1
|
Al Mukaddim R, Weichmann AM, Taylor R, Hacker TA, Pier T, Hardin J, Graham M, Casper EM, Mitchell CC, Varghese T. In Vivo Longitudinal Monitoring of Cardiac Remodeling in Murine Ischemia Models With Adaptive Bayesian Regularized Cardiac Strain Imaging: Validation Against Histology. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:45-61. [PMID: 36184393 PMCID: PMC9712162 DOI: 10.1016/j.ultrasmedbio.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/16/2023]
Abstract
Adaptive Bayesian regularized cardiac strain imaging (ABR-CSI) uses raw radiofrequency signals to estimate myocardial wall contractility as a surrogate measure of relative tissue elasticity incorporating regularization in the Bayesian sense. We determined the feasibility of using ABR-CSI -derived strain for in vivo longitudinal monitoring of cardiac remodeling in a murine ischemic injury model (myocardial infarction [MI] and ischemia-reperfusion [IR]) and validated the findings against ground truth histology. We randomly stratified 30 BALB/CJ mice (17 females, 13 males, median age = 10 wk) into three surgical groups (MI = 10, IR = 12, sham = 8) and imaged pre-surgery (baseline) and 1, 2, 7 and 14 d post-surgery using a pre-clinical high-frequency ultrasound system (VisualSonics Vevo 2100). We then used ABR-CSI to estimate end-systolic and peak radial (er) and longitudinal (el) strain estimates. ABR-CSI was found to have the ability to serially monitor non-uniform cardiac remodeling associated with murine MI and IR non-invasively through temporal variation of strain estimates post-surgery. Furthermore, radial end-systole (ES) strain images and segmental strain curves exhibited improved discrimination among infarct, border and remote regions around the myocardium compared with longitudinal strain results. For example, the MI group had significantly lower (Friedman's with Bonferroni-Dunn test, p = 0.002) ES er values in the anterior middle (infarcted) region at day 14 (n = 9, 9.23 ± 7.39%) compared with the BL group (n = 9, 44.32 ± 5.49). In contrast, anterior basal (remote region) mean ES er values did not differ significantly (non-significant Friedman's test, χ2 = 8.93, p = 0.06) at day 14 (n = 6, 33.05 ± 6.99%) compared with baseline (n = 6, 34.02 ± 6.75%). Histology slides stained with Masson's trichrome (MT) together with a machine learning model (random forest classifier) were used to derive the ground truth cardiac fibrosis parameter termed histology percentage of myocardial fibrosis (PMF). Both radial and longitudinal strain were found to have strong statistically significant correlations with the PMF parameter. However, radial strain had a higher Spearman's correlation value (εresρ = -0.67, n = 172, p < 0.001) compared with longitudinal strain (εlesρ = -0.60, n = 172, p < 0.001). Overall, the results of this study indicate that ABR-CSI can reliably perform non-invasive detection of infarcted and remote myocardium in small animal studies.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Pier
- Experimental Animal Pathology Lab, UW-Madison
| | | | - Melissa Graham
- Comparative Pathology Laboratory, Research Animal Resources and Compliance (RARC), UW-Madison
| | | | | | - Tomy Varghese
- Medical Physics, University of Wisconsin (UW) – Madison
| |
Collapse
|
2
|
Grondin J, Lee C, Weber R, Konofagou EE. Myocardial Strain Imaging With Electrocardiogram-Gated and Coherent Compounding for Early Diagnosis of Coronary Artery Disease. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:626-637. [PMID: 35063291 PMCID: PMC8866224 DOI: 10.1016/j.ultrasmedbio.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Myocardial elastography (ME) is an ultrasound-based technique that uses radiofrequency signals for 2-D cardiac motion tracking and strain imaging at a high frame rate. Early diagnosis of coronary artery disease (CAD) is critical for timely treatment and improvement of patient outcome. The objective of this study was to assess the performance of ME radial and circumferential strains in the detection and characterization of CAD in patients. In this study, 86 patients suspected of CAD were imaged with ME prior to invasive coronary angiography (ICA). End-systolic radial and circumferential left ventricular strains were estimated in all patients in each of their perfusion territories: left anterior descending (LAD), left circumflex (LCX) and right coronary artery (RCA). ME radial strains were capable of differentiating the obstructive CAD group (55.3 ± 29.8%) from the non-obstructive CAD (72.5 ± 46.8%, p < 0.05) and no CAD groups (73.4 ± 30.4%, p < 0.05) in the RCA territory. ME circumferential strains were capable of differentiating the obstructive CAD group (-3.1 ± 7.5%) from the non-obstructive CAD (-7.2 ± 6.8%, p < 0.05) and normal (-6.9 ± 8.0%, p < 0.05) groups in the LAD territory and to differentiate the normal group (-17.1 ± 8.2%) from the obstructive (-12.8 ± 7.2%, p < 0.05) and non-obstructive CAD (-13.6 ± 8.5%, p < 0.05) groups in the RCA territory. ME circumferential strain performed better than ME radial strain in differentiating normal, non-obstructive and obstructive perfusion territories. In the LCX territory, both ME radial and circumferential strains decreased when the level of stenosis was higher. However, it was not statistically significant. The findings presented herein indicate that ME radial and circumferential estimation obtained from ECG-gated and compounded acquisitions is a promising tool for early, non-invasive and radiation-free detection of CAD in patients.
Collapse
Affiliation(s)
- Julien Grondin
- Department of Radiology, Columbia University, New York, New York, USA
| | - Changhee Lee
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Rachel Weber
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Radiology, Columbia University, New York, New York, USA; Department of Biomedical Engineering, Columbia University, New York, New York, USA.
| |
Collapse
|
3
|
Mukaddim RA, Meshram NH, Weichmann AM, Mitchell CC, Varghese T. Spatiotemporal Bayesian Regularization for Cardiac Strain Imaging: Simulation and In Vivo Results. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 1:21-36. [PMID: 35174360 PMCID: PMC8846604 DOI: 10.1109/ojuffc.2021.3130021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac strain imaging (CSI) plays a critical role in the detection of myocardial motion abnormalities. Displacement estimation is an important processing step to ensure the accuracy and precision of derived strain tensors. In this paper, we propose and implement Spatiotemporal Bayesian regularization (STBR) algorithms for two-dimensional (2-D) normalized cross-correlation (NCC) based multi-level block matching along with incorporation into a Lagrangian cardiac strain estimation framework. Assuming smooth temporal variation over a short span of time, the proposed STBR algorithm performs displacement estimation using at least four consecutive ultrasound radio-frequency (RF) frames by iteratively regularizing 2-D NCC matrices using information from a local spatiotemporal neighborhood in a Bayesian sense. Two STBR schemes are proposed to construct Bayesian likelihood functions termed as Spatial then Temporal Bayesian (STBR-1) and simultaneous Spatiotemporal Bayesian (STBR-2). Radial and longitudinal strain estimated from a finite-element-analysis (FEA) model of realistic canine myocardial deformation were utilized to quantify strain bias, normalized strain error and total temporal relative error (TTR). Statistical analysis with one-way analysis of variance (ANOVA) showed that all Bayesian regularization methods significantly outperform NCC with lower bias and errors (p < 0.001). However, there was no significant difference among Bayesian methods. For example, mean longitudinal TTR for NCC, SBR, STBR-1 and STBR-2 were 25.41%, 9.27%, 10.38% and 10.13% respectively An in vivo feasibility study using RF data from ten healthy mice hearts were used to compare the elastographic signal-to-noise ratio (SNRe) calculated using stochastic analysis. STBR-2 had the highest expected SNRe both for radial and longitudinal strain. The mean expected SNRe values for accumulated radial strain for NCC, SBR, STBR-1 and STBR-2 were 5.03, 9.43, 9.42 and 10.58, respectively. Overall results suggest that STBR improves CSI in vivo.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 USA.,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Nirvedh H Meshram
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 USA.,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Ashley M Weichmann
- Small Animal Imaging and Radiotherapy Facility, UW Carbone Cancer Center, Madison, WI 53705 USA
| | - Carol C Mitchell
- Department of Medicine/Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 USA.,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
4
|
Obara Y, Mori S, Arakawa M, Kanai H. Multifrequency Phased Tracking Method for Estimating Velocity in Heart Wall. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1077-1088. [PMID: 33483160 DOI: 10.1016/j.ultrasmedbio.2020.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Local high-accuracy velocity estimation is important for the ultrasound-based evaluation of regional myocardial function. The ultrasound phase difference at the center frequency of the transmitted signal has been conventionally used for velocity estimation. In the conventional method, spatial averaging is necessary owing to the frequency-dependent attenuation and interference of backscattered waves. Here, we propose a method for suppressing these effects using multifrequency phase differences. The resulting improvement in velocity estimation in the heart wall was validated by in vivo experiments. In the conventional method, the velocity waveform exhibits spike-like changes. The velocity waveform estimated using the proposed method did not exhibit such changes. Because the proposed method estimates myocardium velocity without spatial averaging, it can be used for measuring heart wall dynamics involving thickness changes.
Collapse
Affiliation(s)
- Yu Obara
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Shohei Mori
- Graduate School of Engineering, Tohoku University, Sendai, Japan.
| | - Mototaka Arakawa
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hiroshi Kanai
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Sayseng V, Ober RA, Grubb CS, Weber RA, Konofagou E. Monitoring Canine Myocardial Infarction Formation and Recovery via Transthoracic Cardiac Strain Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2785-2800. [PMID: 32732166 PMCID: PMC7518397 DOI: 10.1016/j.ultrasmedbio.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/08/2020] [Accepted: 06/14/2020] [Indexed: 05/13/2023]
Abstract
Myocardial elastography (ME) is an ultrasound-based strain imaging method that aims to determine the degree of ischemia or infarction as a result of the change in the elastic properties of the myocardium. A survival canine model (n = 11) was employed to investigate the ability of ME to image myocardial infarction formation and recovery. Infarcts were generated by ligation of the left anterior descending coronary artery. Canines were survived and imaged for 4 days (n = 7) or 4 weeks (n = 4), allowing sufficient time for recovery via collateral perfusion. A radial strain-based metric, percentage of healthy myocardium by strain (PHMε), was developed as a marker for healthy myocardial tissue. PHMε was strongly linearly correlated with actual infarct size as determined by gross pathology (R2 = 0.80). Mean PHMε was reduced 1-3 days post-infarction (p < 0.05) at the papillary and apical short-axis levels; full infarct recovery was achieved by day 28, with mean PHMε returning to baseline levels. ME was capable of diagnosing individual myocardial segments as non-infarcted or infarcted with high sensitivity (82%), specificity (92%) and precision (85%) (area under the receiver operating characteristic curve = 0.90). The study therefore strengthens the ME premise that it can detect and assess myocardial infarction progression and recovery in vivo and could thus provide an important role in both disease diagnosis and treatment assesssment.
Collapse
Affiliation(s)
| | - Rebecca A Ober
- Institute of Comparative Medicine, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
6
|
Sayseng V, Grondin J, Salgaonkar VA, Grubb CS, Basij M, Mehrmohammadi M, Iyer V, Wang D, Garan H, Wan EY, Konofagou EE. Catheter Ablation Lesion Visualization With Intracardiac Strain Imaging in Canines and Humans. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1800-1810. [PMID: 32305909 PMCID: PMC7483419 DOI: 10.1109/tuffc.2020.2987480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catheter ablation is a common treatment for arrhythmia, but can fail if lesion lines are noncontiguous. Identification of gaps and nontransmural lesions can reduce the likelihood of treatment failure and recurrent arrhythmia. Intracardiac myocardial elastography (IME) is a strain imaging technique that provides visualization of the lesion line. Estimation of lesion size and gap resolution were evaluated in an open-chest canine model ( n = 3 ), and clinical feasibility was investigated in patients undergoing ablation to treat typical cavotricuspid isthmus (CTI) atrial flutter ( n = 5 ). A lesion line consisting of three lesions and two gaps was generated on the canine left ventricle via epicardial ablation. One lesion was generated in one canine right ventricle. Average lesion and gap areas were measured with high agreement (33 ± 14 and 30 ± 15 mm2, respectively) when compared against gross pathology (34 ± 19 and 26 ± 11 mm2, respectively). Gaps as small as 11 mm2 (3.6 mm on epicardial surface) were identifiable. Absolute error and relative error in estimated lesion area were 9.3 ± 8.4 mm2 and 31% ± 34%; error in estimated gap area was 11 ± 9.0 mm2 and 40% ± 29%. Flutter patients were imaged throughout the procedure. Strain was shown to be capable of differentiating between baseline and after ablation completion as confirmed by conduction block. In all patients, strain decreased in the CTI after ablation (mean paired difference of -17% ± 11%, ). IME could potentially become a useful ablation monitoring tool in health facilities.
Collapse
|
7
|
Sayseng V, Grondin J, Weber RA, Konofagou E. A comparison between unfocused and focused transmit strategies in cardiac strain imaging. Phys Med Biol 2020; 65:03NT01. [PMID: 31585448 DOI: 10.1088/1361-6560/ab4afd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unfocused ultrasound imaging, particularly coherent compounding with diverging waves, is a commonly employed high-frame rate transmit strategy in cardiac strain imaging. However, the accuracy and precision of diverging wave imaging compared to focused-beam transmit approaches in human subjects is unknown. Three transmit strategies-coherent compounding imaging, composite focused imaging with ECG gating and narrow-beams, and focused imaging with wide-beams-were compared in simulation and in transthoracic imaging of healthy human subjects (n = 7). The focused narrow-beam sequence estimated radial end-systolic cumulative strains of a simulated left ventricular deformation with 26% ± 1.5% and 34% ± 1.5% greater accuracy compared with compounding and wide-beam imaging, respectively. Strain estimation precision in transthoracic imaging was then assessed with the Strain Filter on cumulative end-systolic radial strains. Within the strain values where statistically significant differences in precision (E(SNRe|ε)) were found between transmit strategies, the narrow-beam sequence estimated radial strain 13% ± 0.71% and 34% ± 8.9% more precisely on average compared to compounding or wide-beam imaging, respectively.
Collapse
Affiliation(s)
- Vincent Sayseng
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | | | | | | |
Collapse
|
8
|
Iskander-Rizk S, Kruizinga P, Beurskens R, Springeling G, Mastik F, de Groot NM, Knops P, van der Steen AF, van Soest G. Real-time photoacoustic assessment of radiofrequency ablation lesion formation in the left atrium. PHOTOACOUSTICS 2019; 16:100150. [PMID: 31871891 PMCID: PMC6909067 DOI: 10.1016/j.pacs.2019.100150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 05/20/2023]
Abstract
In interventional electrophysiology, catheter-based radiofrequency (RF) ablation procedures restore cardiac heart rhythm by interrupting aberrant conduction paths. Real-time feedback on lesion formation and post-treatment lesion assessment could overcome procedural challenges related to ablation of underlying structures and lesion gaps. This study aims to evaluate real-time visualization of lesion progression and continuity during intra-atrial ablation with photoacoustic (PA) imaging, using clinically deployable technology. A PA-enabled RF ablation catheter was used to ablate and illuminate porcine left atrium, both excised and intact in a passive beating heart ex-vivo, for photoacoustic signal generation. PA signals were received with an intracardiac echography catheter. Using the ratio of PA images acquired with excitation wavelengths of 790 nm and 930 nm, ablation lesions were successfully imaged through circulating saline and/or blood, and lesion gaps were identified in real-time. PA-based assessment of RF-ablation lesions was successful in a realistic preclinical model of atrial intervention.
Collapse
Affiliation(s)
- Sophinese Iskander-Rizk
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Corresponding author at: Department of Biomedical Engineering, Erasmus Medical Center, Ee-2322, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands.
| | - Pieter Kruizinga
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Robert Beurskens
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Geert Springeling
- Department of Experimental Medical Instruments, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Frits Mastik
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Natasja M.S. de Groot
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Paul Knops
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Antonius F.W. van der Steen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Gijs van Soest
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
9
|
Ashikuzzaman M, Gauthier CJ, Rivaz H. Global Ultrasound Elastography in Spatial and Temporal Domains. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:876-887. [PMID: 30843831 DOI: 10.1109/tuffc.2019.2903311] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, a novel computationally efficient quasi-static ultrasound elastography technique is introduced by optimizing an energy function. Unlike conventional elastography techniques, three radio frequency (RF) frames are considered to devise a nonlinear cost function consisting of data intensity similarity term, spatial regularization terms and, most importantly, temporal continuity terms. We optimize the aforesaid cost function efficiently to obtain the time-delay estimation (TDE) of all samples between the first two and last two frames of ultrasound images simultaneously, and spatially differentiate the TDE to generate axial strain map. A novelty in our spatial and temporal regularizations is that they adaptively change based on the data, which leads to substantial improvements in TDE. We handle the computational complexity resulting from incorporation of all samples from all three frames by converting our optimization problem to a sparse linear system of equations. Consideration of both spatial and temporal continuity makes the algorithm more robust to signal decorrelation than the previous algorithms. We name the proposed method GUEST: Global Ultrasound Elastography in Spatial and Temporal directions. We validated our technique with simulation, experimental phantom, and in vivo liver data and compared the results with two recently proposed TDE methods. In all the experiments, GUEST substantially outperforms other techniques in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and strain ratio (SR) of the strain images.
Collapse
|
10
|
Tang S, Sabonghy EP, Chaudhry A, Shajudeen PS, Islam MT, Kim N, Cabrera FJ, Reddy JN, Tasciotti E, Righetti R. A Model-Based Approach to Investigate the Effect of a Long Bone Fracture on Ultrasound Strain Elastography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2704-2717. [PMID: 29994472 DOI: 10.1109/tmi.2018.2849996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanical behavior of long bones and fractures has been under investigation for many decades due to its complexity and clinical relevance. In this paper, we report a new subject-specific methodology to predict and analyze the mechanical behavior of the soft tissue at a bone interface with the intent of identifying the presence and location of bone abnormalities with high accuracy, spatial resolution, and contrast. The proposed methodology was tested on both intact and fractured rabbit femur samples with finite element-based 3-D simulations, created from actual femur computed tomography data, and ultrasound elastography experiments. The results included in this study demonstrate that elastographic strains at the bone/soft tissue interface can be used to differentiate fractured femurs from the intact ones on a distribution level. These results also demonstrate that coronal plane axial shear strain creates a unique contrast mechanism that can be used to reliably detect fractures (both complete and incomplete) in long bones. Kruskal-Wallis test further demonstrates that the contrast measure for the fracture group (simulation: 2.1286±0.2206; experiment: 2.7034 ± 1.0672) is significantly different from that for the intact group (simulation: 0 ± 0; experiment: 1.1540±0.6909) when using coronal plane axial shear strain elastography ( < 0.01). We conclude that: 1) elastography techniques can be used to accurately identify the presence and location of fractures in a long bone and 2) the proposed model-based approach can be used to predict and analyze strains at a bone fracture site and to better interpret experimental elastographic data.
Collapse
|
11
|
Sayseng V, Grondin J, Konofagou EE. Optimization of Transmit Parameters in Cardiac Strain Imaging With Full and Partial Aperture Coherent Compounding. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:684-696. [PMID: 29752226 PMCID: PMC5985980 DOI: 10.1109/tuffc.2018.2807765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship between strain estimation accuracy and transmit parameters-specifically the subaperture, angular aperture, tilt angle, number of virtual sources, and frame rate-in partial aperture (subaperture compounding) and full aperture (steered compounding) fundamental mode cardiac imaging was thus investigated and compared. Field II simulation of a 3-D cylindrical annulus undergoing deformation and twist was developed to evaluate accuracy of 2-D strain estimation in cross-sectional views. The tradeoff between frame rate and number of virtual sources was then investigated via transthoracic imaging in the parasternal short-axis view of five healthy human subjects, using the strain filter to quantify estimation precision. Finally, the optimized subaperture compounding sequence (25-element subperture, 90° angular aperture, 10 virtual sources, 300-Hz frame rate) was compared to the optimized steered compounding sequence (60° angular aperture, 15° tilt, 10 virtual sources, 300-Hz frame rate) via transthoracic imaging of five healthy subjects. Both approaches were determined to estimate cumulative radial strain with statistically equivalent precision (subaperture compounding E(SNRe %) = 3.56, and steered compounding E(SNRe %) = 4.26).
Collapse
|
12
|
Bunting E, Papadacci C, Wan E, Sayseng V, Grondin J, Konofagou EE. Cardiac Lesion Mapping In Vivo Using Intracardiac Myocardial Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:14-20. [PMID: 29283343 PMCID: PMC5747324 DOI: 10.1109/tuffc.2017.2768301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Radio frequency (RF) ablation of the myocardium is used to treat various cardiac arrhythmias. The size, spacing, and transmurality of lesions have been shown to affect the success of the ablation procedure; however, there is currently no method to directly image the size and formation of ablation lesions in real time. Intracardiac myocardial elastography (ME) has been previously used to image the decrease in cardiac strain during systole in the ablated region as a result of the lesion formation. However, the feasibility of imaging multiple lesions and identifying the presence of gaps between lesions has not yet been investigated. In this paper, RF ablation lesions ( ) were generated in the left ventricular epicardium in three anesthetized canines. Two sets of two lesions each were created in close proximity to one another with small gaps (1.5 and 4 cm), while one set of two lesions was created directly next to each other with no gap. A clinical intracardiac echocardiography system was programmed to transmit a custom diverging beam sequence at 600 Hz and used to image the ablation site before and after the induction of ablation lesions. Cumulative strains were estimated over systole using a normalized cross-correlational displacement algorithm and a least-squares strain kernel. Afterward, lesions were excised and subjected to tetrazolium chloride staining. Results indicate that intracardiac ME was capable of imaging the reduction in systolic strain associated with the formation of an ablation lesion. Furthermore, lesion sets containing gaps were able to be distinguished from lesion sets created with no gaps. These results indicate that the end-systolic strain measured using intracardiac ME may be used to image the formation of lesions induced during an RF ablation procedure, in order to provide critical assessment of lesion viability during the interventional procedure.
Collapse
|
13
|
Melki L, Costet A, Konofagou EE. Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2256-2268. [PMID: 28778420 PMCID: PMC5562524 DOI: 10.1016/j.ultrasmedbio.2017.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/13/2017] [Accepted: 06/19/2017] [Indexed: 05/31/2023]
Abstract
Electromechanical wave imaging (EWI) is an ultrasound-based technique that can non-invasively map the transmural electromechanical activation in all four cardiac chambers in vivo. The objective of this study was to determine the reproducibility and angle independence of EWI for the assessment of electromechanical activation during normal sinus rhythm (NSR) in healthy humans. Acquisitions were performed transthoracically at 2000 frames/s on seven healthy human hearts in parasternal long-axis, apical four- and two-chamber views. EWI data was collected twice successively in each view in all subjects, while four successive acquisitions were obtained in one case. Activation maps were generated and compared (i) within the same acquisition across consecutive cardiac cycles; (ii) within same view across successive acquisitions; and (iii) within equivalent left-ventricular regions across different views. EWI was capable of characterizing electromechanical activation during NSR and of reliably obtaining similar patterns of activation. For consecutive heart cycles, the average 2-D correlation coefficient between the two isochrones across the seven subjects was 0.9893, with a mean average activation time fluctuation in LV wall segments across acquisitions of 6.19%. A mean activation time variability of 12% was obtained across different views with a measurement bias of only 3.2 ms. These findings indicate that EWI can map the electromechanical activation during NSR in human hearts in transthoracic echocardiography in vivo and results in reproducible and angle-independent activation maps.
Collapse
Affiliation(s)
- Lea Melki
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Alexandre Costet
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
14
|
Grondin J, Waase M, Gambhir A, Bunting E, Sayseng V, Konofagou EE. Evaluation of Coronary Artery Disease Using Myocardial Elastography with Diverging Wave Imaging: Validation against Myocardial Perfusion Imaging and Coronary Angiography. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:893-902. [PMID: 28256343 PMCID: PMC5385294 DOI: 10.1016/j.ultrasmedbio.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 05/27/2023]
Abstract
Myocardial elastography (ME) is an ultrasound-based technique that can image 2-D myocardial strains. The objectives of this study were to illustrate that 2-D myocardial strains can be imaged with diverging wave imaging and differ, on average, between normal and coronary artery disease (CAD) patients. In this study, 66 patients with symptoms of CAD were imaged with myocardial elastography before a nuclear stress test or an invasive coronary angiography. Radial cumulative strains were estimated in all patients. The end-systolic radial strain in the total cross section of the myocardium was significantly higher in normal patients (17.9 ± 8.7%) than in patients with reversible perfusion defect (6.2 ± 9.3%, p < 0.001) and patients with significant (-0.9 ± 7.4%, p < 0.001) and non-significant (3.7 ± 5.7%, p < 0.01) lesions. End-systolic radial strain in the left anterior descending, left circumflex and right coronary artery territory was found to be significantly higher in normal patients than in CAD patients. These preliminary findings indicate that end-systolic radial strain measured with ME is higher on average in healthy persons than in CAD patients and that ME has the potential to be used for non-invasive, radiation-free early detection of CAD.
Collapse
Affiliation(s)
- Julien Grondin
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Marc Waase
- Department of Medicine, Columbia University, New York, New York, USA
| | - Alok Gambhir
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ethan Bunting
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Vincent Sayseng
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University, New York, New York, USA.
| |
Collapse
|
15
|
Zhao F, Tong L, He Q, Luo J. Coded excitation for diverging wave cardiac imaging: a feasibility study. Phys Med Biol 2017; 62:1565-1584. [PMID: 28076337 DOI: 10.1088/1361-6560/aa58d7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diverging wave (DW) based cardiac imaging has gained increasing interest in recent years given its capacity to achieve ultrahigh frame rate. However, the signal-to-noise ratio (SNR), contrast, and penetration depth of the resulting B-mode images are typically low as DWs spread energy over a large region. Coded excitation is known to be capable of increasing the SNR and penetration for ultrasound imaging. The aim of this study was therefore to test the feasibility of applying coded excitation in DW imaging to improve the corresponding SNR, contrast and penetration depth. To this end, two types of codes, i.e. a linear frequency modulated chirp code and a set of complementary Golay codes were tested in three different DW imaging schemes, i.e. 1 angle DW transmit without compounding, 3 and 5 angles DW transmits with coherent compounding. The performances (SNR, contrast ratio (CR), contrast-to-noise ratio (CNR), and penetration) of different imaging schemes were investigated by means of simulations and in vitro experiments. As for benchmark, corresponding DW imaging schemes with regular pulsed excitation as well as the conventional focused imaging scheme were also included. The results showed that the SNR was improved by about 10 dB using coded excitation while the penetration depth was increased by 2.5 cm and 1.8 cm using chirp code and Golay codes, respectively. The CNR and CR gains varied with the depth for different DW schemes using coded excitations. Specifically, for non-compounded DW imaging schemes, the gain in the CR was about 5 dB and 3 dB while the gain in the CNR was about 4.5 dB and 3.5 dB at larger depths using chirp code and Golay codes, respectively. For compounded imaging schemes, using coded excitation, the gain in the penetration and contrast were relatively smaller compared to non-compounded ones. Overall, these findings indicated the feasibility of coded excitation in improving the image quality of DW imaging. Preliminary in vivo cardiac images of a healthy volunteer were presented finally, and higher SNR and deeper penetration depth can be achieved by coded schemes.
Collapse
Affiliation(s)
- Feifei Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Papadacci C, Bunting EA, Wan EY, Nauleau P, Konofagou EE. 3D Myocardial Elastography In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:618-627. [PMID: 27831864 PMCID: PMC5528164 DOI: 10.1109/tmi.2016.2623636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. In addition, acquisitions at high volume rate are essential to evaluate the cardiac strain in three dimensions. Conventional focused transmit schemes using 2D matrix arrays, trade off sufficient volume rate for beam density or sector size to image rapid moving structure such as the heart, which lowers accuracy and precision in the strain estimation. In this study, we developed 3D myocardial elastography at high volume rates using diverging wave transmits to evaluate the local axial strain distribution in three dimensions in three open-chest canines before and after radio-frequency ablation. Acquisitions were performed with a 2.5 MHz 2D matrix array fully programmable used to emit 2000 diverging waves at 2000 volumes/s. Incremental displacements and strains enabled the visualization of rapid events during the QRS complex along with the different phases of the cardiac cycle in entire volumes. Cumulative displacement and strain volumes depict high contrast between non-ablated and ablated myocardium at the lesion location, mapping the tissue coagulation. 3D myocardial strain elastography could thus become an important technique to measure the regional strain distribution in three dimensions in humans.
Collapse
|
17
|
The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. J Am Coll Cardiol 2017; 69:236-243. [DOI: 10.1016/j.jacc.2016.10.047] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
|
18
|
Kruizinga P, Mastik F, Bosch JG, de Jong N, van der Steen AFW, van Soest G. Measuring submicrometer displacement vectors using high-frame-rate ultrasound imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1733-1744. [PMID: 26470036 DOI: 10.1109/tuffc.2014.006835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Measuring the magnitude and direction of tissue displacement provides the basis for the assessment of tissue motion or tissue stiffness. Using conventional displacement tracking by ultrasound delay estimation, only one direction of tissue displacement can be estimated reliably. In this paper, we describe a new technique for estimating the complete two-dimensional displacement vector using high-frame-rate ultrasound imaging. We compute the displacement vector using phase delays that can be measured between pairs of elements within an array. By combining multiple element-pair solutions, we find a new robust estimate for the displacement vector. In this paper, we provide experimental proof that this method permits measurement of the displacement vector for isolated scatterers and diffuse scatterers with high (submicrometer) precision, without the need for beam steering. We also show that we can measure the axial and lateral distension of a carotid artery in a transverse view.
Collapse
|
19
|
Eyerly SA, Vejdani-Jahromi M, Dumont DM, Trahey GE, Wolf PD. The Evolution of Tissue Stiffness at Radiofrequency Ablation Sites During Lesion Formation and in the Peri-Ablation Period. J Cardiovasc Electrophysiol 2015; 26:1009-1018. [PMID: 25970142 PMCID: PMC4643432 DOI: 10.1111/jce.12709] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/27/2015] [Accepted: 05/06/2015] [Indexed: 11/29/2022]
Abstract
Introduction Elastography imaging can provide radiofrequency ablation (RFA) lesion assessment due to tissue stiffening at the ablation site. An important aspect of assessment is the spatial and temporal stability of the region of stiffness increase in the peri‐ablation period. The aim of this study was to use 2 ultrasound‐based elastography techniques, shear wave elasticity imaging (SWEI) and acoustic radiation force impulse (ARFI) imaging, to monitor the evolution of tissue stiffness at ablation sites in the 30 minutes following lesion creation. Methods and Results In 6 canine subjects, SWEI measurements and 2‐D ARFI images were acquired at 6 ventricular endocardial RFA sites before, during, and for 30 minutes postablation. An immediate increase in tissue stiffness was detected during RFA, and the area of the postablation region of stiffness increase (RoSI) as well as the relative stiffness at the RoSI center was stable approximately 2 minutes after ablation. Of note is the observation that relative stiffness in the region adjacent to the RoSI increased slightly during the first 15 minutes, consistent with local fluid displacement or edema. The magnitude of this increase, ∼0.5‐fold from baseline, was significantly less than the magnitude of the stiffness increase directly inside the RoSI, which was greater than 3‐fold from baseline. Conclusions Ultrasound‐based SWEI and ARFI imaging detected an immediate increase in tissue stiffness during RFA, and the stability and magnitude of the stiffness change suggest that consistent elasticity‐based lesion assessment is possible 2 minutes after and for at least 30 minutes following ablation.
Collapse
Affiliation(s)
- Stephanie A Eyerly
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Douglas M Dumont
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Gregg E Trahey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Patrick D Wolf
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|