1
|
Li Q, Wang P, Chen J, Shen Y. A beamforming algorithm with composite multi-conditional cross correlation and range standard deviation factor for high quality ultrasound imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2292-2303. [PMID: 40167346 DOI: 10.1121/10.0036348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
The traditional delay-and-sum (DAS) beamformer is inadequate for clutter suppression in ultrasound imaging. The coherence factor beamformer can effectively suppress clutter, but it is prone to cause dark-region artifacts during incoherent signal suppression. In this paper, the resolution and contrast of ultrasound images are improved by using a novel adaptive beamforming algorithm called composite multi-conditional cross correlation (MCC) and range standard deviation factor (CMCC-RSF). The MCC algorithm is obtained by integrating the conditional coherence and cross correlation factor, which can better balance clutter suppression ability inside the anechoic cyst and speckle background quality. Then, we propose a range standard deviation factor (RSF) to improve the resolution of MCC without destroying the speckle background. The simulation and experiment results show that compared with traditional DAS, the full-width at half-maximum of CMCC-RSF is improved by 75.14%, 47.62%, 49.27%, and 55.97%, respectively. According to the experiment results, the contrast ratio and speckle signal-to-noise ratio of CMCC-RSF are maximally improved by 154.38%, and 124.53%, respectively. In general, the proposed CMCC-RSF algorithm can improve comprehensive image quality with low relative computational complexity.
Collapse
Affiliation(s)
- Qianwen Li
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Ping Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Jinghan Chen
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Yue Shen
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Zheng C, Tang Y, Wang Y, Wang Y, Peng H. Far-focus compound ultrasound imaging with lag-one coherence-based zero-cross factor. Technol Health Care 2024; 32:3967-3984. [PMID: 39031397 PMCID: PMC11612989 DOI: 10.3233/thc-231452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/11/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Ultrasound imaging has been widely used in clinical examination because of portability, safety, and low cost. However, there are still some main challenges of imaging quality that remain in conventional ultrasound systems. OBJECTIVE Improving image quality of SA-based methods using an improved imaging mode named far-focus compound (FSC) imaging. METHODS A far-focus compound (FSC) imaging based on full-aperture transmission and full-aperture reception is proposed in this paper. In transmission, it uses the full aperture to transmit the focused beam to ensure image resolution and emission of sound field energy. In reception, the full aperture is used to receive the reflected beam to ensure the image quality. A lag-one coherence-based zero-cross factor (LOCZF) is then implemented in FSC for improvement of contrast ratio (CR). The LOCZF uses lag-one coherence as zero-cross factorâs adaptive coefficient. Comparisons were made with several other weighting techniques by performing simulations and experiments for performance evaluation. RESULTS Results confirm that LOCZF applied to FSC offers a good image contrast and simultaneously the speckle pattern. For simulated cysts, CR improvement of LOCZF reaches 194.1%. For experimental cysts, CR improvement of LOCZF reaches 220%. From the in-vivo result, compared with FSC, CR improvement of LOCZF reaches 112.7%. CONCLUSION Proved gCNR performance. In addition, the LOCZF method shows good performance in experiments. The proposed method can be used as an effective weighting technique for improvement of image quality in ultrasound imaging.
Collapse
Affiliation(s)
- Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Yi Tang
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Yadan Wang
- Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yuanguo Wang
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Qu X, Ren C, Wang Z, Fan S, Zheng D, Wang S, Lin H, Jiang J, Xing W. Complex Transformer Network for Single-Angle Plane-Wave Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2234-2246. [PMID: 37544831 DOI: 10.1016/j.ultrasmedbio.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Plane-wave imaging (PWI) is a high-frame-rate imaging technique that sacrifices image quality. Deep learning can potentially enhance plane-wave image quality, but processing complex in-phase and quadrature (IQ) data and suppressing incoherent signals pose challenges. To address these challenges, we present a complex transformer network (CTN) that integrates complex convolution and complex self-attention (CSA) modules. METHODS The CTN operates in a four-step process: delaying complex IQ data from a 0° single-angle plane wave for each pixel as CTN input data; extracting reconstruction features with a complex convolution layer; suppressing irrelevant features derived from incoherent signals with two CSA modules; and forming output images with another complex convolution layer. The training labels are generated by minimum variance (MV). RESULTS Simulation, phantom and in vivo experiments revealed that CTN produced comparable- or even higher-quality images than MV, but with much shorter computation time. Evaluation metrics included contrast ratio, contrast-to-noise ratio, generalized contrast-to-noise ratio and lateral and axial full width at half-maximum and were -11.59 dB, 1.16, 0.68, 278 μm and 329 μm for simulation, respectively, and 9.87 dB, 0.96, 0.62, 357 μm and 305 μm for the phantom experiment, respectively. In vivo experiments further indicated that CTN could significantly improve details that were previously vague or even invisible in DAS and MV images. And after being accelerated by GPU, the CTN runtime (76.03 ms) was comparable to that of delay-and-sum (DAS, 61.24 ms). CONCLUSION The proposed CTN significantly improved the image contrast, resolution and some unclear details by the MV beamformer, making it an efficient tool for high-frame-rate imaging.
Collapse
Affiliation(s)
- Xiaolei Qu
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Chujian Ren
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Zihao Wang
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Shuangchun Fan
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Dezhi Zheng
- Research Institute for Frontier Science, Beihang University, Beijing, China
| | - Shuai Wang
- Research Institute for Frontier Science, Beihang University, Beijing, China
| | - Hongxiang Lin
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Jue Jiang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Weiwei Xing
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China.
| |
Collapse
|
4
|
Wang P, Chen J, Shen Y, Li Q, Tong L, Li X. Low complexity adaptive ultrasound image beamformer combined with improved multiphase apodization with cross-correlation. ULTRASONICS 2023; 134:107084. [PMID: 37352574 DOI: 10.1016/j.ultras.2023.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
In this paper, an ultrasound imaging method combined with low-complexity adaptive beamformer (LCA) and improved multiphase apodization with cross-correlation (IMPAX) is proposed to improve image resolution and contrast with low hardware cost. Firstly, the delayed echo signal is apodized by the LCA to obtain a narrow mainlobe width echo signal and LCA output. Then, multiple pairs of complementary square-wave phase apodizations are applied to the apodized echo signal to obtain corresponding signal pairs, which are used to calculate the normalized cross-correlation (NCC) matrix. Finally, the average value of the NCC matrices is filtered by 2-D means, and the filtered result is introduced as the weighting factor for the LCA output. The simulation and experimental results show that the proposed LCA-IMPAX can effectively reduce the mainlobe width, suppress clutter, and be robust to noise. Compared with DAS, LCA, and MPAX, for simulated point targets, the full-width at half-maximum (FWHM, -6dB) of LCA-IMPAX is reduced by 49.22%, 10.06%, and 48.67%, respectively. For simulated cyst, the CR is improved by 219.91%, 138.08%, and 103.44%, respectively. For experimental cysts, the CR is improved by an average of 145.00%, 136.14%, and 55.09%, respectively. The results of human heart data indicate that LCA-IMPAX has good imaging quality in vivo. Since the proposed method does not involve covariance matrix inversion, it can be applied in real-time imaging systems.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China.
| | - Jinghan Chen
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Yue Shen
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Qianwen Li
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Lin Tong
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Xitao Li
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Chen Y, Kong Q, Xiong Z, Mao Q, Chen M, Lu C. Improved Coherent Plane-Wave Compounding Using Sign Coherence Factor Weighting for Frequency-Domain Beamforming. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:802-819. [PMID: 36572588 DOI: 10.1016/j.ultrasmedbio.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 06/18/2023]
Abstract
This study proposes a novel modified sign coherence factor (SCF) weighting adapted to the frequency-domain (FD) beamforming for ultrasound plane-wave imaging to achieve a high frame rate and better image quality. First, before beamforming, the sign components were extracted from the radiofrequency signals of aperture data. Second, the modified SCF was established using the FD beamformed sign components. Finally, the FD beamformed image was weighted by the modified SCF. To assess the performance of the proposed modified SCF for FD beamforming, the resolution, contrast, computation complexity and execution time of the generated images were evaluated. The results revealed that the FD-SCF could significantly improve the computational load compared with the classic delay-and-sum SCF on the premise of equal image quality improvement. Therefore, high image quality and low computational load have been successfully combined under the proposed weighting method.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Non-destructive Testing Technology, Ministry of Education, Nanchang Hangkong University, Nanchang, China.
| | - Qingru Kong
- Key Laboratory of Non-destructive Testing Technology, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| | - Zhenghui Xiong
- Key Laboratory of Non-destructive Testing Technology, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| | | | - Ming Chen
- Key Laboratory of Non-destructive Testing Technology, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| | - Chao Lu
- Key Laboratory of Non-destructive Testing Technology, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
6
|
Choi H. A Doherty Power Amplifier for Ultrasound Instrumentation. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052406. [PMID: 36904610 PMCID: PMC10007245 DOI: 10.3390/s23052406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/27/2023]
Abstract
The ultrasound instrumentation uses linear power amplifiers with low power efficiency, generating unwanted heat and resulting in the deterioration of the echo signal quality of measured targets. Therefore, this study aims to develop a power amplifier scheme to increase power efficiency while maintaining appropriate echo signal quality. In communication systems, the Doherty power amplifier has shown relatively good power efficiency while producing high signal distortion. The same design scheme cannot be directly applied to ultrasound instrumentation. Therefore, the Doherty power amplifier needs to be re-designed. To verify the feasibility of the instrumentation, a Doherty power amplifier was designed to obtain high power efficiency. The measured gain, output 1-dB compression point, and power-added efficiency of the designed Doherty power amplifier were 33.71 dB, 35.71 dBm, and 57.24% at 25 MHz, respectively. In addition, the performance of the developed amplifier was measured and tested using the ultrasound transducer through the pulse-echo responses. The output power with 25 MHz, 5-cycle, and 43.06 dBm generated from the Doherty power amplifier was sent through the expander to the focused ultrasound transducer with 25 MHz and 0.5″ diameter. The detected signal was sent via a limiter. Afterwards, the signal was amplified by a 36.8 dB gain preamplifier, and then displayed in the oscilloscope. The measured peak-to-peak amplitude in the pulse-echo response with an ultrasound transducer was 0.9698 V. The data showed a comparable echo signal amplitude. Therefore, the designed Doherty power amplifier can improve the power efficiency used for medical ultrasound instrumentation.
Collapse
Affiliation(s)
- Hojong Choi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Li X, Wang P, Du T, Li Q, Luo C, Wang C. Dual projection generalized sidelobe canceller based on mixed signal subspace for ultrasound imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:921. [PMID: 36050163 DOI: 10.1121/10.0013412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we propose a dual projection generalized sidelobe canceller (DPGSC) based on mixed subspace (MS) for ultrasound imaging, which aims to improve the speckle signal-noise-ratio (sSNR) and decrease the dark-region artifacts. A mixed signal subspace based on the correlation between the desired steering vector and the eigenvectors is constructed to further optimize the desired steering vector and the final weight vector. The simulated and experimental results show that the proposed method can greatly improve the speckle uniformity. In the geabr_0 experiment, the standard deviation of background and sSNR of MS-DPGSC can be improved by 48.07% and 58.49% more than those of eigenspace-based generalized sidelobe canceller (ESGSC). Furthermore, for a hyperechoic target, the maximal improvement of contrast ratio is 95.29%. In terms of anechoic cyst, the contrast-to-noise ratio of MS-DPGSC is increased by 123.08% than that of ESGSC. The rat mammary tumor experimental data show that the proposed method has better comprehensive imaging effect than traditional generalized sidelobe cancellers and ESGSCs.
Collapse
Affiliation(s)
- Xitao Li
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
| | - Ping Wang
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
| | - Tingting Du
- State Grid Rizhao Electric Power Corporation, Limited, Rizhao, 276800, China
| | - Qianwen Li
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
| | - Ciyong Luo
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
| | - Chaolong Wang
- Chongqing Dodem Communications Technology Corporation, Limited, Chongqing, 404300, China
| |
Collapse
|
8
|
Li X, Wang P, Li Q, Du T, Luo C. Application of condition coherence factor based on truncated composite method in ultrasound imaging. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Bilodeau M, Quaegebeur N, Berry A, Masson P. Correlation-based ultrasound imaging of strong reflectors with phase coherence filtering. ULTRASONICS 2022; 119:106631. [PMID: 34801835 DOI: 10.1016/j.ultras.2021.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Two main metrics are usually employed to assess the quality of medical ultrasound (US) images, namely the contrast and the spatial resolution. A number of imaging algorithms have been proposed to improve one of those metrics, often at the expense of the other one. This paper presents the application of a correlation-based ultrasound imaging method, called Excitelet, to medical US imaging applications and the inclusion of a new Phase Coherence (PC) metric within its formalism. The main idea behind this algorithm, originally developed and validated for Non-Destructive Testing (NDT) applications, is to correlate a reference signal database with the measured signals acquired from a transducer array. In this paper, it is shown that improved lateral resolutions and a reduction of imaging artifacts are obtained over the Synthetic Aperture Focusing Technique (SAFT) when using Excitelet in conjunction with a PC filter. This novel method shows potential for the imaging of specular reflectors, such as invasive surgical tools. Numerical and experimental results presented in this paper demonstrate the benefit, in terms of contrast and resolution, of using the Excitelet method combined with PC for the imaging of strong reflectors.
Collapse
Affiliation(s)
- M Bilodeau
- GAUS, Department of Mechanical Engineering, Université de Sherbrooke, QC, J1K, 2R1, Canada.
| | - N Quaegebeur
- GAUS, Department of Mechanical Engineering, Université de Sherbrooke, QC, J1K, 2R1, Canada; Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - A Berry
- GAUS, Department of Mechanical Engineering, Université de Sherbrooke, QC, J1K, 2R1, Canada
| | - P Masson
- GAUS, Department of Mechanical Engineering, Université de Sherbrooke, QC, J1K, 2R1, Canada; Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
10
|
Lan Z, Zheng C, Peng H, Qiao H. Adaptive scaled coherence factor for ultrasound pixel-based beamforming. ULTRASONICS 2022; 119:106608. [PMID: 34793999 DOI: 10.1016/j.ultras.2021.106608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Synthetic aperture (SA) ultrasound imaging can obtain images with high-resolution owing to its ability to dynamically focus in both directions. The signal-to-noise ratio (SNR) of SA imaging is poor because the pulse energy using one array element is quite low. Thus, the SA method with bidirectional pixel-based focusing (SA-BiPBF) was previously proposed as a solution to this challenge. However, using the nonadaptive delay-and-sum (DAS) beamforming still limits its imaging performance. This study proposes an adaptive scaled coherence factor (AscCF) for SA-BiPBF to further boost the image quality. The AscCF exploits generalized coherence factor (GCF) to measure the signal coherence to adaptively adapt the parameters in SNR estimation rather than fixed ones. Comparisons were made with several other weighting techniques by performing simulations and experiments for performance evaluation. Results confirm that AscCF applied to SA-BiPBF offers a good image contrast while reservation of the speckle pattern. AscCF achieves maximal improvements of contrast ratio (CR) by 48.5% and 47.76 % compared with scaled coherence factor (scCF), respectively in simulation and experiment. Simultaneously, the maximum of improvements in speckle signal-to-noise ratio (sSNR) of AscCF are 11.28 % and 20.01 % upon scCF in simulation and experiment, respectively. From the in vivo result, it also appears a potential for AscCF to act in clinical situations to better detect lesion and retain speckle pattern.
Collapse
Affiliation(s)
- Zhengfeng Lan
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Heyuan Qiao
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
11
|
Acoustic-Field Beamforming-Based Generalized Coherence Factor for Handheld Ultrasound. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Handheld ultrasound devices have been widely used for diagnostic applications. The use of the acoustic-field beamforming (AFB) method has been proposed for handheld ultrasound to reduce electricity consumption and avoid battery and unwanted heat issues. However, the image quality, such as the contrast ratio and contrast-to-noise-ratio, are poorer with this technique than with the conventional delay-and-sum method. To address the problems associated with the worse image quality in AFB imaging, in this paper we propose the use of an AFB-based generalized coherence factor (GCF) technique, in which the GCF weighting developed for adaptive beamforming is extended to AFB. Simulation data, experimental results, and in vivo testing verified the efficacy of our proposed AFB-based GCF technique.
Collapse
|
12
|
Hu CL, Wu GZ, Chang CC, Li ML. Acoustic-Field Beamforming for Low-Power Portable Ultrasound. ULTRASONIC IMAGING 2021; 43:175-185. [PMID: 33957822 DOI: 10.1177/01617346211013473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Portable ultrasound has been extensively used for diagnostic applications in health monitoring, emergency rooms, and ambulances. However, these handheld ultrasound systems may suffer from heat and battery issues attributed to the large power consumption of the transmitter. Additionally, the largest portion of the direct current (DC) power consumption can be attributed to the amplifier in the digital-to-analog converter (DAC) of the transmitter and to the analog-to-digital converter (ADC) of the receiver. Therefore, the number of transmit/receive channels in a portable ultrasound instrument is one of the crucial design factors regarding heat and battery related issues. To address these problems, we propose an acoustic-field beamforming (AFB) technique for low-power portable ultrasound systems with a single receive and five transmit channels. Finally, the simulation, experimental, and in vivo results verified the feasibility of this approach.
Collapse
Affiliation(s)
- Chang-Lin Hu
- Industrial Technology Research Institute, Hsinchu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu
| | - Guo-Zua Wu
- Industrial Technology Research Institute, Hsinchu
| | | | - Meng-Lin Li
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu
- Brain Research Center, National Tsing Hua University, Hsinchu
| |
Collapse
|
13
|
Prado VT, Higuti RT. Instantaneous Frequency Image. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1729-1741. [PMID: 33439837 DOI: 10.1109/tuffc.2021.3051496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The instantaneous frequency (IF) image is proposed in this work. It is obtained by the differentiation of the instantaneous phase (IP) image, which in turn is calculated by replacing the amplitude information with the IP in the delay-and-sum beamforming. The IP image is a coherence factor that reduces artifacts and sidelobes influence, and it will be shown that the IF image will keep these same positive characteristics. In amplitude images the reflector representation level varies according to the experimental conditions, even using time-gain compensation. In IP images, the reflector is represented by a - π to π rad variation. An important feature of the IF image is that a reflector is represented by a constant level that is determined by the central frequency of the signal. Farther reflectors are represented with similar magnitudes as closer ones, being less influenced by distance than IP images and resulting in better contrast. Amplitude, IP, and IF images are obtained from point spread function simulations and a medical phantom in different experimental cases: vertical distances, contrast reflectors, axial and lateral separation, and a sparse array. The improper choice of dynamic range can result in low contrast or nondetection of a reflector. For the IF image, the dynamic range is determined by the central frequency of the signal and the zero-mean Gaussian distribution of the IF of noise. The IF image can be used to improve reflector detection, as additional information to assist the interpretation of pixels intensities in conventional amplitude images, or as a new coherence factor.
Collapse
|
14
|
Lan Z, Jin L, Feng S, Zheng C, Han Z, Peng H. Joint Generalized Coherence Factor and Minimum Variance Beamformer for Synthetic Aperture Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1167-1183. [PMID: 33141664 DOI: 10.1109/tuffc.2020.3035412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The delay-and-sum (DAS) beamformer is the most commonly used method in medical ultrasound imaging. Compared with the DAS beamformer, the minimum variance (MV) beamformer has an excellent ability to improve lateral resolution by minimizing the output of interference and noise power. However, it is hard to overcome the tradeoff between satisfactory lateral resolution and speckle preservation performance due to the fixed subarray length of covariance matrix estimation. In this study, a new approach for MV beamforming with adaptive spatial smoothing is developed to address this problem. In the new approach, the generalized coherence factor (GCF) is used as a local coherence detection tool to adaptively determine the subarray length for spatial smoothing, which is called adaptive spatial-smoothed MV (AMV). Furthermore, another adaptive regional weighting strategy based on the local signal-to-noise ratio (SNR) and GCF is devised for AMV to enhance the image contrast, which is called GCF regional weighted AMV (GAMV). To evaluate the performance of the proposed methods, we compare them with the standard MV by conducting the simulation, in vitro experiment, and the in vivo rat mammary tumor study. The results show that the proposed methods outperform MV in speckle preservation without an appreciable loss in lateral resolution. Moreover, GAMV offers excellent performance in image contrast. In particular, AMV can achieve maximal improvements of speckle signal-to-noise ratio (SNR) by 96.19% (simulation) and 62.82% (in vitro) compared with MV. GAMV achieves improvements of contrast-to-noise ratio by 27.16% (simulation) and 47.47% (in vitro) compared with GCF. Meanwhile, the losses in lateral resolution of AMV are 0.01 mm (simulation) and 0.17 mm (in vitro) compared with MV. Overall, this indicates that the proposed methods can effectively address the inherent limitation of the standard MV in order to improve the image quality.
Collapse
|
15
|
Thies M, Oelze ML. Real-Time Visualization of a Focused Ultrasound Beam Using Ultrasonic Backscatter. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1213-1223. [PMID: 33147143 PMCID: PMC8081032 DOI: 10.1109/tuffc.2020.3035784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Focused ultrasound (FUS) therapies induce therapeutic effects in localized tissues using either temperature elevations or mechanical stresses caused by an ultrasound wave. During an FUS therapy, it is crucial to continuously monitor the position of the FUS beam in order to correct for tissue motion and keep the focus within the target region. Toward the goal of achieving real-time monitoring for FUS therapies, we have developed a method for the real-time visualization of an FUS beam using ultrasonic backscatter. The intensity field of an FUS beam was reconstructed using backscatter from an FUS pulse received by an imaging array and then overlaid onto a B-mode image captured using the same imaging array. The FUS beam visualization allows one to monitor the position and extent of the FUS beam in the context of the surrounding medium. Variations in the scattering properties of the medium were corrected in the FUS beam reconstruction by normalizing based on the echogenicity of the coaligned B-mode image. On average, normalizing by echogenicity reduced the mean square error between FUS beam reconstructions in nonhomogeneous regions of a phantom and baseline homogeneous regions by 21.61. FUS beam visualizations were achieved, using a single diagnostic imaging array as both an FUS source and an imaging probe, in a tissue-mimicking phantom and a rat tumor in vivo with a frame rate of 25-30 frames/s.
Collapse
|
16
|
Mukaddim RA, Varghese T. Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:586-598. [PMID: 32795968 PMCID: PMC8011040 DOI: 10.1109/tuffc.2020.3016900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photoacoustic (PA) image reconstruction generally utilizes delay-and-sum (DAS) beamforming of received acoustic waves from tissue irradiated with optical illumination. However, nonadaptive DAS reconstructed cardiac PA images exhibit temporally varying noise which causes reduced myocardial PA signal specificity, making image interpretation difficult. Adaptive beamforming algorithms such as minimum variance (MV) with coherence factor (CF) weighting have been previously reported to improve the DAS image quality. In this article, we report on an adaptive beamforming algorithm by extending CF weighting to the temporal domain for preclinical cardiac PA imaging (PAI). The proposed spatiotemporal coherence factor (STCF) considers multiple temporally adjacent image acquisition events during beamforming and cancels out signals with low spatial coherence and temporal coherence, resulting in higher background noise cancellation while preserving the main features of interest (myocardial wall) in the resultant PA images. STCF has been validated using the numerical simulations and in vivo ECG and respiratory-signal-gated cardiac PAI in healthy murine hearts. The numerical simulation results demonstrate that STCF weighting outperforms DAS and MV beamforming with and without CF weighting under different levels of inherent contrast, acoustic attenuation, optical scattering, and signal-to-noise (SNR) of channel data. Performance improvement is attributed to higher sidelobe reduction (at least 5 dB) and SNR improvement (at least 10 dB). Improved myocardial signal specificity and higher signal rejection in the left ventricular chamber and acoustic gel region are observed with STCF in cardiac PAI.
Collapse
|
17
|
Shamekhi S, Periyasamy V, Pramanik M, Mehrmohammadi M, Mohammadzadeh Asl B. Eigenspace-based minimum variance beamformer combined with sign coherence factor: Application to linear-array photoacoustic imaging. ULTRASONICS 2020; 108:106174. [PMID: 32502893 DOI: 10.1016/j.ultras.2020.106174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Photoacoustic (PA) imaging combining the advantages of high resolution of ultrasound imaging and high contrast of optical imaging provides images with good quality. PA imaging often suffers from disadvantages such as clutter noises and decreased signal-to-noise-ratio at higher depths. One studied method to reduce clutter noises is to use weighting factors such as coherence factor (CF) and its modified versions that improve resolution and contrast of images. In this study, we combined the Eigen-space based minimum variance (EIBMV) beamformer with the sign coherence factor (SCF) and show the ability of these methods for noise reduction when they are used in combination with each other. In addition, we compared the proposed method with delay-and-sum (DAS) and minimum variance (MV) beamformers in simulated and experimental studies. The simulation results show that the proposed EIBMV-SCF method improves the SNR about 94 dB, 87.65 dB, and 62.29 dB compared to the DAS, MV, and EIBMV, respectively, and the corresponding improvements were 79.37/34.43 dB, 77.25/26.96 dB, and 33.19/25.56 dB in the ex vivo/in vivo experiments.
Collapse
Affiliation(s)
- Sadaf Shamekhi
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Vijitha Periyasamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
18
|
Afrakhteh S, Behnam H. Low-complexity adaptive minimum variance ultrasound beam-former based on diagonalization. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Du B, Wang J, Zheng H, Xiao C, Fang S, Lu M, Mao R. A novel transcranial ultrasound imaging method with diverging wave transmission and deep learning approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 186:105308. [PMID: 31978869 DOI: 10.1016/j.cmpb.2019.105308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Real time brain transcranial ultrasound imaging is extremely intriguing because of its numerous applications. However, the skull causes phase distortion and amplitude attenuation of ultrasound signals due to its density: the speed of sound is significantly different in bone tissue than in soft tissue. In this study, we propose an ultrafast transcranial ultrasound imaging technique with diverging wave (DW) transmission and a deep learning approach to achieve large field-of-view with high resolution and real time brain ultrasound imaging. DW transmission provides a frame rate of several kiloHz and a large field of view that is suitable for human brain imaging via a small acoustic window. However, it suffers from poor image quality because the diverging waves are all unfocused. Here, we adopted adaptive beamforming algorithms to improve both the image contrast and the lateral resolution. Both simulated and in situ experiments with a human skull resulted in significant image improvements. However, the skull still introduces a wavefront offset and distortion, which degrades the image quality even when adaptive beamforming methods are used. Thus, we also employed a U-Net neural network to detect the contour and position of the skull directly from the acquired RF signal matrix. This approach avoids the need for beamforming, image reconstruction, and image segmentation, making it more suitable for clinical use.
Collapse
Affiliation(s)
- Bin Du
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Jinyan Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Haoteng Zheng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Chenhui Xiao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Siyuan Fang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Minhua Lu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China.
| | - Rui Mao
- Guangdong Province Engineering Center of China-made High Performance Data Computing System, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
20
|
Du B, Zheng H, Fang S, Chen S, Lu M, Mao R. A novel transcranial ultrasound imaging method with diverging wave. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6640-6643. [PMID: 31947364 DOI: 10.1109/embc.2019.8856896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Real time transcranial ultrasound imaging of brain can be extremely intriguing because of its numerous applications. In this study, we proposed an ultrafast transcranial ultrasound imaging technique with diverging wave (DW) transmission, which has been a promising technique to image moving objects, such as complex blood flow field and transient elastography. However, diverging waves are all unfocused waves, which makes their image quality, especially the lateral resolution and contrast, has not yet been satisfactory. Here we tried to apply the adaptive beamforming algorithms to improve both the image contrast and the lateral resolution. Simulation and phantom experiments proved that our methods can significantly improve the DW image quality. Finally, transcranial ultrasound imaging collected through temporal bone were presented and analyzed. The ultrasound frequency used in this study ranges from 2 MHz to 4 MHz, centered at 2.8 MHz. Since the wavefront was offset and distorted after passing through temporal bone, the image quality will be slightly degraded. Even then, it was demonstrated that these adaptive algorithms can significantly improve the transcranial image quality, especially the image contrast.
Collapse
|
21
|
Wang Y, Zheng C, Zhao X, Peng H. Adaptive scaling Wiener postfilter using generalized coherence factor for coherent plane-wave compounding. Comput Biol Med 2020; 116:103564. [DOI: 10.1016/j.compbiomed.2019.103564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
|
22
|
Wang Y, Zheng C, Peng H. Dynamic coherence factor based on the standard deviation for coherent plane-wave compounding. Comput Biol Med 2019; 108:249-262. [DOI: 10.1016/j.compbiomed.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/29/2022]
|
23
|
Du B, Wu X, Zheng H, Fang S, Lu M, Mao R. Coherence Plane-Wave Compounding with Angle Coherence Factor for Ultrafast Ultrasound Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:907-910. [PMID: 30440538 DOI: 10.1109/embc.2018.8512438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ultrafast ultrasound imaging with plane wave transmission has been a promising technique to image moving objects, however, implies compromises among resolution, contrast and sensitivity. Coherence plane-wave compounding (CPWC) can balance the image quality and frame rate. The image quality, especiallyin terms of the suppression of artifacts stemmed from side lobes, is greatly comprised by reducing the number of the tilted plane-waves. However, in some special scenarios, such as tracking shear wave propagation inside soft tissue, and imaging the complex blood flow, it's better to keep a very high frame rate. How to realize a B-mode image of equivalent quality to the standard focused approach at a very high frame rate? Here we proposed a new imaging framework by combining CPWC with angle coherence factor. The B-mode images from simulation, experimental phantoms demonstrated that our proposed methodology greatly suppressed the side-lobes artifacts by around 20 dB compared with CPWC imaging, while the image quality, especially lateral resolution and contrast kept equivalent.
Collapse
|
24
|
Development of a Multiwavelength Visible-Range-Supported Opto⁻Ultrasound Instrument Using a Light-Emitting Diode and Ultrasound Transducer. SENSORS 2018; 18:s18103324. [PMID: 30282961 PMCID: PMC6210455 DOI: 10.3390/s18103324] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 11/16/2022]
Abstract
A new multiwavelength visible-range-supported opto–ultrasound instrument using a light-emitting diode and ultrasound transducer was developed in order to produce multiwavelength visible light with minimized color aberration errors, and detect ultrasound signals emitted from the target. In the instrument, the developed optical systems can provide multiwavelength optical transmission with low optical aberration within 10-cm ranges that are reasonably flat in the modulation transfer function at spatial frequencies of 20 and 40 lp/mm, except at the end of the diagonal edge of the samples. To assess the instrument capability, we performed pulse–echo responses with Thunnus obesus eye samples. Focused red, green, blue and white light rays from an integrated red, green and blue LED source were produced, and echo signal amplitudes of 33.53, 34.92, 38.74 and 82.54 mV, respectively, were detected from the Thunnus obesus eye samples by a 10-MHz focused ultrasound transducer. The center frequencies of the echo signal when producing red, green, blue and white LED light in the instrument were 9.02, 9.05, 9.21 and 8.81 MHz, respectively. From these tests, we verify that this instrument can combine red, green and blue LED light to cover different wavelengths in the visible-light range and detect reasonable echo amplitudes from the samples.
Collapse
|
25
|
Zhao J, Wang Y, Guo W, Yu J. Coherence factor and Wiener postfilter in synthetic aperture ultrasound imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:2177. [PMID: 28372122 DOI: 10.1121/1.4979053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The coherence factor (CF) and Wiener postfilter methods have been proposed as effective approaches for reducing the output noise of the delay-and-sum (DAS) beamformer in ultrasound imaging. The theoretical framework between them was also established. However, past researches about the CF and Wiener postfilter methods mainly focused on the summation of an array signal. This paper analyzes the CF and Wiener postfilter in the synthetic aperture (SA) imaging mode, where two-dimensional echo data are recorded. Different CF definitions in the SA imaging are first given and the corresponding Wiener postfilter methods are then proposed, including a Wiener postfilter especially for the SA imaging, named as WienerSA. The performances of different CF and Wiener postfilter methods were evaluated on both simulated and experimental SA data. Results showed that the proposed WienerSA outperformed the other Wiener postfilters in reducing the sidelobe noise level. It obtained the highest contrast ratio among the Wiener postfilter methods, which was even higher than some of the CF methods. Meanwhile it could benefit a much higher contrast-to-noise ratio than those CF methods with further suppression of incoherent noises. Consequently, the WienerSA is believed to be a promising approach in enhancing the SA image quality.
Collapse
Affiliation(s)
- Jinxin Zhao
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Wei Guo
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Guo W, Wang Y, Yu J. Ultrasound harmonic enhanced imaging using eigenspace-based coherence factor. ULTRASONICS 2016; 72:106-116. [PMID: 27513207 DOI: 10.1016/j.ultras.2016.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Tissue harmonic imaging (THI) utilizes harmonic signals generating within the tissue as the result of nonlinear acoustic wave propagation. With inadequate transmitting acoustic energy, THI is incapable to detect the small objects since poor harmonic signals have been generated. In most cases, high transmission energy cannot be guaranteed because of the imaging safety issue or specific imaging modality such as the plane wave imaging (PWI). Discrimination of small point targets such as calcification, however, is particularly important in the ultrasound diagnosis. Few efforts have been made to pursue the THI with high resolution and good small target visibility at the same time. In this paper, we proposed a new eigenspace-based coherence factor (ESBCF) beamformer to solve this problem. A new kind of coherence factor (CF), named as ESBCF, is firstly proposed to detect the point targets. The detected region-of-interest (ROI) is then enhanced adaptively by using a newly developed beamforming method. The ESBCF combines the information from signal eigenspace and coherence factor by expanding the CF to the covariance matrix of signal. Analogous to the image processing but in the radio frequency (RF) data domain, the proposed method fully utilizes the information from the fundamental and harmonic components. The performance of the proposed method is demonstrated by simulation and phantom experiments. The improvement of the point contrast ratio (PCR) is 7.6dB in the simulated data, and 6.0dB in the phantom experiment. Thanks to the improved small point detection ability of the ESBCF, the proposed beamforming algorithm can enhance the PCR considerably and maintain the high resolution of the THI at the same time.
Collapse
Affiliation(s)
- Wei Guo
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, China.
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Aliabadi S, Wang Y, Yu J, Zhao J, Guo W, Zhang S. Eigenspace-based beamformer using oblique signal subspace projection for ultrasound plane-wave imaging. Biomed Eng Online 2016; 15:127. [PMID: 27881172 PMCID: PMC5122033 DOI: 10.1186/s12938-016-0244-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Eigenspace-based beamformers, by orthogonal projection of signal subspace, can remove a large part of the noise, and provide better imaging contrast upon the minimum variance beamformer. However, wrong estimate of signal and noise component may bring dark-spot artifacts and distort the signal intensity. The signal component and noise and interference components are considered uncorrelated in conventional eigenspace-based beamforming methods. In ultrasound imaging, however, signal and noise are highly correlated. Therefore, the oblique projection instead of orthogonal projection should be taken into account in the denoising procedure of eigenspace-based beamforming algorithm. METHODS In this paper, we propose a novel eigenspace-based beamformer based on the oblique subspace projection that allows for consideration of the signal and noise correlation. Signal-to-interference-pulse-noise ratio and an eigen-decomposing scheme are investigated to propose a new signal and noise subspaces identification. To calculate the beamformer weights, the minimum variance weight vector is projected onto the signal subspace along the noise subspace via an oblique projection matrix. RESULTS We have assessed the performance of proposed beamformer by using both simulated software and real data from Verasonics system. The results have exhibited the improved imaging qualities of the proposed beamformer in terms of imaging resolution, speckle preservation, imaging contrast, and dynamic range. CONCLUSIONS Results have shown that, in ultrasound imaging, oblique projection is more sensible and effective than orthogonal subspace projection. Better signal and speckle preservation could be obtained by oblique projection compare to orthogonal projection. Also shadowing artifacts around the hyperechoic targets have been eliminated. Implementation the new subspace identification has enhanced the imaging resolution of the minimum variance beamformer due to the increasing the signal power in direction of arrival. Also it has offered better sidelobe suppression and a higher dynamic range.
Collapse
Affiliation(s)
- Saeid Aliabadi
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China. .,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200433, China.
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China. .,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200433, China.
| | - Jinxin Zhao
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Wei Guo
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Shun Zhang
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
28
|
Szasz T, Basarab A, Kouamé D. Strong reflector-based beamforming in ultrasound medical imaging. ULTRASONICS 2016; 66:111-124. [PMID: 26596649 DOI: 10.1016/j.ultras.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
This paper investigates the use of sparse priors in creating original two-dimensional beamforming methods for ultrasound imaging. The proposed approaches detect the strong reflectors from the scanned medium based on the well known Bayesian Information Criteria used in statistical modeling. Moreover, they allow a parametric selection of the level of speckle in the final beamformed image. These methods are applied on simulated data and on recorded experimental data. Their performance is evaluated considering the standard image quality metrics: contrast ratio (CR), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). A comparison is made with the classical delay-and-sum and minimum variance beamforming methods to confirm the ability of the proposed methods to precisely detect the number and the position of the strong reflectors in a sparse medium and to accurately reduce the speckle and highly enhance the contrast in a non-sparse medium. We confirm that our methods improve the contrast of the final image for both simulated and experimental data. In all experiments, the proposed approaches tend to preserve the speckle, which can be of major interest in clinical examinations, as it can contain useful information. In sparse mediums we achieve a highly improvement in contrast compared with the classical methods.
Collapse
Affiliation(s)
| | | | - Denis Kouamé
- Université de Toulouse, IRIT, UMR CNRS 5505, France
| |
Collapse
|
29
|
Zhao J, Wang Y, Yu J, Guo W, Li T, Zheng YP. Subarray coherence based postfilter for eigenspace based minimum variance beamformer in ultrasound plane-wave imaging. ULTRASONICS 2016; 65:23-33. [PMID: 26582600 DOI: 10.1016/j.ultras.2015.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
This paper introduces a new beamformer, which combines the eigenspace based minimum variance (ESBMV) beamformer with a subarray coherence based postfilter (SCBP), for improving the quality of ultrasound plane-wave imaging. The ESBMV beamformer has been validated in improving the imaging contrast, but the difficulty in dividing the signal subspace limits the usage of it in the low signal-to-noise ratio (SNR) scenarios. Coherence factor (CF) based methods could optimize the output of a distortionless beamformer to reduce sidelobes, but the influence by the subarray decorrelation technique on the postfilter design has not attracted enough concern before. Accordingly, an ESBMV-SCBP beamformer was proposed in this paper, which used the coherence of the subarray signal to compute an SCBP to optimize the ESBMV results. Simulated and experimental data were used to evaluate the performance of the proposed method. The results showed that the ESBMV-SCBP method achieved an improved imaging quality compared with the ESBMV beamformer. In the simulation study, the contrast ratio (CR) for an anechoic cyst was improved by 9.88 dB and the contrast-to-noise ratio (CNR) was improved by 0.97 over the ESBMV. In the experimental study, the CR improvements for two anechoic cysts were 7.32 dB and 9.45 dB, while the CNRs were improved by 1.27 and 0.66, respectively. The ESBMV-SCBP also showed advantages over the ESBMV-Wiener beamformer in preserving a less grainy speckle, which is closer to that of distortionless beamformers and benefits the imaging contrast. With a relatively small extra computational load, the proposed method has potential to enhance the quality of the ultrasound plane-wave imaging.
Collapse
Affiliation(s)
- Jinxin Zhao
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200433, China.
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200433, China
| | - Wei Guo
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Tianjie Li
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yong-Ping Zheng
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| |
Collapse
|