1
|
Chen M, Sheng Z, Wei R, Zhang B, Kim H, Wu H, Chu Y, Chen Q, Breon A, Li S, Wielgat MB, Shanmuganayagam D, Tzeng E, Geng X, Kim K, Jiang X. Millisecond-level transient heating and temperature monitoring technique for ultrasound-induced thermal strain imaging. Theranostics 2025; 15:815-827. [PMID: 39776794 PMCID: PMC11700873 DOI: 10.7150/thno.95997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g., cardiac pulsation, poses challenges in implementing US-TSI applications, where achieving a millisecond-level temperature rise by delivering acoustic energy from a compact US-TSI probe is a key requirement. This study aims to develop a transient ultrasound heating and thermocouple monitoring technique at the millisecond level for US-TSI applications. Methods: We designed, prototyped, and characterized a novel US-TSI probe that includes a high-power, 3.5 MHz heating transducer with symmetrical dual 1D concave array. Additionally, millisecond-level temperature monitoring was demonstrated with fast-response thermocouples in laser- and ultrasound- induced thermal tests. Subsequently, we demonstrated the prototyped US-TSI probe can produce a desired temperature rise in a millisecond-short time window in vitro phantom and in vivo animal tests. Results: The prototyped US-TSI probe delivered zero-to-peak acoustic pressure up to 6.2 MPa with a 90 VPP input voltage. Both laser- and ultrasound- induced thermal tests verified that the selected thermocouples can monitor temperature change within 50 ms. The fast-response thermocouple confirmed the transient heating ability of the US-TSI probe, achieving a 3.9 °C temperature rise after a 25 ms heating duration (50% duty cycle) in the gel phantom and a 2.0 °C temperature rise after a 50 ms heating duration (50% duty cycle) in a pig model. Conclusions: We successfully demonstrated a millisecond-level transient heating and temperature monitoring technique utilizing the novel US-TSI probe and fast-response thermocouples. The reported transient ultrasound heating and thermocouple monitoring technique is promising for future in vivo human subject studies in US-TSI or other ultrasound-related thermal investigations.
Collapse
Affiliation(s)
- Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Zhiyu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ran Wei
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
- Shenqi Medical (USA) Sirius Technologies Ltd., Boston, MA, USA
| | - Howuk Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
- Department of Mechanical Engineering, Inha University, Incheon, South Korea
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Yu Chu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Qiyang Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sibo Li
- Shenqi Medical (USA) Sirius Technologies Ltd., Boston, MA, USA
| | - Matthew B. Wielgat
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Dhanansayan Shanmuganayagam
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Center for Biomedical Swine Research & Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kang Kim
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Khalid WB, Chen X, Kim K. Multifocus Thermal Strain Imaging Using a Curved Linear Array Transducer for Identification of Lipids in Deep Tissue. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1711-1724. [PMID: 33931283 DOI: 10.1016/j.ultrasmedbio.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Thermal strain imaging (TSI) is an ultrasound-based imaging technique intended primarily for diseases in which lipid accumulation is the main biomarker. The goal of the research described here was to successfully implement TSI on a single, commercially available curved linear array transducer for heating and imaging of organs at a deeper depth. For an effective temperature rise of the tissue over a large area, which is key to TSI performance, an innovative multifocus beamforming approach was applied. This yielded a heating area from 32 to 96 mm in the axial direction and -7 to +7 mm in the lateral direction. The pressure fields generated from simulation were in agreement with pressure fields measured with the hydrophone. TSI with safe acoustic power identified with high contrast a rubber inclusion and liposuction fat tissue embedded in a gelatin block.
Collapse
Affiliation(s)
- Waqas B Khalid
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Khalid WB, Farhat N, Lavery L, Jarnagin J, Delany JP, Kim K. Non-invasive Assessment of Liver Fat in ob/ob Mice Using Ultrasound-Induced Thermal Strain Imaging and Its Correlation with Hepatic Triglyceride Content. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1067-1076. [PMID: 33468357 PMCID: PMC7936391 DOI: 10.1016/j.ultrasmedbio.2020.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Non-alcoholic fatty liver disease is the accumulation of triglycerides in liver. In its malignant form, it can proceed to steatohepatitis, fibrosis, cirrhosis, cancer and ultimately liver impairment, leading to liver transplantation. In a previous study, ultrasound-induced thermal strain imaging (US-TSI) was used to distinguish between excised fatty livers from obese mice and non-fatty livers from control mice. In this study, US-TSI was used to quantify lipid composition of fatty livers in ob/ob mice (n = 28) at various steatosis stages. A strong correlation coefficient was observed (R2 = 0.85) between lipid composition measured with US-TSI and hepatic triglyceride content. Hepatic triglyceride content is used to quantify adipose tissue in liver. The ob/ob mice were divided into three groups based on the degree of steatosis that is used in clinics: none, mild and moderate. A non-parametric Kruskal-Wallis test was conducted to determine if US-TSI can potentially differentiate among the steatosis grades in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Waqas B Khalid
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Nadim Farhat
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Linda Lavery
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center
| | - Josh Jarnagin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James P Delany
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Meshram NH, Varghese T, Mitchell CC, Jackson DC, Wilbrand SM, Hermann BP, Dempsey RJ. Quantification of carotid artery plaque stability with multiple region of interest based ultrasound strain indices and relationship with cognition. Phys Med Biol 2017; 62:6341-6360. [PMID: 28594333 DOI: 10.1088/1361-6560/aa781f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vulnerability and instability in carotid artery plaque has been assessed based on strain variations using noninvasive ultrasound imaging. We previously demonstrated that carotid plaques with higher strain indices in a region of interest (ROI) correlated to patients with lower cognition, probably due to cerebrovascular emboli arising from these unstable plaques. This work attempts to characterize the strain distribution throughout the entire plaque region instead of being restricted to a single localized ROI. Multiple ROIs are selected within the entire plaque region, based on thresholds determined by the maximum and average strains in the entire plaque, enabling generation of additional relevant strain indices. Ultrasound strain imaging of carotid plaques, was performed on 60 human patients using an 18L6 transducer coupled to a Siemens Acuson S2000 system to acquire radiofrequency data over several cardiac cycles. Patients also underwent a battery of neuropsychological tests under a protocol based on National Institute of Neurological Disorders and Stroke and Canadian Stroke Network guidelines. Correlation of strain indices with composite cognitive index of executive function revealed a negative association relating high strain to poor cognition. Patients grouped into high and low cognition groups were then classified using these additional strain indices. One of our newer indices, namely the average L - 1 norm with plaque (AL1NWP) presented with significantly improved correlation with executive function when compared to our previously reported maximum accumulated strain indices. An optimal combination of three of the new indices generated classifiers of patient cognition with an area under the curve (AUC) of 0.880, 0.921 and 0.905 for all (n = 60), symptomatic (n = 33) and asymptomatic patients (n = 27) whereas classifiers using maximum accumulated strain indices alone provided AUC values of 0.817, 0.815 and 0.813 respectively.
Collapse
Affiliation(s)
- N H Meshram
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI-53706, United States of America. Department of Electrical and Computer Engineering, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI-53706, United States of America
| | | | | | | | | | | | | |
Collapse
|
5
|
Nguyen MM, Ding X, Leers SA, Kim K. Multi-Focus Beamforming for Thermal Strain Imaging Using a Single Ultrasound Linear Array Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1263-1274. [PMID: 28318887 PMCID: PMC5429981 DOI: 10.1016/j.ultrasmedbio.2017.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Ultrasound-induced thermal strain imaging (TSI) has been used successfully to identify lipid- and water-based tissues in atherosclerotic plaques in some research settings. However, TSI faces several challenges to be realized in clinics. These challenges include motion artifacts and displacement tracking accuracy, as well as limited heating capability, which contributes to low thermal strain signal-to-noise ratio, and a limited field of view. Our goal was to address the challenge in heating tissue in TSI. Current TSI systems use separate heating and imaging transducers, which require physical alignment of the heating and imaging beams and result in a bulky setup that limits in vivo operation. We evaluated a new design for heating beams that can be implemented on a linear array imaging transducer and can provide improved heating area and efficiency as compared with previous implementations. The heating beams designed were implemented with a clinical linear array imaging transducer connected to a research ultrasound platform. In vitro experiments using tissue-mimicking phantoms with no blood flow revealed that the new design resulted in an effective heating area of approximately 0.85 cm2 and a 0.3°C temperature rise in 2 s of heating, which compared well with in silico finite-element simulations. With the new heating beams, TSI was found to be able to detect a lipid-mimicking rubber inclusion with a diameter of 1 cm from the water-based gelatin background, with a strain contrast of 2.3 (+0.14% strain in the rubber inclusion and -0.06% strain in the gelatin background). Lastly, lipid-based tissue in a 1-cm-diameter human carotid endarterectomy (CEA) sample was identified in good agreement with histology.
Collapse
Affiliation(s)
- Man M Nguyen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Xuan Ding
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Steven A Leers
- Heart and Vascular Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Lv J, Liu G, Wang X, Xia H. A method of the forward problem for magneto-acousto-electrical tomography. Technol Health Care 2016; 24 Suppl 2:S733-8. [PMID: 27177104 DOI: 10.3233/thc-161202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Magneto-Acousto-Electrical Tomography (MAET) is a novel hybrid modality that can provide a high spatial resolution in determining the electrical conductivity of biological tissue. The present paper primarily analyzes the existing basic formulations with the MAET, derives the propagation equations of the sound wave when the mass density of the biological tissues are variable, and then solves the respective current density and potential difference in an inhomogeneous and homogeneous density medium based on the sound speeds obtained. Finally, numerical simulations are performed. As is shown, sound waves affect magneto-acousto-electrical tomography while varying the biological tissue mass density.
Collapse
Affiliation(s)
- Jingxiang Lv
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Electronics and Information, Jinggangshan University, Ji'an, Jiangxi, China
| | - Guoqiang Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xinli Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hui Xia
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Ding X, Dutta D, Mahmoud AM, Tillman B, Leers SA, Kim K. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:138-51. [PMID: 25585398 PMCID: PMC4295651 DOI: 10.1109/tuffc.2014.006516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.
Collapse
|
8
|
Mahmoud AM, Ding X, Dutta D, Singh VP, Kim K. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study. Phys Med Biol 2014; 59:881-95. [PMID: 24487698 DOI: 10.1088/0031-9155/59/4/881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5-14 MHz) for both imaging and heating and a high-frequency (13-24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ∼ 3 s and ∼ 9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (-0.065 ± 0.079%) were significantly (p < 0.05) higher than those measured in control livers (-0.124 ± 0.037%). Using histology as a gold standard to classify mouse livers, US-TSI had a sensitivity and specificity of 70% and 90%, respectively. The area under the receiver operating characteristic curve was 0.775. This ex vivo study demonstrates the feasibility of using US-TSI to detect fatty livers and warrants further investigation of US-TSI as a diagnostic tool for hepatic steatosis.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA. Department of Systems and Biomedical Engineering, Cairo University, Giza, 12613, Egypt
| | | | | | | | | |
Collapse
|
9
|
Mahmoud AM, Dutta D, Lavery L, Stephens DN, Villanueva FS, Kim K. Noninvasive detection of lipids in atherosclerotic plaque using ultrasound thermal strain imaging: in vivo animal study. J Am Coll Cardiol 2013; 62:1804-9. [PMID: 23916926 DOI: 10.1016/j.jacc.2013.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This study sought to examine the feasibility of in vivo detection of lipids in atherosclerotic plaque (AP) by ultrasound (US) thermal (or temporal) strain imaging (TSI). BACKGROUND Intraplaque lipid content is thought to contribute to plaque stability. Lipid exhibits a distinctive physical characteristic of temperature-dependent US speed compared with water-bearing tissues. As tissue temperature changes, US radiofrequency (RF) echoes shift in time of flight, which produces an apparent strain (thermal or temporal strain [TS]). METHODS US heating-imaging pulse sequences and transducers were designed and integrated into commercial US scanners for US-TSI of arterial segments. US-RF data were collected while gradually increasing tissue temperature. Phase-sensitive speckle tracking was applied to reconstruct TS maps coregistered to B-scans. Segments from injured atherosclerotic and uninjured nonatherosclerotic common femoral arteries (CFA) in cholesterol-fed New Zealand rabbits, and segments from control normal diet-fed rabbits (N =14) were scanned in vivo at different time points up to 12 weeks. RESULTS Lipid-rich atherosclerotic lesions exhibited distinct positive TS (+0.19 ± 0.08%) compared with that in nonatherosclerotic (-0.10 ± 0.13%) and control (-0.09 ± 0.09%) segments (p < 0.001). US-TSI enabled serial monitoring of lipids during atherosclerosis development. The coregistered set of morphological and compositional information of US-TSI showed good agreement with histology. CONCLUSIONS US-TSI successfully detected and longitudinally monitored lipid progression in atherosclerotic CFA. US-TSI of relatively superficial arteries may be a modality that could be integrated into a commercial US system for noninvasive lipid detection in AP.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Biomedical Engineering and Systems, Cairo University, Giza, Egypt
| | | | | | | | | | | |
Collapse
|