1
|
Le Blay H, Deffieux T, Laiarinandrasana L, Tanter M, Marcellan A. Stress amplification and relaxation imaging around cracks in nanocomposite gels using ultrasound elastography. SOFT MATTER 2024; 20:9127-9139. [PMID: 39450766 DOI: 10.1039/d4sm00909f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The quantification and modeling of gel fracture under large strain and dissipative conditions is still an open issue. In this study, a novel method for investigating the mechanical behavior of gels under highly deformed states, specifically in the vicinity of the crack tip, was developed to gain insights into fracture processes. Shear wave elastography, originally developed for the biomedical community, is employed as a powerful tool to quantitatively map the local elasticity of model gels. Here, the local stress is experimentally measured from the shear wave velocity according to nonlinear acoustoelasticity theory. The stress concentration observed at the crack tip in elastic gels is validated using classical finite element methods. Subsequently, the mechanisms of network rearrangements in viscoelastic gels (with silica nanoparticles) are analyzed both spatially and temporally. These gels consist of 90 wt% water and are synthesized with sticky nanoparticles to introduce exchangeable sacrificial bonds that facilitate stress relaxation. The nanoparticles efficiently provide stress relaxation around the crack tip, mitigating a stress singularity. The amplitude of stress relaxation was measured quantitatively and appears to be higher closer to the crack. This paper showcases the feasibility and potential of a new experimental approach that enables non-invasive and dynamic mapping of gel fracture mechanics.
Collapse
Affiliation(s)
- H Le Blay
- Laboratoire de Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS, F-75005 Paris, France
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, Université PSL CNRS UMR8631, Paris, France
| | - T Deffieux
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, Université PSL CNRS UMR8631, Paris, France
| | - L Laiarinandrasana
- Centre des Matériaux, Mines Paris, PSL University, CNRS UMR 7633, F-91003 Evry Cedex, France
| | - M Tanter
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, Université PSL CNRS UMR8631, Paris, France
| | - A Marcellan
- Laboratoire de Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS, F-75005 Paris, France
- Institut Universitaire de France
| |
Collapse
|
2
|
Kijanka P, Urban MW. Ultrasound Shear Elastography With Expanded Bandwidth (USEWEB): A Novel Method for 2D Shear Phase Velocity Imaging of Soft Tissues. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1910-1922. [PMID: 38198276 PMCID: PMC11107799 DOI: 10.1109/tmi.2024.3352097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Ultrasound shear wave elastography (SWE) is a noninvasive approach for evaluating mechanical properties of soft tissues. In SWE either group velocity measured in the time-domain or phase velocity measured in the frequency-domain can be reported. Frequency-domain methods have the advantage over time-domain methods in providing a response for a specific frequency, while time-domain methods average the wave velocity over the entire frequency band. Current frequency-domain approaches struggle to reconstruct SWE images over full frequency bandwidth. This is especially important in the case of viscoelastic tissues, where tissue viscoelasticity is often studied by analyzing the shear wave phase velocity dispersion. For characterizing cancerous lesions, it has been shown that considerable biases can occur with group velocity-based measurements. However, using phase velocities at higher frequencies can provide more accurate evaluations. In this paper, we propose a new method called Ultrasound Shear Elastography with Expanded Bandwidth (USEWEB) used for two-dimensional (2D) shear wave phase velocity imaging. We tested the USEWEB method on data from homogeneous tissue-mimicking liver fibrosis phantoms, custom-made viscoelastic phantom measurements, phantoms with cylindrical inclusions experiments, and in vivo renal transplants scanned with a clinical scanner. We compared results from the USEWEB method with a Local Phase Velocity Imaging (LPVI) approach over a wide frequency range, i.e., up to 200-2000 Hz. Tests carried out revealed that the USEWEB approach provides 2D phase velocity images with a coefficient of variation below 5% over a wider frequency band for smaller processing window size in comparison to LPVI, especially in viscoelastic materials. In addition, USEWEB can produce correct phase velocity images for much higher frequencies, up to 1800 Hz, compared to LPVI, which can be used to characterize viscoelastic materials and elastic inclusions.
Collapse
|
3
|
Khan S, Goswami S, Feng F, Hollenbach S, Doyley MM, McAleavey SA. Probing Tissue Viscoelasticity With STL Ultrasound Shearwave Spectroscopy Using Cole-Cole Diagrams. IEEE Trans Biomed Eng 2024; 71:916-928. [PMID: 37801375 DOI: 10.1109/tbme.2023.3322420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
OBJECTIVE Viscoelasticity is mapped by dispersion in shearwave elastography. Incomplete spectral information of shearwaves is therefore used to estimate mechanical stiffness. We propose capturing the "full-waveform-information" of the shear wave spectra to better resolve complex shear modulus μ* (ω). Approach is validated on phantom models, animal tissues, and feasibility demonstrated on human post-delivery placenta. METHODS We captured robust estimates of μ* in ex-vivo livers subjected to water bath ablation, glutaraldehyde exposure and in the placenta. RESULTS Complex modulus at 200 Hz is more reflective of tissue stiffness than cross-correlation estimate. Bias increased in phantoms with higher gelatin (G) (0.65: 6% G) and oil (O) (0.58: 6% G and 40% O) concentration, compared to elastic phantoms with low stiffness (0.33: 3% G). Actual tissues also reported higher bias in cross-correlation estimate (rabbit liver: 0.61, porcine liver: 2.20, and human placenta: 0.63). Stiffness is sensitive to ablation temperature, where the overall modulus changed from 3.02 KPa at 16 °C to 2.75 KPa at 56 °C in water bath. With exposure to Glutaraldehyde, the overall modulus increased from 2.37 to 9.03 KPa. Reconstruction errors in the loss modulus decreased by 68% with the power law compared to a Maxwell model in porcine livers with Cole-Cole inverse fitting. CONCLUSION Omitting Shear wave attenuation leads to bias. Reconstruction of rheological response with a model is sensitive to its architecture and also the framework. SIGNIFICANCE We use "full spectral information" in ultrasound shear wave elastography to better map μ*(ω) changes in viscoelastic tissues.
Collapse
|
4
|
Torres J, Callejas A, Gomez A, Rus G. Optical micro-elastography with magnetic excitation for high frequency rheological characterization of soft media. ULTRASONICS 2023; 132:107021. [PMID: 37141701 DOI: 10.1016/j.ultras.2023.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
The propagation of shear waves in elastography at high frequency (>3 kHz) in viscoelastic media has not been extensively studied due to the high attenuation and technical limitations of current techniques. An optical micro-elastography (OME) technique using magnetic excitation for generating and tracking high frequency shear waves with enough spatial and temporal resolution was proposed. Ultrasonics shear waves (above 20 kHz) were generated and observed in polyacrylamide samples. A cutoff frequency, from where the waves no longer propagate, was observed to vary depending on the mechanical properties of the samples. The ability of the Kelvin-Voigt (KV) model to explain the high cutoff frequency was investigated. Two alternative measurement techniques, Dynamic Mechanical Analysis (DMA) and Shear Wave Elastography (SWE), were used to complete the whole frequency range of the velocity dispersion curve while avoid capturing guided waves in the low frequency range (<3 kHz). The combination of the three measurement techniques provided rheology information from quasi-static to ultrasonic frequency range. A key observation was that the full frequency range of the dispersion curve was necessary if one wanted to infer accurate physical parameters from the rheological model. By comparing the low frequency range with the high frequency range, the relative errors for the viscosity parameter could reach 60 % and they could be higher with higher dispersive behavior. The high cutoff frequency may be predicted in materials that follow a KV model over their entire measurable frequency range. The mechanical characterization of cell culture media could benefit from the proposed OME technique.
Collapse
Affiliation(s)
- Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada 18071, Spain; TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada 18001, Spain.
| | - Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada 18071, Spain; TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada 18001, Spain
| | - Antonio Gomez
- Department of Mechanical Engineering, University College London, London WC1E 6BT, UK
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada 18071, Spain; TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada 18001, Spain; Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada 18001, Spain
| |
Collapse
|
5
|
Bhatt M, Montagnon E, Destrempes F, Chayer B, Kazemirad S, Cloutier G. Acoustic radiation force induced resonance elastography of coagulating blood: theoretical viscoelasticity modeling and ex-vivo experimentation. Phys Med Biol 2018; 63:065018. [PMID: 29509143 DOI: 10.1088/1361-6560/aab46a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deep vein thrombosis is a common vascular disease that can lead to pulmonary embolism and death. The early diagnosis and clot age staging are important parameters for reliable therapy planning. This article presents an acoustic radiation force induced resonance elastography method for the viscoelastic characterization of clotting blood. The physical concept of this method relies on the mechanical resonance of the blood clot occurring at specific frequencies. Resonances are induced by focusing ultrasound beams inside the sample under investigation. Coupled to an analytical model of wave scattering, the ability of the proposed method to characterize the viscoelasticity of a mimicked venous thrombosis in the acute phase is demonstrated. Experiments with a gelatin-agar inclusion sample of known viscoelasticity are performed for validation and establishment of the proof of concept. In addition, an inversion method is applied in-vitro for the kinetic monitoring of the blood coagulation process of six human blood samples obtained from two volunteers. The computed elasticity and viscosity values of blood samples at the end of the 90 min kinetics were estimated at 411 ± 71 Pa and 0.25 ± 0.03 Pa.s for volunteer #1, and 387 ± 35 Pa and 0.23 ± 0.02 Pa.s for volunteer #2, respectively. The proposed method allowed reproducible time-varying thrombus viscoelastic measurements from samples having physiological dimensions.
Collapse
Affiliation(s)
- Manish Bhatt
- Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, H2W 1T8, CANADA
| | - Emmanuel Montagnon
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Quebec, CANADA
| | - Francois Destrempes
- Laboratory of Biorheology and Medical Ultrasonics Research Center Univeristy of Montreal Hospital, Universite de Montreal, Montreal, CANADA
| | - Boris Chayer
- University of Montreal Hospital Research Center, Montreal, CANADA
| | - Siavash Kazemirad
- Iran University of Science and Technology, Tehran, Tehran, Iran (the Islamic Republic of)
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics , University of Montreal Hospital Research Center, 900 St-Denis, Montreal, Quebec, CANADA
| |
Collapse
|
6
|
Bernard S, Kazemirad S, Cloutier G. A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:514-524. [PMID: 27913343 DOI: 10.1109/tuffc.2016.2634329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vivo quantification of shear-wave attenuation in soft tissues may help to better understand human tissue rheology and lead to new diagnostic strategies. Attenuation is difficult to measure in acoustic radiation force elastography because the shear-wave amplitude decreases due to a combination of diffraction and viscous attenuation. Diffraction correction requires assuming a cylindrical wavefront and an isotropic propagation medium, which may not be the case in some applications. In this paper, the frequency-shift method, used in ultrasound imaging and seismology, was adapted for shear-wave attenuation measurement in elastography. This method is not sensitive to diffraction effects. For a linear frequency dependence of the attenuation, a closed-form relation was obtained between the decrease in the peak frequency of the gamma-distributed wave amplitude spectrum and the attenuation coefficient of the propagation medium. The proposed method was tested against a plane-wave reference method in homogeneous agar-gelatin phantoms with 0%, 10%, and 20% oil concentrations, and hence different attenuations of 0.117, 0.202, and 0.292 [Formula: see text]/Hz, respectively. Applicability to biological tissues was demonstrated with two ex vivo porcine liver samples (0.79 and 1.35 [Formula: see text]/Hz) and an in vivo human muscle, measured along (0.43 [Formula: see text]/Hz) and across (1.77 [Formula: see text]/Hz) the tissue fibers. In all cases, the data supported the assumptions of a gamma-distributed spectrum for the source and linear frequency attenuation for the tissue. This method provides tissue attenuation, which is relevant diagnostic information to model viscosity, in addition to shear-wave velocity used to assess elasticity. Data processing is simple and could be performed automatically in real time for clinical applications.
Collapse
|
7
|
Nenadic IZ, Qiang B, Urban MW, Zhao H, Sanchez W, Greenleaf JF, Chen S. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients. Phys Med Biol 2016; 62:484-500. [PMID: 28000623 DOI: 10.1088/1361-6560/aa4f6f] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.
Collapse
Affiliation(s)
- Ivan Z Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Lin H, Shen Y, Chen X, Zhu Y, Zheng Y, Zhang X, Guo Y, Wang T, Chen S. Viscoelastic properties of normal rat liver measured by ultrasound elastography: Comparison with oscillatory rheometry. Biorheology 2016; 53:193-207. [PMID: 27858670 DOI: 10.3233/bir-16091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ultrasound elastography has been widely used to measure liver stiffness. However, the accuracy of liver viscoelasticity obtained by ultrasound elastography has not been well established. OBJECTIVE To assess the accuracy of ultrasound elastography for measuring liver viscoelasticity and compare to conventional rheometry methods. In addition, to determine if combining these two methods could delineate the rheological behavior of liver over a wide range of frequencies. METHODS The phase velocities of shear waves were measured in livers over a frequency range from 100 to 400 Hz using the ultrasound elastography method of shearwave dispersion ultrasound vibrometry (SDUV), while the complex shear moduli were obtained by rheometry over a frequency range of 1 to 30 Hz. Three rheological models, Maxwell, Voigt, and Zener, were fit to the measured data obtained from the two separate methods and from the combination of the two methods. RESULTS The elasticity measured by SDUV was in good agreement with that of rheometry. However, the viscosity measured by SDUV was significantly different from that of rheometry. CONCLUSIONS The results indicate that the high frequency components of the dispersive data play a much more important role in determining the dispersive pattern or the viscous value than the low frequency components. It was found that the Maxwell model is not as appropriate as the Voigt and Zener models for describing the rheological behavior of liver.
Collapse
Affiliation(s)
- Haoming Lin
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Ying Zhu
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Yi Zheng
- Department of Electrical and Computer Engineering, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Xinyu Zhang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Yanrong Guo
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Tianfu Wang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Siping Chen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| |
Collapse
|
9
|
Kazemirad S, Bernard S, Hybois S, Tang A, Cloutier G. Ultrasound Shear Wave Viscoelastography: Model-Independent Quantification of the Complex Shear Modulus. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1399-1408. [PMID: 27362951 DOI: 10.1109/tuffc.2016.2583785] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrasound shear wave elastography methods are commonly used for estimation of mechanical properties of soft biological tissues in diagnostic medicine. A limitation of most currently used elastography methods is that they yield only the shear storage modulus ( G' ) but not the loss modulus ( G'' ). Therefore, no information on viscosity or loss tangent (tan δ) is provided. In this paper, an ultrasound shear wave viscoelastography method is developed for model-independent quantification of frequency-dependent viscoelastic complex shear modulus of macroscopically homogeneous tissues. Three in vitro tissue-mimicking phantoms and two ex vivo porcine liver samples were evaluated. Shear waves were remotely induced within the samples using several acoustic radiation force pushes to generate a semicylindrical wave field similar to those generated by most clinically used elastography systems. The complex shear modulus was estimated over a broad frequency range (up to 1000 Hz) through the analytical solution of the developed inverse wave propagation problem using the measured shear wave speed and amplitude decay versus propagation distance. The shear storage and loss moduli obtained for the in vitro phantoms were compared with those from a planar shear wave method and the average differences over the whole frequency range studied were smaller than 7% and 15%, respectively. The reliability of the proposed method highlights its potential for viscoelastic tissue characterization, which may improve noninvasive diagnosis.
Collapse
|