1
|
Shi X, Zhao F, Feng L, Liu Y, Zhou X. Predicting the high intensity focused ultrasound focus in vivo using acoustic radiation force imaging. Med Phys 2025; 52:1728-1745. [PMID: 39660763 DOI: 10.1002/mp.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND One big challenge in the noninvasive high-intensity focused ultrasound (HIFU) surgery is that the location and shape of its focus is unpredictable at the preoperative stage due to the complexity of sound wave propagation. The Acoustic Radiation Force Impulse (ARFI) imaging is a potential solution to this problem, but artifacts resulting from shear wave propagation remain to be solved. PURPOSE In this study, we proposed avoiding those artefacts by applying the ARFI technique at a high imaging frame rate within a very short time before the shear waves start to propagate. METHODS Using single transmission with a convex imaging probe, two ultrafast imaging modalities (the diverging wave and the wide beam), were developed in the ARFI framework, and their reliabilities were validated on a nylon string phantom by the centroid tracking method borrowed from ultrasound localization microscopy (ULM). The proposed ARFI method was tested on a clinically equivalent HIFU system under different acoustic radiation intensities by in-vitro, ex-vivo and in-vivo experiments. In three experimental scenarios, we delivered short HIFU stimulation pulses at varying acoustic powers to induce tissue motion within the focal region. At each experimental site, both diverging wave and wide-beam imaging techniques were employed for motion estimation. Based on the focus prediction derived from the motion estimation, HIFU ablation treatment was performed. The treated samples were then incised to examine the damaged areas. Additionally, ultrasound B-mode images were acquired before and after the procedure and saved for analysis. RESULTS Quantitative analysis showed that the ARFI with wide beam imaging was able to predict the HIFU focus preoperatively, only with 1 to 3 mm of errors in focal central location, and less than 23% of percentage errors in focal area in most cases. However, the diverging wave imaging failed to predict the HIFU focus due to its low signal-to-noise ratio. CONCLUSIONS In conclusion, the inherent shear wave artefacts in ARFI for predicting the HIFU focus can be successfully avoided by carefully designing the imaging strategy and its working sequence. This ARFI technique was validated through a series of experiments on a clinically equivalent HIFU system, which demonstrated its capability in assisting surgical planning.
Collapse
Affiliation(s)
- Xinwang Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Fenglong Zhao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Lian Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yijing Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaowei Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- NMPA Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Wuhan, China
| |
Collapse
|
2
|
Zhou Y, Gong X, You Y. In vivo evaluation of focused ultrasound ablation surgery (FUAS)-induced coagulation using echo amplitudes of the therapeutic focused ultrasound transducer. Int J Hyperthermia 2024; 41:2325477. [PMID: 38439505 DOI: 10.1080/02656736.2024.2325477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
OBJECTIVE Monitoring sensitivity of sonography in focused ultrasound ablation surgery (FUAS) is limited (no hyperechoes in ∼50% of successful coagulation in uterine fibroids). A more accurate and sensitive approach is required. METHOD The echo amplitudes of the focused ultrasound (FUS) transducer in a testing mode (short pulse duration and low power) were found to correlate with the ex vivo coagulation. To further evaluate its coagulation prediction capabilities, in vivo experiments were carried out. The liver, kidney, and leg muscles of three adult goats were treated using clinical FUAS settings, and the echo amplitude of the FUS transducer and grayscale in sonography before and after FUAS were collected. On day 7, animals were sacrificed humanely, and the treated tissues were dissected to expose the lesion. Echo amplitude changes and lesion areas were analyzed statistically, as were the coagulation prediction metrics. RESULTS The echo amplitude changes of the FUS transducer correlate well with the lesion areas in the liver (R = 0.682). Its prediction in accuracy (94.4% vs. 50%), sensitivity (92.9% vs. 35.7%), and negative prediction (80% vs. 30.8%) is better than sonography, but similar in specificity (80% vs. 100%) and positive prediction (100% vs. 100%). In addition, the correlation between tissue depth and the lesion area is not good (|R| < 0.2). Prediction performances in kidney and leg muscles are similar. CONCLUSION The FUS echo amplitudes are sensitive to the tissue properties and their changes after FUAS. They are sensitive and reliable in evaluating and predicting FUAS outcomes.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Wuhan, Hubei, China
| | - Xiaobo Gong
- Research and Development, National Engineering Research Center of Ultrasound Medicine, Chongqing, China
| | - Yaqing You
- Research and Development, National Engineering Research Center of Ultrasound Medicine, Chongqing, China
| |
Collapse
|
3
|
Zhou X, Li Y, Zhu Q, Luo J, Cao L, Quetai J, Li F, Tang MX, Wang Z. A Theragnostic HIFU Transducer and System for Inherently Registered Imaging and Therapy. IEEE Trans Biomed Eng 2023; 70:3413-3424. [PMID: 37339046 DOI: 10.1109/tbme.2023.3287870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE One big challenge with high intensity focused ultrasound (HIFU) is the difficulty in accurate prediction of focal location due to the complex wave propagation in heterogeneous medium even with imaging guidance. This study aims to overcome this by combining therapy and imaging guidance with one single HIFU transducer using the vibro-acoustography (VA) strategy. METHODS Based on the VA imaging method, a HIFU transducer consisting of 8 transmitting elements was proposed for therapy planning, treatment and evaluation. Inherent registration between the therapy and imaging created unique spatial consistence in HIFU transducer's focal region in the above three procedures. Performance of this imaging modality was first evaluated through in-vitro phantoms. In-vitro and ex-vivo experiments were then designed to demonstrate the proposed dual-mode system's ability in conducting accurate thermal ablation. RESULTS Point spread function of the HIFU-converted imaging system had a full wave half maximum of about 1.2 mm in both directions at a transmitting frequency of 1.2 MHz, which outperformed the conventional ultrasound imaging (3.15 MHz) in in-vitro situation. Image contrast was also tested on the in-vitro phantom. Various geometric patterns could be accurately 'burned out' on the testing objects by the proposed system both in vitro and ex vivo. CONCLUSION Implementation of imaging and therapy with one HIFU transducer in this manner is feasible and it has potential as a novel strategy for addressing the long-standing problem in the HIFU therapy, possibly pushing this non-invasive technique forward towards wider clinical applications.
Collapse
|
4
|
Kamimura HAS, Saharkhiz N, Lee SA, Konofagou EE. Synchronous temperature variation monitoring during ultrasound imaging and/or treatment pulse application: a phantom study. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 1:1-10. [PMID: 34713274 PMCID: PMC8547607 DOI: 10.1109/ojuffc.2021.3085539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultrasound attenuation through soft tissues can produce an acoustic radiation force (ARF) and heating. The ARF-induced displacements and temperature evaluations can reveal tissue properties and provide insights into focused ultrasound (FUS) bio-effects. In this study, we describe an interleaving pulse sequence tested in a tissue-mimicking phantom that alternates FUS and plane-wave imaging pulses at a 1 kHz frame rate. The FUS is amplitude modulated, enabling the simultaneous evaluation of tissue-mimicking phantom displacement using harmonic motion imaging (HMI) and temperature rise using thermal strain imaging (TSI). The parameters were varied with a spatial peak temporal average acoustic intensity (I spta ) ranging from 1.5 to 311 W.cm-2, mechanical index (MI) from 0.43 to 4.0, and total energy (E) from 0.24 to 83 J.cm-2. The HMI and TSI processing could estimate displacement and temperature independently for temperatures below 1.80°C and displacements up to ~117 μm (I spta <311 W.cm-2, MI<4.0, and E<83 J.cm-2) indicated by a steady-state tissue-mimicking phantom displacement throughout the sonication and a comparable temperature estimation with simulations in the absence of tissue-mimicking phantom motion. The TSI estimations presented a mean error of ±0.03°C versus thermocouple estimations with a mean error of ±0.24°C. The results presented herein indicate that HMI can operate at diagnostic-temperature levels (i.e., <1°C) even when exceeding diagnostic acoustic intensity levels (720 mW.cm-2 < I spta < 207 W.cm-2). In addition, the combined HMI and TSI can potentially be used for simultaneous evaluation of safety during tissue elasticity imaging as well as FUS mechanism involved in novel ultrasound applications such as ultrasound neuromodulation and tumor ablation.
Collapse
Affiliation(s)
- Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Stephen A Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| |
Collapse
|
5
|
Zhang S, Wu S, Shang S, Qin X, Jia X, Li D, Cui Z, Xu T, Niu G, Bouakaz A, Wan M. Detection and Monitoring of Thermal Lesions Induced by Microwave Ablation Using Ultrasound Imaging and Convolutional Neural Networks. IEEE J Biomed Health Inform 2020; 24:965-973. [DOI: 10.1109/jbhi.2019.2939810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Nabavizadeh A, Payen T, Saharkhiz N, McGarry M, Olive KP, Konofagou EE. Technical Note: In vivo Young's modulus mapping of pancreatic ductal adenocarcinoma during HIFU ablation using harmonic motion elastography (HME). Med Phys 2018; 45:5244-5250. [PMID: 30178474 DOI: 10.1002/mp.13170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Noninvasive quantitative assessment of coagulated tissue during high-intensity focused ultrasound (HIFU) ablation is one of the essential steps for tumor treatment, especially in such cases as the Pancreatic Ductal Adenocarcinoma (PDA) that has low probability of diagnosis at the early stages and high probability of forming solid carcinomas resistant to chemotherapy treatment at the late stages. METHODS Harmonic motion elastography (HME) is a technique for the localized estimation of tumor stiffness. This harmonic motion imaging (HMI)-based technique is designed to map the tissue Young's modulus or stiffness noninvasively. A focused ultrasound (FUS) transducer generates an oscillating, acoustic radiation force in its focal region. The two-dimensional (2D) shear wave speed, and consequently the Young's modulus maps, is generated by tracking the radio frequency (RF) signals acquired at high frame rates. By prolonging the sonication for more than 50 s using the same methodology, the 2D Young's modulus maps are reconstructed while HIFU is applied and ablation is formed on PDA murine tumors. RESULTS The feasibility of this technique in measuring the regional Young's modulus was first assessed in tissue-mimicking phantoms. The contrast-to-noise ratio (CNR) was found to be higher than 11.7 dB for each 2D reconstructed Young's modulus map. The mean error in this validation study was found to be equal to less than 19%. Then HME was applied on two transgenic mice with pancreatic ductal adenocarcinoma tumors. The Young's modulus median value of this tumor at the start of the HIFU application was equal to 2.1 kPa while after 45 s of sonication it was found to be approximately three times stiffer (6.7 kPa). CONCLUSIONS The HME was described herein and showed its capability of measuring tissue stiffness noninvasively by measuring the shear wave speed propagation inside the tissue and reconstructing a 2D Young's modulus map. Application of the methodology in vivo and during HIFU were thus reported here for the first time.
Collapse
Affiliation(s)
| | - Thomas Payen
- Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Matthew McGarry
- Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kenneth P Olive
- Departments of Medicine and Pathology & Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Elisa E Konofagou
- Biomedical Engineering, Columbia University, New York, NY, USA.,Department of Radiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Han Y, Wang S, Payen T, Konofagou E. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo. Phys Med Biol 2017; 62:3111-3123. [PMID: 28323638 DOI: 10.1088/1361-6560/aa6024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2 = 0.81, slope = 0.90), width (r 2 = 0.85, slope = 1.12) and area (r 2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.
Collapse
Affiliation(s)
- Yang Han
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | | | | | | |
Collapse
|
8
|
Bour P, Marquet F, Ozenne V, Toupin S, Dumont E, Aubry JF, Lepetit-Coiffe M, Quesson B. Real-time monitoring of tissue displacement and temperature changes during MR-guided high intensity focused ultrasound. Magn Reson Med 2017; 78:1911-1921. [DOI: 10.1002/mrm.26588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Pierre Bour
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- Image Guided Therapy SA; Pessac France
| | - Fabrice Marquet
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| | - Valéry Ozenne
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| | - Solenn Toupin
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- Siemens Healthineers France; Saint-Denis France
| | | | - Jean-François Aubry
- Institut Langevin, CNRS UMR 7587, INSERM U979, ESPCI ParisTech; Paris France
| | | | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| |
Collapse
|
9
|
Lee C, Cheon G, Kim DH, Kang JU. Feasibility study: protein denaturation and coagulation monitoring with speckle variance optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:125004. [PMID: 27942719 DOI: 10.1117/1.jbo.21.12.125004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/14/2016] [Indexed: 05/05/2023]
Abstract
We performed the feasibility study using speckle variance optical coherence tomography (SvOCT) to monitor the thermally induced protein denaturation and coagulation process as a function of temperature and depth. SvOCT provided the depth-resolved image of protein denaturation and coagulation with microscale resolution. This study was conducted using egg white. During the heating process, as the temperature increased, increases in the speckle variance signal was observed as the egg white proteins coagulated. Additionally, by calculating the cross-correlation coefficient in specific areas, denaturized egg white conditions were successfully estimated. These results indicate that SvOCT could be used to monitor the denaturation process of various proteins.
Collapse
Affiliation(s)
- Changho Lee
- Johns Hopkins University, Department of Electrical and Computer Engineering, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Gyeongwoo Cheon
- Johns Hopkins University, Department of Electrical and Computer Engineering, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Do-Hyun Kim
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Jin U Kang
- Johns Hopkins University, Department of Electrical and Computer Engineering, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Chen H, Hou GY, Han Y, Payen T, Palermo CF, Olive KP, Konofagou EE. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1662-73. [PMID: 26415128 PMCID: PMC4755287 DOI: 10.1109/tuffc.2015.007113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.
Collapse
|