracellular Ca(2+) chelation. Functionally, the bleb volume was found to serve as a buffer compartment to accommodate the cytoplasmic Ca(2+) excess brought about by Ca(2+) influx during sonoporation. These findings suggest that membrane blebbing would help sonoporated cells restore homeostasis.
Collapse
Affiliation(s)
- Ruen Shan Leow
- Medical Engineering Program, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jennifer M F Wan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Alfred C H Yu
- Medical Engineering Program, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
17
|
van Rooij T, Daeichin V, Skachkov I, de Jong N, Kooiman K. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Int J Hyperthermia 2015; 31:90-106. [PMID: 25707815 DOI: 10.3109/02656736.2014.997809] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ultrasound contrast agents (UCAs) are used routinely in the clinic to enhance contrast in ultrasonography. More recently, UCAs have been functionalised by conjugating ligands to their surface to target specific biomarkers of a disease or a disease process. These targeted UCAs (tUCAs) are used for a wide range of pre-clinical applications including diagnosis, monitoring of drug treatment, and therapy. In this review, recent achievements with tUCAs in the field of molecular imaging, evaluation of therapy, drug delivery, and therapeutic applications are discussed. We present the different coating materials and aspects that have to be considered when manufacturing tUCAs. Next to tUCA design and the choice of ligands for specific biomarkers, additional techniques are discussed that are applied to improve binding of the tUCAs to their target and to quantify the strength of this bond. As imaging techniques rely on the specific behaviour of tUCAs in an ultrasound field, it is crucial to understand the characteristics of both free and adhered tUCAs. To image and quantify the adhered tUCAs, the state-of-the-art techniques used for ultrasound molecular imaging and quantification are presented. This review concludes with the potential of tUCAs for drug delivery and therapeutic applications.
Collapse
Affiliation(s)
- Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter , Erasmus MC, Rotterdam , the Netherlands
| | | | | | | | | |
Collapse
|
18
|
Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014; 72:28-48. [PMID: 24667643 DOI: 10.1016/j.addr.2014.03.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/11/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Ultrasound contrast agents are valuable in diagnostic ultrasound imaging, and they increasingly show potential for drug delivery. This review focuses on the acoustic behavior of flexible-coated microbubbles and rigid-coated microcapsules and their contribution to enhanced drug delivery. Phenomena relevant to drug delivery, such as non-spherical oscillations, shear stress, microstreaming, and jetting will be reviewed from both a theoretical and experimental perspective. Further, the two systems for drug delivery, co-administration and the microbubble as drug carrier system, are reviewed in relation to the microbubble behavior. Finally, future prospects are discussed that need to be addressed for ultrasound contrast agents to move from a pre-clinical tool into a clinical setting.
Collapse
|
19
|
Harput S, Arif M, McLaughlan J, Cowell DMJ, Freear S. The effect of amplitude modulation on subharmonic imaging with chirp excitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2532-2544. [PMID: 24297019 DOI: 10.1109/tuffc.2013.2852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Subharmonic generation from ultrasound contrast agents depends on the spectral and temporal properties of the excitation signal. The subharmonic response can be improved by using wideband and long-duration signals. However, for sinusoidal tone-burst excitation, the effective bandwidth of the signal is inversely proportional to the signal duration. Linear frequency-modulated (LFM) and nonlinear frequency-modulated (NLFM) chirp excitations allow independent control over the signal bandwidth and duration; therefore, in this study LFM and NLFM signals were used for the insonation of microbubble populations. The amplitude modulation of the excitation waveform was achieved by applying different window functions. A customized window was designed for the NLFM chirp excitation by focusing on reducing the spectral leakage at the subharmonic frequency and increasing the subharmonic generation from microbubbles. Subharmonic scattering from a microbubble population was measured for various excitation signals and window functions. At a peak negative pressure of 600 kPa, the generated subharmonic energy by ultrasound contrast agents was 15.4 dB more for NLFM chirp excitation with 40% fractional bandwidth when compared with tone-burst excitation. For this reason, the NLFM chirp with a customized window was used as an excitation signal to perform subharmonic imaging in an ultrasound flow phantom. Results showed that the NLFM waveform with a customized window improved the subharmonic contrast by 4.35 ± 0.42 dB on average over a Hann-windowed LFM excitation.
Collapse
|