1
|
Zhang J, Huang C, Lok UW, Dong Z, Liu H, Gong P, Song P, Chen S. Enhancing Row-Column Array (RCA)-Based 3D Ultrasound Vascular Imaging With Spatial-Temporal Similarity Weighting. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:297-309. [PMID: 39106128 DOI: 10.1109/tmi.2024.3439615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Ultrasound vascular imaging (UVI) is a valuable tool for monitoring the physiological states and evaluating the pathological diseases. Advancing from conventional two-dimensional (2D) to three-dimensional (3D) UVI would enhance the vasculature visualization, thereby improving its reliability. Row-column array (RCA) has emerged as a promising approach for cost-effective ultrafast 3D imaging with a low channel count. However, ultrafast RCA imaging is often hampered by high-level sidelobe artifacts and low signal-to-noise ratio (SNR), which makes RCA-based UVI challenging. In this study, we propose a spatial-temporal similarity weighting (St-SW) method to overcome these challenges by exploiting the incoherence of sidelobe artifacts and noise between datasets acquired using orthogonal transmissions. Simulation, in vitro blood flow phantom, and in vivo experiments were conducted to compare the proposed method with existing orthogonal plane wave imaging (OPW), row-column-specific frame-multiply-and-sum beamforming (RC-FMAS), and XDoppler techniques. Qualitative and quantitative results demonstrate the superior performance of the proposed method. In simulations, the proposed method reduced the sidelobe level by 31.3 dB, 20.8 dB, and 14.0 dB, compared to OPW, XDoppler, and RC-FMAS, respectively. In the blood flow phantom experiment, the proposed method significantly improved the contrast-to-noise ratio (CNR) of the tube by 26.8 dB, 25.5 dB, and 19.7 dB, compared to OPW, XDoppler, and RC-FMAS methods, respectively. In the human submandibular gland experiment, it not only reconstructed a more complete vasculature but also improved the CNR by more than 15 dB, compared to OPW, XDoppler, and RC-FMAS methods. In summary, the proposed method effectively suppresses the side-lobe artifacts and noise in images collected using an RCA under low SNR conditions, leading to improved visualization of 3D vasculatures.
Collapse
|
2
|
Lan H, Huang L, Wang Y, Wang R, Wei X, He Q, Luo J. Deep Power-Aware Tunable Weighting for Ultrasound Microvascular Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1701-1713. [PMID: 39480714 DOI: 10.1109/tuffc.2024.3488729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Ultrasound microvascular imaging (UMI), including ultrafast power Doppler imaging (uPDI) and ultrasound localization microscopy (ULM), obtains blood flow information through plane wave (PW) transmissions at high frame rates. However, low signal-to-noise ratio (SNR) of PWs causes low image quality. Adaptive beamformers have been proposed to suppress noise energy to achieve higher image quality accompanied by increasing computational complexity. Deep learning (DL) leverages powerful hardware capabilities to enable rapid implementation of noise suppression at the cost of flexibility. To enhance the applicability of DL-based methods, in this work, we propose a deep power-aware tunable (DPT) weighting (i.e., postfilter) for delay-and-sum (DAS) beamforming to improve UMI by enhancing PW images. The model, called Yformer, is a hybrid structure combining convolution and Transformer. With the DAS beamformed and compounded envelope image as input, Yformer can estimate both noise power and signal power. Furthermore, we utilize the obtained powers to compute pixel-wise weights by introducing a tunable noise control factor (NCF), which is tailored for improving the quality of different UMI applications. In vivo experiments on the rat brain demonstrate that Yformer can accurately estimate the powers of noise and signal with the structural similarity index measure (SSIM) higher than 0.95. The performance of the DPT weighting is comparable to that of superior adaptive beamformer in uPDI with low computational cost. The DPT weighting was then applied to four different datasets of ULM, including public simulation, public rat brain, private rat brain, and private rat liver datasets, showing excellent generalizability using the model trained by the private rat brain dataset only. In particular, our method indirectly improves the resolution of liver ULM from 25.24 to m by highlighting small vessels. In addition, the DPT weighting exhibits more details of blood vessels with faster processing, which has the potential to facilitate the clinical applications of high-quality UMI.
Collapse
|
3
|
Turan OM, Babischkin JS, Aberdeen GW, Turan S, Pepe GJ, Albrecht ED. B-Flow/Spatiotemporal Image Correlation M-Mode and Contrast-Enhanced/Microbubble Ultrasonography Quantification of Spiral Artery Distensibility and Placental Intervillous Perfusion in the First Trimester in a Primate Model of Impaired Spiral Artery Remodeling. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2557-2564. [PMID: 37749012 PMCID: PMC10591761 DOI: 10.1016/j.ultrasmedbio.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE During early human pregnancy, placental trophoblasts remodel spiral arteries into distensible low-resistance vessels to promote placental perfusion. We have established a model of impaired spiral artery remodeling (SAR) by elevating estradiol levels in the first trimester of baboon pregnancy. In the present study, B-flow/spatiotemporal image correlation (STIC) M-mode ultrasonography, a non-Doppler technology for sharp rendering of vessel dimensions, was used to determine whether spiral artery distensibility was altered in SAR-suppressed baboons. Contrast-enhanced ultrasound/microbubble imaging was also performed to determine whether it detected changes in placenta intervillous space perfusion in SAR-suppressed baboons. METHODS The two imaging procedures were performed in the first trimester in baboons not treated or treated with estradiol to suppress SAR. RESULTS Spiral artery distensibility, that is, luminal diameter at systole minus diameter at diastole, and volume flow as quantified by B-flow/STIC M-mode were 26% (p = 0.03) and 55% (p = 0.059) lower, respectively, in SAR-suppressed baboons. However, placental intervillous space flow rate and video intensity plateau levels reflecting blood perfusion, quantified by contrast-enhanced ultrasound/microbubble imaging, were unaltered in SAR-suppressed baboons. CONCLUSION The results indicate that B-flow/STIC M-mode ultrasonography provides a non-invasive method to detect reduced distensibility and, thus, function of spiral arteries across the cardiac cycle in the first trimester in a primate model of impaired SAR. This study represents a first step in determining whether B-flow/STIC M-mode detects a similar defect in SAR early in adverse human pregnancy. This would provide an avenue to develop therapeutic modalities to prevent the devastating consequences of impaired SAR.
Collapse
Affiliation(s)
- Ozhan M Turan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffery S Babischkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Graham W Aberdeen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sifa Turan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Wang Y, Huang L, Wang R, Wei X, Zheng C, Peng H, Luo J. Improved Ultrafast Power Doppler Imaging Using United Spatial-Angular Adaptive Scaling Wiener Postfilter. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1118-1134. [PMID: 37478034 DOI: 10.1109/tuffc.2023.3297571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Ultrafast power Doppler imaging (uPDI) using high-frame-rate plane-wave transmission is a new microvascular imaging modality that offers high Doppler sensitivity. However, due to the unfocused transmission of plane waves, the echo signal is subject to interference from noise and clutter, resulting in a low signal-to-noise ratio (SNR) and poor image quality. Adaptive beamforming techniques are effective in suppressing noise and clutter for improved image quality. In this study, an adaptive beamformer based on a united spatial-angular adaptive scaling Wiener (uSA-ASW) postfilter is proposed to improve the resolution and contrast of uPDI. In the proposed method, the signal power and noise power of the Wiener postfilter are estimated by uniting spatial and angular signals, and a united generalized coherence factor (uGCF) is introduced to dynamically adjust the noise power estimation and enhance the robustness of the method. Simulation and in vivo data were used to verify the effectiveness of the proposed method. The results show that the uSA-ASW can achieve higher resolution and significant improvements in image contrast and background noise suppression compared with conventional delay-and-sum (DAS), coherence factor (CF), spatial-angular CF (SACF), and adaptive scaling Wiener (ASW) postfilter methods. In the simulations, uSA-ASW improves contrast-to-noise ratio (CNR) by 34.7 dB (117.3%) compared with DAS, while reducing background noise power (BNP) by 52 dB (221.4%). The uSA-ASW method provides full-width at half-maximum (FWHM) reductions of [Formula: see text] (59.5%) and [Formula: see text] (56.9%), CNR improvements of 25.6 dB (199.9%) and 42 dB (253%), and BNP reductions of 46.1 dB (319.3%) and 12.9 dB (289.1%) over DAS in the experiments of contrast-free human neonatal brain and contrast-free human liver, respectively. In the contrast-free experiments, uSA-ASW effectively balances the performance of noise and clutter suppression and enhanced microvascular visualization. Overall, the proposed method has the potential to become a reliable microvascular imaging technique for aiding in more accurate diagnosis and detection of vascular-related diseases in clinical contexts.
Collapse
|
5
|
Huang L, Wang Y, Wang R, Wei X, He Q, Zheng C, Peng H, Luo J. High-Quality Ultrafast Power Doppler Imaging Based on Spatial Angular Coherence Factor. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:378-392. [PMID: 37028058 DOI: 10.1109/tuffc.2023.3253257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The morphological and hemodynamic changes of microvessels are demonstrated to be related to the diseased conditions in tissues. Ultrafast power Doppler imaging (uPDI) is a novel modality with a significantly increased Doppler sensitivity, benefiting from the ultrahigh frame rate plane-wave imaging (PWI) and advanced clutter filtering. However, unfocused plane-wave transmission often leads to a low imaging quality, which degrades the subsequent microvascular visualization in power Doppler imaging. Coherence factor (CF)-based adaptive beamformers have been widely studied in conventional B-mode imaging. In this study, we propose a spatial and angular coherence factor (SACF) beamformer for improved uPDI (SACF-uPDI) by calculating the spatial CF across apertures and the angular CF across transmit angles, respectively. To identify the superiority of SACF-uPDI, simulations, in vivo contrast-enhanced rat kidney, and in vivo contrast-free human neonatal brain studies were conducted. Results demonstrate that SACF-uPDI can effectively enhance contrast and resolution and suppress background noise simultaneously, compared with conventional uPDI methods based on delay-and-sum (DAS) (DAS-uPDI) and CF (CF-uPDI). In the simulations, SACF-uPDI can improve the lateral and axial resolutions compared with those of DAS-uPDI, from 176 to [Formula: see text] of lateral resolution, and from 111 to [Formula: see text] of axial resolution. In the in vivo contrast-enhanced experiments, SACF achieves 15.14- and 5.6-dB higher contrast-to-noise ratio (CNR), 15.25- and 3.68-dB lower noise power, and 240- and 15- [Formula: see text] narrower full-width at half-maximum (FWHM) than DAS-uPDI and CF-uPDI, respectively. In the in vivo contrast-free experiments, SACF achieves 6.11- and 1.09-dB higher CNR, 11.93- and 4.01-dB lower noise power, and 528- and 160- [Formula: see text] narrower FWHM than DAS-uPDI and CF-uPDI, respectively. In conclusion, the proposed SACF-uPDI method can efficiently improve the microvascular imaging quality and has the potential to facilitate clinical applications.
Collapse
|
6
|
Pialot B, Lachambre C, Mur AL, Augeul L, Petrusca L, Basarab A, Varray F. Adaptive noise reduction for power Doppler imaging using SVD filtering in the channel domain and coherence weighting of pixels. Phys Med Biol 2023; 68. [PMID: 36595318 DOI: 10.1088/1361-6560/acac5d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Objective. Ultrafast power Doppler (UPD) is an ultrasound method that can image blood flow at several thousands of frames per second. In particular, the high number of data provided by UPD enables the use of singular value decomposition (SVD) as a clutter filter for suppressing tissue signal. Notably, is has been demonstrated in various applications that SVD filtering increases significantly the sensitivity of UPD to microvascular flows. However, UPD is subjected to significant depth-dependent electronic noise and an optimal denoising approach is still being sought.Approach. In this study, we propose a new denoising method for UPD imaging: the Coherence Factor Mask (CFM). This filter is first based on filtering the ultrasound time-delayed data using SVD in the channel domain to remove clutter signal. Then, a spatiotemporal coherence mask that exploits coherence information between channels for identifying noisy pixels is computed. The mask is finally applied to beamformed images to decrease electronic noise before forming the power Doppler image. We describe theoretically how to filter channel data using a single SVD. Then, we evaluate the efficiency of the CFM filter for denoisingin vitroandin vivoimages and compare its performances with standard UPD and with three existing denoising approaches.Main results. The CFM filter gives gains in signal-to-noise ratio and contrast-to-noise ratio of up to 22 dB and 20 dB, respectively, compared to standard UPD and globally outperforms existing methods for reducing electronic noise. Furthermore, the CFM filter has the advantage over existing approaches of being adaptive and highly efficient while not requiring a cut-off for discriminating noise and blood signals nor for determining an optimal coherence lag.Significance. The CFM filter has the potential to help establish UPD as a powerful modality for imaging microvascular flows.
Collapse
Affiliation(s)
- Baptiste Pialot
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Célestine Lachambre
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Antonio Lorente Mur
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Lionel Augeul
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France
| | - Lorena Petrusca
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Adrian Basarab
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - François Varray
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| |
Collapse
|
7
|
Shen CC, Guo FT. Ultrasound Ultrafast Power Doppler Imaging with High Signal-to-Noise Ratio by Temporal Multiply-and-Sum (TMAS) Autocorrelation. SENSORS (BASEL, SWITZERLAND) 2022; 22:8349. [PMID: 36366046 PMCID: PMC9655537 DOI: 10.3390/s22218349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Coherent plane wave compounding (CPWC) reconstructs transmit focusing by coherently summing several low-resolution plane-wave (PW) images from different transmit angles to improve its image resolution and quality. The high frame rate of CPWC imaging enables a much larger number of Doppler ensembles such that the Doppler estimation of blood flow becomes more reliable. Due to the unfocused PW transmission, however, one major limitation of the Doppler estimation in CPWC imaging is the relatively low signal-to-noise ratio (SNR). Conventionally, the Doppler power is estimated by a zero-lag autocorrelation which reduces the noise variance, but not the noise level. A higher-lag autocorrelation method such as the first-lag (R(1)) power Doppler image has been developed to take advantage of the signal coherence in the temporal direction for suppressing uncorrelated random noises. In this paper, we propose a novel Temporal Multiply-and-Sum (TMAS) power Doppler detection method to further improve the noise suppression of the higher-lag method by modulating the signal coherence among the temporal correlation pairs in the higher-lag autocorrelation with a tunable pt value. Unlike the adaptive beamforming methods which demand for either receive-channel-domain or transmit-domain processing to exploit the spatial coherence of the blood flow signal, the proposed TMAS power Doppler can share the routine beamforming architecture with CPWC imaging. The simulated results show that when it is compared to the original R(1) counterpart, the TMAS power Doppler image with the pt value of 2.5 significantly improves the SNR by 8 dB for the cross-view flow velocity within the Nyquist rate. The TMAS power Doppler, however, suffers from the signal decorrelation of the blood flow, and thus, it relies on not only the pt value and the flow velocity, but also the flow direction relative to the geometry of acoustic beam. The experimental results in the flow phantom and in vivo dataset also agree with the simulations.
Collapse
Affiliation(s)
- Che-Chou Shen
- Correspondence: ; Tel.: +886-2-27301229; Fax: +886-2-27376699
| | | |
Collapse
|
8
|
Pialot B, Bernard A, Liebgott H, Varray F. Sensitivity Enhancement Using Chirp Transmission for an Ultrasound Arthroscopic Probe. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2776-2784. [PMID: 35312619 DOI: 10.1109/tuffc.2022.3160880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Meniscal tear in the knee joint is a highly common injury that can require an ablation. However, the success rate of meniscectomy is highly impacted by difficulties in estimating the thin vascularization of the meniscus, which determines the healing capacities of the patient. Indeed, vascularization is estimated using arthroscopic cameras that lack of high sensitivity to blood flow. Here, we propose an ultrasound method for estimating the density of vascularization in the meniscus during surgery. This approach uses an arthroscopic probe driven by ultrafast sequences. To enhance the sensitivity of the method, we propose to use a chirp-coded excitation combined with a mismatched compression filter robust to the attenuation. This chirp approach was compared to a standard ultrafast emission and a Hadamard-coded emission using a flow phantom. The mismatched filter was also compared to a matched filter. Results show that, for a velocity of a few millimeters per second, the mismatched filter gives a 4.4-10.4-dB increase of the signal-to-noise ratio (SNR) compared to the Hadamard emission and a 3.1-6.6-dB increase compared to the matched filter. Such increases are obtained for a loss of axial resolution of 13% when comparing the point spread functions (PSFs) of the mismatched and matched filters. Hence, the mismatched filter allows increasing significantly the probe capacity to detect slow flows at the cost of a small loss in axial resolution. This preliminary study is the first step toward an ultrasensitive ultrasound arthroscopic probe able to assist the surgeon during meniscectomy.
Collapse
|
9
|
Tang S, Huang C, Gong P, Lok UW, Zhou C, Yang L, Knoll KM, Robinson KA, Sheedy SP, Fletcher JG, Bruining DH, Knudsen JM, Chen S. Adaptive and Robust Vessel Quantification in Contrast-Free Ultrafast Ultrasound Microvessel Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2095-2109. [PMID: 35882573 PMCID: PMC9427726 DOI: 10.1016/j.ultrasmedbio.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/09/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023]
Abstract
The morphological features of vasculature in diseased tissue differ significantly from those in normal tissue. Therefore, vasculature quantification is crucial for disease diagnosis and staging. Ultrasound microvessel imaging (UMI) with ultrafast ultrasound acquisitions has been determined to have potential in clinical applications given its superior sensitivity in blood flow detection. However, the presence of spatial-dependent noise caused by a low imaging signal-to-noise ratio and incoherent clutter artifacts caused by moving hyperechoic scatterers degrades the performance of UMI and the reliability of vascular quantification. To tackle these issues, we proposed an improved UMI technique along with an adaptive vessel segmentation workflow for robust vessel identification and vascular feature quantification. A previously proposed sub-aperture cross-correlation technique and a normalized cross-correlation technique were applied to equalize the spatially dependent noise level and suppress the incoherent clutter artifact. A square operator and non-local means filter were then used to better separate the blood flow signal from residual background noise. On the de-noised ultrasound microvessel image, an automatic and adaptive vessel segmentation method was developed based on the different spatial patterns of blood flow signal and background noise. The proposed workflow was applied to a CIRS phantom, to a Doppler flow phantom and to an inflammatory bowel, kidney and liver, to validate its feasibility. Results revealed that automatic adaptive, and robust vessel identification performance can be achieved using the proposed method without the subjectivity caused by radiologists/operators.
Collapse
Affiliation(s)
- Shanshan Tang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chenyun Zhou
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA; Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lulu Yang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA; Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kate M Knoll
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - David H Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - John M Knudsen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
10
|
Madhavanunni A, Panicker MR. A nonlinear beamforming for enhanced spatiotemporal sensitivity in high frame rate ultrasound flow imaging. Comput Biol Med 2022; 147:105686. [DOI: 10.1016/j.compbiomed.2022.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
|
11
|
Long J, Trahey G, Bottenus N. Spatial Coherence in Medical Ultrasound: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:975-996. [PMID: 35282988 PMCID: PMC9067166 DOI: 10.1016/j.ultrasmedbio.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
Traditional pulse-echo ultrasound imaging heavily relies on the discernment of signals based on their relative magnitudes but is limited in its ability to mitigate sources of image degradation, the most prevalent of which is acoustic clutter. Advances in computing power and data storage have made it possible for echo data to be alternatively analyzed through the lens of spatial coherence, a measure of the similarity of these signals received across an array. Spatial coherence is not currently explicitly calculated on diagnostic ultrasound scanners but a large number of studies indicate that it can be employed to describe image quality, to adaptively select system parameters and to improve imaging and target detection. With the additional insights provided by spatial coherence, it is poised to play a significant role in the future of medical ultrasound. This review details the theory of spatial coherence in pulse-echo ultrasound and key advances made over the last few decades since its introduction in the 1980s.
Collapse
Affiliation(s)
- James Long
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Gregg Trahey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nick Bottenus
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
12
|
Huang L, Zhang J, Wei X, Jing L, He Q, Xie X, Wang G, Luo J. Improved Ultrafast Power Doppler Imaging by Using Spatiotemporal Non-Local Means Filtering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1610-1624. [PMID: 35271440 DOI: 10.1109/tuffc.2022.3158611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The change of microvasculature is associated with the occurrence and development of many diseases. Ultrafast power Doppler imaging (uPDI) is an emerging technology for the visualization of microvessels due to the development of ultrafast plane wave (PW) imaging and advanced clutter filters. However, the low signal-to-noise ratio (SNR) caused by unfocused transmit of PW imaging deteriorates the subsequent imaging of microvasculature. Nonlocal means (NLM) filtering has been demonstrated to be effective in the denoising of both natural and medical images, including ultrasound power Doppler images. However, the feasibility and performance of applying an NLM filter on the ultrasound radio frequency (RF) data have not been investigated so far. In this study, we propose to apply an NLM filter on the spatiotemporal domain of clutter filtered blood flow RF data (St-NLM) to improve the quality of uPDI. Experiments were conducted to compare the proposed method with three different methods (under various similarity window sizes), including conventional uPDI without NLM filtering (Non-NLM), NLM filtering on the obtained power Doppler images (PD-NLM), and NLM filtering on the spatial domain of clutter filtered blood flow RF data (S-NLM). Phantom experiments, in vivo contrast-enhanced human spinal cord tumor experiments, and in vivo contrast-free human liver experiments were performed to demonstrate the superiority of the proposed St-NLM method over the other three methods. Qualitative and quantitative results show that the proposed St-NLM method can effectively suppress the background noise, improve the contrast between vessels and background, and preserve the details of small vessels at the same time. In the human liver study, the proposed St-NLM method achieves 31.05-, 24.49-, and 11.15-dB higher contrast-to-noise ratios (CNRs) and 36.86-, 36.86-, and 15.22-dB lower noise powers than Non-NLM, PD-NLM, and S-NLM, respectively. In the human spinal cord tumor, the full-width at half-maximums (FWHMs) of vessel cross Section are 76, 201, and [Formula: see text] for St-NLM, Non-NLM, and S-NLM, respectively. The proposed St-NLM method can enhance the microvascular visualization in uPDI and has the potential for the diagnosis of many microvessel-change-related diseases.
Collapse
|
13
|
Turan OM, Babischkin JS, Aberdeen GW, Turan S, Harman CR, Pepe GJ, Albrecht ED. B-flow/spatiotemporal image correlation M-mode: novel ultrasound method that detects decrease in spiral artery luminal diameter in first trimester in primate model of impaired spiral artery remodeling. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:358-364. [PMID: 34358371 PMCID: PMC9301675 DOI: 10.1002/uog.23753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To determine if B-flow/spatiotemporal image correlation (STIC) M-mode ultrasonography detects a decrease in spiral artery luminal diameter and volume flow during the first trimester in a non-human primate model of impaired spiral artery remodeling (SAR). METHODS Pregnant baboons were treated daily with estradiol benzoate on days 25-59 of the first trimester (term, 184 days), or remained untreated. On day 60 of gestation, spiral artery luminal diameter (in seven untreated and 12 estradiol-treated baboons) and volume flow (in four untreated and eight estradiol-treated baboons) were quantified by B-flow/STIC M-mode ultrasonography. In addition, in 15 untreated and 18 estradiol-treated baboons, the percent of spiral arteries remodeled by extravillous trophoblasts was quantified ex vivo by immunohistochemical image analysis on placental basal plate tissue collected via Cesarean section on day 60. Findings were compared between treated and untreated animals. The correlation between spiral artery luminal diameter and percent of SAR was assessed in three untreated and six estradiol-treated baboons which underwent both B-flow/STIC M-mode ultrasound and quantification of SAR. RESULTS The proportion of spiral arteries greater than 50 µm in diameter remodeled by extravillous trophoblasts was 70% lower in estradiol-treated baboons than in untreated animals (P = 0.000001). Spiral artery luminal diameter in systole and diastole, as quantified by B-flow/STIC M-mode in the first trimester of pregnancy, was 31% (P = 0.014) and 50% (P = 0.005) lower, respectively, and volume flow was 85% lower (P = 0.014), in SAR-suppressed baboons compared with untreated animals. There was a significant correlation between spiral artery luminal diameter as quantified by B-flow/STIC M-mode ultrasonography and the percent of SAR (P < 0.05). CONCLUSION B-flow/STIC M-mode ultrasonography provides a novel real-time non-invasive method to detect a decrease in uterine spiral artery luminal diameter and volume flow during the cardiac cycle, reflecting decreased distensibility of the vessel wall, in the first trimester in a non-human primate model of defective SAR. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- O. M. Turan
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - J. S. Babischkin
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - G. W. Aberdeen
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - S. Turan
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - C. R. Harman
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - G. J. Pepe
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVAUSA
| | - E. D. Albrecht
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
14
|
LONG WILL, BRADWAY DAVID, AHMED RIFAT, LONG JAMES, TRAHEY GREGGE. Spatial Coherence Adaptive Clutter Filtering in Color Flow Imaging-Part I: Simulation Studies. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 2:106-118. [PMID: 36712829 PMCID: PMC9881314 DOI: 10.1109/ojuffc.2022.3184914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The appropriate selection of a clutter filter is critical for ensuring the accuracy of velocity estimates in ultrasound color flow imaging. Given the complex spatio-temporal dynamics of flow signal and clutter, however, the manual selection of filters can be a significant challenge, increasing the risk for bias and variance introduced by the removal of flow signal and/or poor clutter suppression. We propose a novel framework to adaptively select clutter filter settings based on color flow image quality feedback derived from the spatial coherence of ultrasonic backscatter. This framework seeks to relax assumptions of clutter magnitude and velocity that are traditionally required in existing adaptive filtering methods to generalize clutter filtering to a wider range of clinically-relevant color flow imaging conditions. In this study, the relationship between color flow velocity estimation error and the spatial coherence of clutter filtered channel signals was investigated in Field II simulations for a wide range of flow and clutter conditions. This relationship was leveraged in a basic implementation of coherence-adaptive clutter filtering (CACF) designed to dynamically adapt clutter filters at each imaging pixel and frame based on local measurements of spatial coherence. In simulation studies with known scatterer and clutter motion, CACF was demonstrated to reduce velocity estimation bias while maintaining variance on par with conventional filtering.
Collapse
Affiliation(s)
| | - DAVID BRADWAY
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - RIFAT AHMED
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - JAMES LONG
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - GREGG E. TRAHEY
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA,Department of Radiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
15
|
Bertolo A, Sauvage J, Tanter M, Pernot M, Deffieux T. XDoppler: Cross-Correlation of Orthogonal Apertures for 3D Blood Flow Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3358-3368. [PMID: 34048341 DOI: 10.1109/tmi.2021.3084865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Row column addressing (RCA) transducers have the potential to provide volumetric imaging at ultrafast frame rate using a low channel count over a large field of view. In previous works we have shown that vascular imaging of large arteries as well as functional neuroimaging of the rat brain were feasible using RCA orthogonal plane wave imaging (OPW), but these applications required to transmit many plane waves, significantly reducing the frame rate. In this study, we introduce XDoppler imaging, a novel method to increase the performances of RCA flow imaging by taking advantage of the blood spatial decorrelation statistics combined with the limited spatial overlap of the point spread functions (PSF) of the two orthogonal apertures of the RCA transducer. We provide at first a theoretical basis to understand how the correlation operation reduces the sidelobe level. Then, we demonstrate both in vitro and in vivo in the human carotid artery and in the rat brain that XDoppler provides a significant gain in contrast-to-noise ratio (CNR) (between 3 and 6 dB depending on the application) compared to OPW. This improvement also leads to a sensitivity increase in the rat brain as more blood vessels are detected by XDoppler imaging.
Collapse
|
16
|
Ntoulia A, Barnewolt CE, Doria AS, Ho-Fung VM, Lorenz N, Mentzel HJ, Back SJ. Contrast-enhanced ultrasound for musculoskeletal indications in children. Pediatr Radiol 2021; 51:2303-2323. [PMID: 33783575 DOI: 10.1007/s00247-021-04964-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/02/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
The increasing use of contrast-enhanced ultrasound (CEUS) has opened exciting new frontiers for musculoskeletal applications in adults and children. The most common musculoskeletal-related CEUS applications in adults are for detecting inflammatory joint diseases, imaging skeletal muscles and tendon perfusion, imaging postoperative viability of osseous and osseocutaneous tissue flaps, and evaluating the malignant potential of soft-tissue masses. Pediatric musculoskeletal-related CEUS has been applied for imaging juvenile idiopathic arthritis and Legg-Calvé-Perthes disease and for evaluating femoral head perfusion following surgical hip reduction in children with developmental hip dysplasia. CEUS can improve visualization of the capillary network in superficial and deep tissues and also in states of slow- or low-volume blood flow. In addition, measurements of blood flow imaging parameters performed by quantitative CEUS are valuable when monitoring the outcome of treatment interventions. In this review article we present current experience regarding a wide range of CEUS applications in musculoskeletal conditions in adults and children, with emphasis on the latter, and discuss imaging techniques and CEUS findings in musculoskeletal applications.
Collapse
Affiliation(s)
- Aikaterini Ntoulia
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Carol E Barnewolt
- Department of Radiology, Boston Children's Hospital, Harvard University, Boston, MA, USA
| | - Andrea S Doria
- Department of Medical Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Victor M Ho-Fung
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Lorenz
- Children's Hospital, Dresden Municipal Hospital, Teaching-Hospital of Technical University, Dresden, Germany
| | - Hans-Joachim Mentzel
- Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University Hospital of Jena, Jena, Germany
| | - Susan J Back
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Li YL, Hyun D, Ducey-Wysling J, Durot I, D'Hondt A, Patel BN, Dahl JJ. Real-Time In Vivo Imaging of Human Liver Vasculature Using Coherent Flow Power Doppler: A Pilot Clinical Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3027-3041. [PMID: 34003748 PMCID: PMC8515835 DOI: 10.1109/tuffc.2021.3081438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Power Doppler (PD) is a commonly used technique for flow detection and vessel visualization in radiology clinics. Despite its broad set of applications, PD suffers from multiple noise sources and artifacts, such as thermal noise, clutter, and flash artifacts. In addition, a tradeoff exists between acquisition time and Doppler image quality. These limit the ability of clinical PD imaging in deep-lying and small-vessel detection and visualization, particularly among patients with high body mass indices (BMIs). To improve the Doppler vessel detection, we have previously proposed coherent flow PD (CFPD) imaging and demonstrated its performance on porcine vasculature. In this article, we report on a pilot clinical study of CFPD imaging on healthy human volunteers and patients with high BMI to assess the clinical feasibility of the technique in liver imaging. In this study, we built a real-time CFPD imaging system using a graphical processing unit (GPU)-based software beamformer and a CFPD processing module. Using the real-time CFPD imaging system, the liver vasculature of 15 healthy volunteers with normal BMI below 25 and 15 patients with BMI greater than 25 was imaged. Both PD and CFPD image streams were produced simultaneously. The generalized contrast-to-noise ratio (gCNR) of the PD and CFPD images was measured to provide the quantitative evaluation of image quality and vessel detectability. Comparison of PD and CFPD image shows that gCNR is improved by 35% in healthy volunteers and 28% in high BMI patients with CFPD compared to PD. Example images are provided to show that the improvement in the Doppler image gCNR leads to greater detection of small vessels in the liver. In addition, we show that CFPD can suppress in vivo reverberation clutter in clinical imaging.
Collapse
|
18
|
Ozgun KA, Byram BC. Multidimensional Clutter Filtering of Aperture Domain Data for Improved Blood Flow Sensitivity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2645-2656. [PMID: 33852387 PMCID: PMC8345228 DOI: 10.1109/tuffc.2021.3073292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Singular value decomposition (SVD) is a valuable factorization technique used in clutter rejection filtering for power Doppler imaging. Conventionally, SVD is applied to a Casorati matrix of radio frequency data, which enables filtering based on spatial or temporal characteristics. In this article, we propose a clutter filtering method that uses a higher order SVD (HOSVD) applied to a tensor of aperture data, e.g., delayed channel data. We discuss temporal, spatial, and aperture domain features that can be leveraged in filtering and demonstrate that this multidimensional approach improves sensitivity toward blood flow. Further, we show that HOSVD remains more robust to short ensemble lengths than conventional SVD filtering. Validation of this technique is shown using Field II simulations and in vivo data.
Collapse
|
19
|
Shen CC, Chu YC. DMAS Beamforming with Complementary Subset Transmit for Ultrasound Coherence-Based Power Doppler Detection in Multi-Angle Plane-Wave Imaging. SENSORS 2021; 21:s21144856. [PMID: 34300594 PMCID: PMC8309888 DOI: 10.3390/s21144856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
Conventional ultrasonic coherent plane-wave (PW) compounding corresponds to Delay-and-Sum (DAS) beamforming of low-resolution images from distinct PW transmit angles. Nonetheless, the trade-off between the level of clutter artifacts and the number of PW transmit angle may compromise the image quality in ultrafast acquisition. Delay-Multiply-and-Sum (DMAS) beamforming in the dimension of PW transmit angle is capable of suppressing clutter interference and is readily compatible with the conventional method. In DMAS, a tunable p value is used to modulate the signal coherence estimated from the low-resolution images to produce the final high-resolution output and does not require huge memory allocation to record all the received channel data in multi-angle PW imaging. In this study, DMAS beamforming is used to construct a novel coherence-based power Doppler detection together with the complementary subset transmit (CST) technique to further reduce the noise level. For p = 2.0 as an example, simulation results indicate that the DMAS beamforming alone can improve the Doppler SNR by 8.2 dB compared to DAS counterpart. Another 6-dB increase in Doppler SNR can be further obtained when the CST technique is combined with DMAS beamforming with sufficient ensemble averaging. The CST technique can also be performed with DAS beamforming, though the improvement in Doppler SNR and CNR is relatively minor. Experimental results also agree with the simulations. Nonetheless, since the DMAS beamforming involves multiplicative operation, clutter filtering in the ensemble direction has to be performed on the low-resolution images before DMAS to remove the stationary tissue without coupling from the flow signal.
Collapse
Affiliation(s)
- Che-Chou Shen
- Correspondence: ; Tel.: +886-2-27301229; Fax: +886-2-27376699
| | | |
Collapse
|
20
|
Huang C, Song P, Trzasko JD, Gong P, Lok UW, Tang S, Manduca A, Chen S. Simultaneous Noise Suppression and Incoherent Artifact Reduction in Ultrafast Ultrasound Vascular Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2075-2085. [PMID: 33513103 PMCID: PMC8154644 DOI: 10.1109/tuffc.2021.3055498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound vascular imaging based on ultrafast plane wave imaging and singular value decomposition (SVD) clutter filtering has demonstrated superior sensitivity in blood flow detection. However, ultrafast ultrasound vascular imaging is susceptible to electronic noise due to the weak penetration of unfocused waves, leading to a lower signal-to-noise ratio (SNR) at larger depths. In addition, incoherent clutter artifacts originating from strong and moving tissue scatterers that cannot be completely removed create a strong mask on top of the blood signal that obscures the vessels. Herein, a method that can simultaneously suppress the background noise and incoherent artifacts is proposed. The method divides the tilted plane or diverging waves into two subgroups. Coherent spatial compounding is performed within each subgroup, resulting in two compounded data sets. An SVD-based clutter filter is applied to each data set, followed by a correlation between the two data sets to produce a vascular image. Uncorrelated noise and incoherent artifacts can be effectively suppressed with the correlation process, while the coherent blood signal can be preserved. The method was evaluated in wire-target simulations and phantom, in which around 7-10-dB SNR improvement was shown. Consistent results were found in a flow channel phantom with improved SNR by the proposed method (39.9 ± 0.2 dB) against conventional power Doppler (29.1 ± 0.6 dB). Last, we demonstrated the effectiveness of the method combined with block-wise SVD clutter filtering in a human liver, breast tumor, and inflammatory bowel disease data sets. The improved blood flow visualization may facilitate more reliable small vessel imaging for a wide range of clinical applications, such as cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Kang J, Go D, Song I, Yoo Y. Ultrafast Power Doppler Imaging Using Frame-Multiply-and-Sum-Based Nonlinear Compounding. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:453-464. [PMID: 32746224 DOI: 10.1109/tuffc.2020.3011708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultrafast power Doppler imaging based on coherent compounding (UPDI-CC) has become a promising technique for microvascular imaging due to its high sensitivity to slow blood flows. However, since this method utilizes a limited number of plane-wave or diverging-wave transmissions for high-frame-rate imaging, it suffers from degraded image quality because of the low contrast resolution. In this article, an ultrafast power Doppler imaging method based on a nonlinear compounding framework, called frame-multiply-and-sum (UPDI-FMAS), is proposed to improve contrast resolution. In UPDI-FMAS, unlike conventional channel-domain delay-multiply-and-sum (DMAS) beamforming, the signal coherence is estimated based on autocorrelation function over plane-wave angle frames. To avoid phase distortion of blood flow signals during the autocorrelation process, clutter filtering is preferentially applied to individual beamformed plane-wave data set. Therefore, only coherent blood flow signals are emphasized, while incoherent background noise is suppressed. The performance of the UPDI-FMAS was evaluated with simulation, phantom, and in vivo studies. For the simulation and phantom studies with a constant laminar flow, the UPDI-FMAS showed improvements in the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) to those of UPDI-CC, i.e., over 10 and 7 dB for 13 plane waves, respectively, and the performances were improved as the number of plane waves increased. Moreover, the enhancement of the image quality due to the increased SNR and CNR in UPDI-FMAS was more clearly depicted with the in vivo study, in which a human kidney and a tumor-bearing mouse were evaluated. These results indicate that the FMAS compounding can improve the image quality of UPDI for microvascular imaging without loss of temporal resolution.
Collapse
|
22
|
Yan X, Qi Y, Wang Y, Wang Y. High Resolution, High Contrast Beamformer Using Minimum Variance and Plane Wave Nonlinear Compounding with Low Complexity. SENSORS 2021; 21:s21020394. [PMID: 33429947 PMCID: PMC7826701 DOI: 10.3390/s21020394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/05/2022]
Abstract
The plane wave compounding (PWC) is a promising modality to improve the imaging quality and maintain the high frame rate for ultrafast ultrasound imaging. In this paper, a novel beamforming method is proposed to achieve higher resolution and contrast with low complexity. A minimum variance (MV) weight calculated by the partial generalized sidelobe canceler is adopted to beamform the receiving array signals. The dimension reduction technique is introduced to project the data into lower dimensional space, which also contributes to a large subarray length. Estimation of multi-wave receiving covariance matrix is performed and then utilized to determine only one weight. Afterwards, a fast second-order reformulation of the delay multiply and sum (DMAS) is developed as nonlinear compounding to composite the beamforming output of multiple transmissions. Simulations, phantom, in vivo, and robustness experiments were carried out to evaluate the performance of the proposed method. Compared with the delay and sum (DAS) beamformer, the proposed method achieved 86.3% narrower main lobe width and 112% higher contrast ratio in simulations. The robustness to the channel noise of the proposed method is effectively enhanced at the same time. Furthermore, it maintains a linear computational complexity, which means that it has the potential to be implemented for real-time response.
Collapse
Affiliation(s)
- Xin Yan
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; (X.Y.); (Y.Q.); (Y.W.)
| | - Yanxing Qi
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; (X.Y.); (Y.Q.); (Y.W.)
| | - Yinmeng Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; (X.Y.); (Y.Q.); (Y.W.)
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; (X.Y.); (Y.Q.); (Y.W.)
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
23
|
Jakovljevic M, Yoon BC, Abou-Elkacem L, Hyun D, Li Y, Rubesova E, Dahl JJ. Blood Flow Imaging in the Neonatal Brain Using Angular Coherence Power Doppler. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:92-106. [PMID: 32746214 PMCID: PMC7864118 DOI: 10.1109/tuffc.2020.3010341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Using ultrasound to image small vessels in the neonatal brain can be difficult in the presence of strong clutter from the surrounding tissue and with a neonate motion during the scan. We propose a coherence-based beamforming method, namely the short-lag angular coherence (SLAC) beamforming that suppresses incoherent noise and motion artifacts in Ultrafast data, and we demonstrate its applicability to improve detection of blood flow in the neonatal brain. Instead of estimating spatial coherence across the receive elements, SLAC utilizes the principle of acoustic reciprocity to estimate angular coherence from the beamsummed signals from different plane-wave transmits, which makes it computationally efficient and amenable to advanced beamforming techniques, such as f-k migration. The SLAC images of a simulated speckle phantom show similar edge resolution and texture size as the matching B-mode images, and reduced random noise in the background. We apply SLAC power Doppler (PD) to free-hand imaging of neonatal brain vasculature with long Doppler ensembles and show that: 1) it improves visualization of small vessels in the cortex compared to conventional PD and 2) it can be used for tracking of blood flow in the brain over time, meaning it could potentially improve the quality of free-hand functional ultrasound.
Collapse
|
24
|
Wiacek A, Gonzalez E, Bell MAL. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2574-2583. [PMID: 32203018 PMCID: PMC8034551 DOI: 10.1109/tuffc.2020.2982848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Deep fully connected networks are often considered "universal approximators" that are capable of learning any function. In this article, we utilize this particular property of deep neural networks (DNNs) to estimate normalized cross correlation as a function of spatial lag (i.e., spatial coherence functions) for applications in coherence-based beamforming, specifically short-lag spatial coherence (SLSC) beamforming. We detail the composition, assess the performance, and evaluate the computational efficiency of CohereNet, our custom fully connected DNN, which was trained to estimate the spatial coherence functions of in vivo breast data from 18 unique patients. CohereNet performance was evaluated on in vivo breast data from three additional patients who were not included during training, as well as data from in vivo liver and tissue mimicking phantoms scanned with a variety of ultrasound transducer array geometries and two different ultrasound systems. The mean correlation between the SLSC images computed on a central processing unit (CPU) and the corresponding DNN SLSC images created with CohereNet was 0.93 across the entire test set. The DNN SLSC approach was up to 3.4 times faster than the CPU SLSC approach, with similar computational speed, less variability in computational times, and improved image quality compared with a graphical processing unit (GPU)-based SLSC approach. These results are promising for the application of deep learning to estimate correlation functions derived from ultrasound data in multiple areas of ultrasound imaging and beamforming (e.g., speckle tracking, elastography, and blood flow estimation), possibly replacing GPU-based approaches in low-power, remote, and synchronization-dependent applications.
Collapse
|
25
|
Bendjador H, Deffieux T, Tanter M. The SVD Beamformer: Physical Principles and Application to Ultrafast Adaptive Ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3100-3112. [PMID: 32286965 DOI: 10.1109/tmi.2020.2986830] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A shift of paradigm is currently underway in biomedical ultrasound thanks to plane or diverging waves coherent compounding for faster imaging. One remaining challenge consists in handling phase and amplitude aberrations induced during the ultrasonic propagation through complex layers. Unlike conventional line-per-line imaging, ultrafast ultrasound provides backscattering information from the whole imaged area for each transmission. Here, we take benefit from this feature and propose an efficient approach to perform fast aberration correction. Our method is based on the Singular Value Decomposition (SVD) of an ultrafast compound matrix containing backscattered data for several plane wave transmissions. First, we explain the physical signification of SVD and associated singular vectors within the ultrafast matrix formalism. We theoretically demonstrate that the separation of spatial and angular variables, rendered by SVD on ultrafast data, provides an elegant and straightforward way to optimize the angular coherence of backscattered data. In heterogeneous media, we demonstrate that the first spatial and angular singular vectors retrieve respectively the non-aberrated image of a region of interest, and the phase and amplitude of its aberration law. Numerical, in vitro and in vivo results prove the efficiency of the image correction, but also the accuracy of the aberrator determination. Based on spatial and angular coherence, we introduce a complete methodology for adaptive beamforming of ultrafast data, performed on successive isoplanatism patches undergoing SVD beamforming. The simplicity of this method paves the way to real-time adaptive ultrafast ultrasound imaging and provides a theoretical framework for future quantitative ultrasound applications.
Collapse
|
26
|
Ozgun K, Tierney J, Byram B. A Spatial Coherence Beamformer Design for Power Doppler Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1558-1570. [PMID: 31725374 PMCID: PMC7265983 DOI: 10.1109/tmi.2019.2953657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acoustic clutter is a primary source of image degradation in ultrasound imaging. In the context of flow imaging, tissue and acoustic clutter signals are often much larger in magnitude than the blood signal, which limits the sensitivity of conventional power Doppler in SNR-limited environments. This has motivated the development of coherence-based beamformers, including Coherent Flow Power Doppler (CFPD), which have demonstrated efficacy in mitigating sources of diffuse clutter. However, CFPD uses a measure of normalized coherence, which incurs a non-linear relationship between image intensity and the magnitude of the blood echo. As a result, CFPD is not a robust approach to study gradation of blood signal energy, which depicts the fractional moving blood volume. We propose the application of mutual intensity, rather than normalized coherence, to retain the clutter suppression capability inherent in coherence beamforming, while preserving the underlying signal energy. Feasibility of this approach was shown via Field II simulations, phantoms, and in vivo human liver data. In addition, we derive an adaptive statistical threshold for the suppression of residual noise signals. Overall, this beamformer design shows promise as an alternative technique to depict flow volume gradation in cluttered imaging environments.
Collapse
|
27
|
Wang Y, Peng H, Zheng C, Han Z, Qiao H. A dynamic generalized coherence factor for side lobe suppression in ultrasound imaging. Comput Biol Med 2019; 116:103522. [PMID: 31739004 DOI: 10.1016/j.compbiomed.2019.103522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 11/26/2022]
Abstract
Coherence-based weighting techniques have been widely studied to weight beamsummed data to improve image quality in ultrasound imaging. Although generalized coherence factor (GCF) enhances the robustness of coherence factor (CF) with preserved speckle pattern by including some incoherent components, the side lobe suppression performance is insufficient due to constant cut-off frequency M0. To address this problem, we introduced in this paper a dynamic GCF method, referred to as DGCF-C, based on the amplitude standard deviation and the convolution output of aperture data. The cut-off frequency is adaptively selected for GCF at each imaging point using the amplitude standard deviation of aperture data. Moreover, the convolution output of aperture data is used to calculate the dynamic GCF. The proposed method is evaluated in simulation and tissue-mimicking phantom studies. The image quality was analyzed in terms of resolution, contrast ratio (CR), generalized contrast-to-noise ratio (GCNR), speckle signal-to-noise ratio (sSNR), and signal-to-noise ratio (SNR). The results demonstrate that DGCF-C (Mmax=2) achieves mean resolution improvements of 35.1% in simulation, and 32.6% in experiment, compared with GCF (M0=1). Moreover, DGCF-C (Mmax=4) outperforms GCF (M0=2) with an average GCNR improvement of 13.5% and an average sSNR improvement of 15.2%, which indicates the better-preservation of speckle.
Collapse
Affiliation(s)
- Yuanguo Wang
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhihui Han
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Heyuan Qiao
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
28
|
Huang C, Song P, Gong P, Trzasko JD, Manduca A, Chen S. Debiasing-Based Noise Suppression for Ultrafast Ultrasound Microvessel Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1281-1291. [PMID: 31135357 PMCID: PMC6743739 DOI: 10.1109/tuffc.2019.2918180] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ultrasound microvessel imaging (UMI) based on the combination of singular value decomposition (SVD) clutter filtering and ultrafast plane wave imaging has recently demonstrated significantly improved Doppler sensitivity, especially to small vessels that are invisible to conventional Doppler imaging. Practical implementation of UMI is hindered by the high computational cost associated with SVD and low blood signal-to-noise ratio (SNR) in deep regions of the tissue due to the lack of transmit focusing of plane waves. Concerning the high computational cost, an accelerated SVD clutter filtering method based on randomized SVD (rSVD) and randomized spatial downsampling (rSD) was recently proposed by our group, which showed the feasibility of real-time implementation of UMI. Concerning the low blood flow SNR in deep imaging regions, here we propose a noise suppression method based on noise debiasing that can be easily applied to the accelerated SVD method to bridge the gap between real-time implementation and high imaging quality. The proposed method experimentally measures the noise-induced bias by collecting the noise signal using the identical imaging sequence as regular UMI, but with the ultrasound transmission turned off. The estimated bias can then be subtracted from the original power Doppler (PD) image to obtain effective noise suppression. The feasibility of the proposed method was validated under different ultrasound imaging parameters [including transmitting voltages and time-gain compensation (TGC) settings] with a phantom experiment. The noise-debiased images showed an increase of up to 15.3 and 13.4 dB in SNR as compared to original PD images on the blood flow phantom and an in vivo human kidney data set, respectively. The proposed noise suppression method has negligible computational cost and can be conveniently combined with the previously proposed accelerated SVD clutter filtering technique to achieve high quality, real-time UMI imaging.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Peralta L, Gomez A, Luan Y, Kim BH, Hajnal JV, Eckersley RJ. Coherent Multi-Transducer Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1316-1330. [PMID: 31180847 PMCID: PMC7115943 DOI: 10.1109/tuffc.2019.2921103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This work extends the effective aperture size by coherently compounding the received radio frequency data from multiple transducers. As a result, it is possible to obtain an improved image, with enhanced resolution, an extended field of view (FoV), and high-acquisition frame rates. A framework is developed in which an ultrasound imaging system consisting of N synchronized matrix arrays, each with partly shared FoV, take turns to transmit plane waves (PWs). Only one individual transducer transmits at each time while all N transducers simultaneously receive. The subwavelength localization accuracy required to combine information from multiple transducers is achieved without the use of any external tracking device. The method developed in this study is based on the study of the backscattered echoes received by the same transducer and resulting from a targeted scatterer point in the medium insonated by the multiple ultrasound probes of the system. The current transducer locations along with the speed of sound in the medium are deduced by optimizing the cross correlation between these echoes. The method is demonstrated experimentally in 2-D for two linear arrays using point targets and anechoic lesion phantoms. The first demonstration of a free-hand experiment is also shown. Results demonstrate that the coherent multi-transducer ultrasound imaging method has the potential to improve ultrasound image quality, improving resolution, and target detectability. Compared with coherent PW compounding using a single probe, lateral resolution improved from 1.56 to 0.71 mm in the coherent multi-transducer imaging method without acquisition frame rate sacrifice (acquisition frame rate 5350 Hz).
Collapse
|
30
|
Leow CH, Bush NL, Stanziola A, Braga M, Shah A, Hernandez-Gil J, Long NJ, Aboagye EO, Bamber JC, Tang MX. 3-D Microvascular Imaging Using High Frame Rate Ultrasound and ASAP Without Contrast Agents: Development and Initial In Vivo Evaluation on Nontumor and Tumor Models. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:939-948. [PMID: 30908210 DOI: 10.1109/tuffc.2019.2906434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional imaging is valuable to noninvasively assess angiogenesis given the complex 3-D architecture of vascular networks. The emergence of high frame rate (HFR) ultrasound, which can produce thousands of images per second, has inspired novel signal processing techniques and their applications in structural and functional imaging of blood vessels. Although highly sensitive vascular mapping has been demonstrated using ultrafast Doppler, the detectability of microvasculature from the background noise may be hindered by the low signal-to-noise ratio (SNR) particularly in the deeper region and without the use of contrast agents. We have recently demonstrated a coherence-based technique, acoustic subaperture imaging (ASAP), for super-contrast vascular imaging and illustrated the contrast improvement using HFR contrast-enhanced ultrasound. In this work, we provide a feasibility study for microvascular imaging using ASAP without contrast agents, and extend its capability from 2-D to volumetric vascular mapping. Using an ultrasound research system and a preclinical probe, we demonstrated the improved visibility of microvascular mapping using ASAP in comparison to ultrafast power Doppler (PD) on a mouse kidney, liver, and tumor without contrast agent injection. The SNR of ASAP images improves in average by 10 dB when compared to PD. In addition, directional velocity mappings were also demonstrated by combining ASAP with the phase information extracted from lag-1 autocorrelation. The 3-D vascular and velocity mapping of the mouse kidney, liver, and tumor were demonstrated by stacking the ASAP images acquired using 2-D ultrasound imaging and a trigger-controlled linear translation stage. The 3-D results depicted clear microvasculature morphologies and functional information in terms of flow direction and velocity in two nontumor models and a tumor model. In conclusion, we have demonstrated a new 3-D in vivo ultrasound microvascular imaging technique with significantly improved SNR over existing ultrafast Doppler.
Collapse
|
31
|
Tierney J, Walsh K, Griffith H, Baker J, Brown DB, Byram B. Combining Slow Flow Techniques With Adaptive Demodulation for Improved Perfusion Ultrasound Imaging Without Contrast. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:834-848. [PMID: 30735994 PMCID: PMC6528792 DOI: 10.1109/tuffc.2019.2898127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noncontrast perfusion ultrasound imaging remains challenging due to spectral broadening of the tissue clutter signal caused by patient and sonographer hand motion. To address this problem, we previously introduced an adaptive demodulation scheme to suppress the bandwidth of tissue prior to high-pass filtering. Our initial implementation used single plane wave power Doppler imaging and a conventional tissue filter. Recent advancements in beamforming and tissue filtering have been proposed for improved slow flow imaging, including coherent flow power Doppler (CFPD) imaging and singular value decomposition (SVD) filtering. Here, we aim to evaluate adaptive demodulation in conjunction with improvements in beamforming and filtering using simulations, single-vessel phantoms, and an in vivo liver tumor embolization study. We show that simulated blood-to-background contrast-to-noise ratios are highest when using adaptive demodulation with CFPD and a 100-ms ensemble, which resulted in a 13.6-dB average increase in contrast-to-noise ratio compared to basic IIR filtering alone. We also show that combining adaptive demodulation with SVD and with CFPD + SVD results in 9.3- and 19-dB increases in contrast-to-noise ratios compared to IIR filtering alone at 700- and 500-ms ensembles for phantom data with 1- and 5-mm/s average flows, respectively. In general, combining techniques resulted in higher signal-to-noise, contrast-to-noise, and generalized contrast-to-noise ratios in both simulations and phantoms. Finally, adaptive demodulation with SVD resulted in the largest qualitative and quantitative changes in tumor-to-background contrast postembolization.
Collapse
|
32
|
Hyun D, Crowley ALC, LeFevre M, Cleve J, Rosenberg J, Dahl JJ. Improved Visualization in Difficult-to-Image Stress Echocardiography Patients Using Real-Time Harmonic Spatial Coherence Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:433-441. [PMID: 30530322 PMCID: PMC7012506 DOI: 10.1109/tuffc.2018.2885777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stress echocardiography is used to detect myocardial ischemia by evaluating cardiovascular function both at rest and at elevated heart rates. Stress echocardiography requires excellent visualization of the left ventricle (LV) throughout the cardiac cycle. However, LV endocardial border visualization is often negatively impacted by high levels of clutter associated with patient obesity, which has risen dramatically worldwide in recent decades. Short-lag spatial coherence (SLSC) imaging has demonstrated reduced clutter in several applications. In this work, a computationally efficient formulation of SLSC was implemented into an object-oriented graphics processing unit-based software beamformer, enabling real-time (>30 frames per second) SLSC echocardiography on a research ultrasound scanner. The system was then used to image 15 difficult-to-image stress echocardiography patients in a comparison study of tissue harmonic imaging (THI) and harmonic spatial coherence imaging (HSCI). Video clips of four standard stress echocardiography views acquired with either THI or HSCI were provided in random shuffled order to three experienced readers. Each reader rated the visibility of 17 LV segments as "invisible," "suboptimally visualized," or "well visualized," with the first two categories indicating a need for contrast agent. In a symmetry test unadjusted for patientwise clustering, HSCI demonstrated a clear superiority over THI ( ). When measured on a per-patient basis, the median total score significantly favored HSCI with . When collapsing the ratings to a two-level scale ("needs contrast" versus "well visualized"), HSCI once again showed an overall superiority over THI, with by McNemar test adjusted for clustering.
Collapse
|
33
|
Long W, Bottenus N, Trahey GE. Lag-One Coherence as a Metric for Ultrasonic Image Quality. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1768-1780. [PMID: 30010556 PMCID: PMC6378881 DOI: 10.1109/tuffc.2018.2855653] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reliable assessment of image quality is an important but challenging task in complex imaging environments such as those encountered in vivo. To address this challenge, we propose a novel imaging metric, known as the lag-one coherence (LOC), which leverages the spatial coherence between nearest-neighbor array elements to provide a local measure of thermal and acoustic noise. In this paper, we derive the theory that relates LOC and the conventional image quality metrics of contrast and contrast-to-noise ratio (CNR) to channel noise. Simulation and phantom studies are performed to validate this theory and compare the variability of LOC to that of conventional metrics. We further evaluate the performance of LOC using matched measurements of contrast, CNR, and temporal correlation from in vivo liver images formed with varying mechanical index (MI) to assess the feasibility of adaptive acoustic output selection using LOC feedback. Simulation and phantom results reveal a lower variability in LOC relative to contrast and CNR over a wide range of clinically relevant noise levels. This improved stability is supported by in vivo measurements of LOC which show an increased monotonicity with changes in MI compared to matched measurements of contrast and CNR (88.6% and 85.7% of acquisitions, respectively). The sensitivity of LOC to stationary acoustic noise is evidenced by positive correlations between LOC and contrast ( ) and LOC and CNR ( ) at high acoustic output levels in the absence of thermal noise. Results indicate that LOC provides repeatable characterization of patient-specific trends in image quality, demonstrating feasibility in the selection of acoustic output using LOC and its application for in vivo image quality assessment.
Collapse
|
34
|
Stanziola A, Leow CH, Bazigou E, Weinberg PD, Tang MX. ASAP: Super-Contrast Vasculature Imaging Using Coherence Analysis and High Frame-Rate Contrast Enhanced Ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1847-1856. [PMID: 29994061 DOI: 10.1109/tmi.2018.2798158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The very high frame rate afforded by ultrafast ultrasound, combined with microbubble contrast agents, opens new opportunities for imaging tissue microvasculature. However, new imaging paradigms are required to obtain superior image quality from the large amount of acquired data while allowing real-time implementation. In this paper, we report a technique-acoustic sub-aperture processing (ASAP)-capable of generating very high contrast/signal-to-noise ratio (SNR) images of macro-and microvessels, with similar computational complexity to classical power Doppler (PD) imaging. In ASAP, the received data are split into subgroups. The reconstructed data from each subgroup are temporally correlated over frames to generate the final image. As signals in subgroups are correlated but the noise is not, this substantially reduces the noise floor compared to PD. Using a clinical imaging probe, the method is shown to visualize vessels down to $200~\mu \text{m}$ with a SNR of 10 dB higher than PD and to resolve microvascular flow/perfusion information in rabbit kidneys noninvasively in vivo at multiple centimeter depths. With careful filter design, the technique also allows the estimation of flow direction and the separation of fast flow from tissue perfusion. ASAP can readily be implemented into hardware/firmware for real-time imaging and can be applied to contrast enhanced and potentially noncontrast imaging and 3-D imaging.
Collapse
|
35
|
Tierney J, Coolbaugh C, Towse T, Byram B. Adaptive Clutter Demodulation for Non-Contrast Ultrasound Perfusion Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1979-1991. [PMID: 28622670 PMCID: PMC5605932 DOI: 10.1109/tmi.2017.2714901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Conventional Doppler ultrasound is useful for visualizing fast blood flow in large resolvable vessels. However, frame rate and tissue clutter caused by movement of the patient or sonographer make visualizing slow flow with ultrasound difficult. Patient and sonographer motion causes spectral broadening of the clutter signal, which limits ultrasound's sensitivity to velocities greater than 5-10 mm/s for typical clinical imaging frequencies. To address this, we propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.52 mm/s. The proposed technique uses plane wave imaging and an adaptive frequency and amplitude demodulation scheme to decrease the bandwidth of tissue clutter. To test the performance of the adaptive demodulation method at suppressing tissue clutter bandwidths due to sonographer hand motion alone, six volunteer subjects acquired data from a stationary phantom. Additionally, to test in vivo feasibility, arterial occlusion and muscle contraction studies were performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2 mm/s or greater at a 7.8 MHz center frequency. The hand motion study resulted in initial average bandwidths of 175 Hz (8.60mm/s), which were decreased to 10.5 Hz (0.52 mm/s) at -60 dB using our approach. The in vivo power Doppler studies resulted in 4.73 dB and 4.80 dB dynamic ranges of the blood flow with the proposed filter and 0.15 dB and 0.16 dB dynamic ranges of the blood flow with a conventional 50 Hz high-pass filter for the occlusion and contraction studies, respectively.
Collapse
|
36
|
Tremblay-Darveau C, Bar-Zion A, Williams R, Sheeran PS, Milot L, Loupas T, Adam D, Bruce M, Burns PN. Improved Contrast-Enhanced Power Doppler Using a Coherence-Based Estimator. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1901-1911. [PMID: 28463190 DOI: 10.1109/tmi.2017.2699672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While plane-wave imaging can improve the performance of power Doppler by enabling much longer ensembles than systems using focused beams, the long-ensemble averaging of the zero-lag autocorrelation R(0) estimates does not directly decrease the mean noise level, but only decreases its variance. Spatial variation of the noise due to the time-gain compensation and the received beamforming aperture ultimately limits sensitivity. In this paper, we demonstrate that the performance of power Doppler imaging can be improved by leveraging the higher lags of the autocorrelation [e.g., R(1), R(2),…] instead of the signal power (R(0)). As noise is completely uncorrelated from pulse-to-pulse while the flow signal remains correlated significantly longer, weak signals just above the noise floor can be made visible through the reduction of the noise floor. Finally, as coherence decreases proportionally with respect to velocity, we demonstrate how signal coherence can be targeted to separate flows of different velocities. For instance, we show how long-time-range coherence of microbubble contrast-enhanced flow specifically isolates slow capillary perfusion (as opposed to conduit flow).
Collapse
|
37
|
Li YL, Dahl JJ. Angular coherence in ultrasound imaging: Theory and applications. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1582. [PMID: 28372139 PMCID: PMC5390598 DOI: 10.1121/1.4976960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The popularity of plane-wave transmits at multiple transmit angles for synthetic transmit aperture (or coherent compounding) has spawned a number of adaptations and new developments of ultrasonic imaging. However, the coherence properties of backscattered signals with plane-wave transmits at different angles are unknown and may impact a subset of these techniques. To provide a framework for the analysis of the coherence properties of such signals, this article introduces the angular coherence theory in medical ultrasound imaging. The theory indicates that the correlation function of such signals forms a Fourier transform pair with autocorrelation function of the receive aperture function. This conclusion can be considered as an extended form of the van Cittert Zernike theorem. The theory is validated with simulation and experimental results obtained on speckle targets. On the basis of the angular coherence of the backscattered wave, a new short-lag angular coherence beamformer is proposed and compared with an existing spatial-coherence-based beamformer. An application of the theory in phase shift estimation and speed of sound estimation is also presented.
Collapse
Affiliation(s)
- You Leo Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremy J Dahl
- Department of Radiology, School of Medicine, Stanford University, Stanford, California 94304, USA
| |
Collapse
|
38
|
Hyun D, Crowley ALC, Dahl JJ. Efficient Strategies for Estimating the Spatial Coherence of Backscatter. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:500-513. [PMID: 27913342 PMCID: PMC5453518 DOI: 10.1109/tuffc.2016.2634004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The spatial coherence of ultrasound backscatter has been proposed to reduce clutter in medical imaging, to measure the anisotropy of the scattering source, and to improve the detection of blood flow. These techniques rely on correlation estimates that are obtained using computationally expensive strategies. In this paper, we assess the existing spatial coherence estimation methods and propose three computationally efficient modifications: a reduced kernel, a downsampled receive aperture, and the use of an ensemble correlation coefficient. The proposed methods are implemented in simulation and in vivo studies. Reducing the kernel to a single sample improved computational throughput and improved axial resolution. Downsampling the receive aperture was found to have negligible effect on estimator variance, and improved computational throughput by an order of magnitude for a downsample factor of 4. The ensemble correlation estimator demonstrated lower variance than the currently used average correlation. Combining the three methods, the throughput was improved 105-fold in simulation with a downsample factor of 4- and 20-fold in vivo with a downsample factor of 2.
Collapse
|
39
|
Lindsey BD, Shelton SE, Martin KH, Ozgun KA, Rojas JD, Foster FS, Dayton PA. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography. Ann Biomed Eng 2016; 45:939-948. [PMID: 27832421 DOI: 10.1007/s10439-016-1753-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Kathryn A Ozgun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | | | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA. .,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Li YL, Hyun D, Abou-Elkacem L, Willmann JK, Dahl JJ. Visualization of Small-Diameter Vessels by Reduction of Incoherent Reverberation With Coherent Flow Power Doppler. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1878-1889. [PMID: 27824565 PMCID: PMC5154731 DOI: 10.1109/tuffc.2016.2616112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Power Doppler (PD) imaging is a widely used technique for flow detection. Despite the wide use of Doppler ultrasound, limitations exist in the ability of Doppler ultrasound to assess slow flow in the small-diameter vasculature, such as the maternal spiral arteries and fetal villous arteries of the placenta and focal liver lesions. The sensitivity of PD in small vessel detection is limited by the low signal produced by slow flow and the noise associated with small vessels. The noise sources include electronic noise, stationary or slowly moving tissue clutter, reverberation clutter, and off-axis scattering from tissue, among others. In order to provide more sensitive detection of slow flow in small diameter vessels, a coherent flow imaging technique, termed coherent flow PD (CFPD), is characterized and evaluated with simulation, flow phantom experiment studies, and an in vivo animal small vessel detection study. CFPD imaging was introduced as a technique to detect slow blood flow. It has been demonstrated to detect slow flow below the detection threshold of conventional PD imaging using identical pulse sequences and filter parameters. In this paper, we compare CFPD with PD in the detection of blood flow in small-diameter vessels. The results from the study suggest that CFPD is able to provide a 7.5-12.5-dB increase in the signal-to-noise ratio (SNR) over PD images for the same physiological conditions and is less susceptible to reverberation clutter and thermal noise. Due to the increase in SNR, CFPD is able to detect small vessels in high channel noise cases, for which PD was unable to generate enough contrast to observe the vessel.
Collapse
|