1
|
Yin C, Wang G, Yang K, Tu J, Guo X, Zhang D. Thermal strain imaging in vivo using interpolated IQ-images. ULTRASONICS 2021; 110:106292. [PMID: 33152656 DOI: 10.1016/j.ultras.2020.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Thermal strain imaging (TSI) is a promising technique for ultrasonic thermometry, especially in the applications of thermal therapies. The accuracy of TSI is dependent on the sampling rate and line density of B-Scan images, and the prevalent IQ-demodulated ultrasound data outputted from low- and middle-end machines are therefore insufficient. Here, the feasibility of using interpolated IQ images for TSI (based on the "infinitesimal echo strain filter" model) is studied through in vivo experiments targeting the perirenal fat of pigs. It is demonstrated that, axial interpolations, especially those using the zero-padding algorithm, can recover the capabilities of the low-sampling-rate complex IQ images in TSI, and make their performances comparable to those of RF/IQ complex images with higher sample rate. Meanwhile, interpolations along the lateral direction can increase the line density of IQ images, reduce TSI errors, and reveal more details in the temperature maps. In the experiments, the variation in the thermometry coefficient (the k-value) is well below 3%. The findings here bring down the requirement of high sampling rate as well as high line density of US images in TSI, making it possible to be applied on common US machines.
Collapse
Affiliation(s)
- Chuhao Yin
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guanzhu Wang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Kexin Yang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
2
|
Viscoelastic Biomarkers of Ex Vivo Liver Samples via Torsional Wave Elastography. Diagnostics (Basel) 2020; 10:diagnostics10020111. [PMID: 32092900 PMCID: PMC7168906 DOI: 10.3390/diagnostics10020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
The clinical ultrasound community demands mechanisms to obtain the viscoelastic biomarkers of soft tissue in order to quantify the tissue condition and to be able to track its consistency. Torsional Wave Elastography (TWE) is an emerging technique proposed for interrogating soft tissue mechanical viscoelastic constants. Torsional waves are a particular configuration of shear waves, which propagate asymmetrically in-depth and are radially transmitted by a disc and received by a ring. This configuration is shown to be particularly efficient in minimizing spurious p-waves components and is sensitive to mechanical constants, especially in cylinder-shaped organs. The objective of this work was to validate (TWE) technique against Shear Wave Elasticity Imaging (SWEI) technique through the determination of shear wave velocity, shear moduli, and viscosity of ex vivo chicken liver samples and tissue mimicking hydrogel phantoms. The results of shear moduli for ex vivo liver tissue vary 1.69–4.0kPa using TWE technique and 1.32–4.48kPa using SWEI technique for a range of frequencies from 200 to 800Hz. Kelvin–Voigt viscoelastic parameters reported values of μ = 1.51kPa and η = 0.54Pa·s using TWE and μ = 1.02kPa and η = 0.63Pa·s using SWEI. Preliminary results show that the proposed technique successfully allows reconstructing shear wave velocity, shear moduli, and viscosity mechanical biomarkers from the propagated torsional wave, establishing a proof of principle and warranting further studies.
Collapse
|
3
|
Nguyen MM, Ding X, Leers SA, Kim K. Multi-Focus Beamforming for Thermal Strain Imaging Using a Single Ultrasound Linear Array Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1263-1274. [PMID: 28318887 PMCID: PMC5429981 DOI: 10.1016/j.ultrasmedbio.2017.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Ultrasound-induced thermal strain imaging (TSI) has been used successfully to identify lipid- and water-based tissues in atherosclerotic plaques in some research settings. However, TSI faces several challenges to be realized in clinics. These challenges include motion artifacts and displacement tracking accuracy, as well as limited heating capability, which contributes to low thermal strain signal-to-noise ratio, and a limited field of view. Our goal was to address the challenge in heating tissue in TSI. Current TSI systems use separate heating and imaging transducers, which require physical alignment of the heating and imaging beams and result in a bulky setup that limits in vivo operation. We evaluated a new design for heating beams that can be implemented on a linear array imaging transducer and can provide improved heating area and efficiency as compared with previous implementations. The heating beams designed were implemented with a clinical linear array imaging transducer connected to a research ultrasound platform. In vitro experiments using tissue-mimicking phantoms with no blood flow revealed that the new design resulted in an effective heating area of approximately 0.85 cm2 and a 0.3°C temperature rise in 2 s of heating, which compared well with in silico finite-element simulations. With the new heating beams, TSI was found to be able to detect a lipid-mimicking rubber inclusion with a diameter of 1 cm from the water-based gelatin background, with a strain contrast of 2.3 (+0.14% strain in the rubber inclusion and -0.06% strain in the gelatin background). Lastly, lipid-based tissue in a 1-cm-diameter human carotid endarterectomy (CEA) sample was identified in good agreement with histology.
Collapse
Affiliation(s)
- Man M Nguyen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Xuan Ding
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Steven A Leers
- Heart and Vascular Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Ding X, Nguyen MM, James IB, Marra KG, Rubin JP, Leers SA, Kim K. Improved Estimation of Ultrasound Thermal Strain Using Pulse Inversion Harmonic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1182-1192. [PMID: 26948260 PMCID: PMC4811719 DOI: 10.1016/j.ultrasmedbio.2016.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/01/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Thermal (temporal) strain imaging (TSI) is being developed to detect the lipid-rich core of atherosclerotic plaques and presence of fatty liver disease. However, the effects of ultrasonic clutter on TSI have not been considered. In this study, we evaluated whether pulse inversion harmonic imaging (PIHI) could be used to improve estimates of thermal (temporal) strain. Using mixed castor oil-gelatin phantoms of different concentrations and artificially introduced clutter, we found that PIHI improved the signal-to-noise ratio of TSI by an average of 213% or 52.1% relative to 3.3- and 6.6-MHz imaging, respectively. In a phantom constructed using human liposuction fat in the presence of clutter, the contrast-to-noise ratio was degraded by 35.1% for PIHI compared with 62.4% and 43.7% for 3.3- and 6.6-MHz imaging, respectively. These findings were further validated using an ex vivo carotid endarterectomy sample. PIHI can be used to improve estimates of thermal (temporal) strain in the presence of clutter.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Man M Nguyen
- Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Isaac B James
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Steven A Leers
- Department of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|