1
|
Li H, Flé G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, Bosio G, Rafati I, Cloutier G. Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation. FRONTIERS IN PHYSICS 2021; 9. [DOI: 10.3389/fphy.2021.666192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.
Collapse
|
2
|
Bhatt M, Moussu MAC, Chayer B, Destrempes F, Gesnik M, Allard L, Tang A, Cloutier G. Reconstruction of Viscosity Maps in Ultrasound Shear Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1065-1078. [PMID: 30990181 DOI: 10.1109/tuffc.2019.2908550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Change in viscoelastic properties of biological tissues may often be symptomatic of a dysfunction that can be correlated to tissue pathology. Shear wave elastography is an imaging method mainly used to assess stiffness but with the potential to measure viscoelasticity of biological tissues. This can enable tissue characterization; and thus, can be used as a marker to improve diagnosis of pathological lesions. In this study, a frequency-shift method based framework is presented for the reconstruction of viscosity by analyzing the spectral properties of acoustic radiation force-induced shear waves. The aim of the study was to investigate the feasibility of viscosity reconstruction maps in homogeneous as well as heterogeneous samples. Experiments were performed in four in vitro phantoms, two ex vivo porcine liver samples, two ex vivo fatty duck liver samples, and one in vivo fatty goose liver. Successful viscosity maps were reconstructed in homogeneous and heterogeneous phantoms with embedded mechanical inclusions having different geometries. Quantitative values of viscosity obtained for two porcine liver tissues, two fatty duck liver samples, and one goose fatty liver were (mean ± SD) 0.61 ± 0.21, 0.52 ± 0.35; 1.28 ± 0.54, 1.36 ± 0.73, and 1.67 ± 0.70 Pa.s, respectively.
Collapse
|
3
|
Bernard S, Cloutier G. Forward and inverse viscoelastic wave scattering by irregular inclusions for shear wave elastography. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:2346. [PMID: 29092551 DOI: 10.1121/1.5007729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inversion methods in shear wave elastography use simplifying assumptions to recover the mechanical properties of soft tissues. Consequently, these methods suffer from artifacts when applied to media containing strong stiffness contrasts, and do not provide a map of the viscosity. In this work, the shear wave field recorded inside and around an inclusion was used to estimate the viscoelastic properties of the inclusion and surrounding medium, based on an inverse problem approach assuming local homogeneity of both media. An efficient semi-analytical method was developed to model the scattering of an elastic wave by an irregular inclusion, based on a decomposition of the field by Bessel functions and on a decomposition of the boundaries as Fourier series. This model was validated against finite element modeling. Shear waves were experimentally induced by acoustic radiation force in soft tissue phantoms containing stiff and soft inclusions, and the displacement field was imaged at a high frame rate using plane wave imaging. A nonlinear least-squares algorithm compared the model to the experimental data and adjusted the geometrical and mechanical parameters. The estimated shear storage and loss moduli were in good agreement with reference measurements, as well as the estimated inclusion shape. This approach provides an accurate estimation of geometry and viscoelastic properties for a single inclusion in a homogeneous background in the context of radiation force elastography.
Collapse
Affiliation(s)
- Simon Bernard
- Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), 900 St-Denis, Suite R11.720, Montréal, Québec H2X 0A9, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), 900 St-Denis, Suite R11.720, Montréal, Québec H2X 0A9, Canada
| |
Collapse
|
4
|
Ouared A, Kazemirad S, Montagnon E, Cloutier G. Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method. Med Phys 2016; 43:1603. [PMID: 27036560 DOI: 10.1118/1.4942813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Different approaches have been used in dynamic elastography to assess mechanical properties of biological tissues. Most techniques are based on a simple inversion based on the measurement of the shear wave speed to assess elasticity, whereas some recent strategies use more elaborated analytical or finite element method (FEM) models. In this study, a new method is proposed for the quantification of both shear storage and loss moduli of confined lesions, in the context of breast imaging, using adaptive torsional shear waves (ATSWs) generated remotely with radiation pressure. METHODS A FEM model was developed to solve the inverse wave propagation problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness to noise and geometric constraints was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue-mimicking phantoms over a broad range of frequencies (up to 400 Hz). RESULTS Viscoelastic properties matched benchmark rheology methods with discrepancies of 8%-38% for the shear modulus G' and 9%-67% for the loss modulus G″. The robustness study indicated good estimations of storage and loss moduli (maximum mean errors of 19% on G' and 32% on G″) for signal-to-noise ratios between 19.5 and 8.5 dB. Larger errors were noticed in the case of biases in lesion dimension and position. CONCLUSIONS The ATSW method revealed that it is possible to estimate the viscoelasticity of biological tissues with torsional shear waves when small biases in lesion geometry exist.
Collapse
Affiliation(s)
- Abderrahmane Ouared
- Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada and Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4, Canada
| | - Siavash Kazemirad
- Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Emmanuel Montagnon
- Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montréal, Montréal, Québec H3T 1J4, Canada; and Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
5
|
Lin H, Shen Y, Chen X, Zhu Y, Zheng Y, Zhang X, Guo Y, Wang T, Chen S. Viscoelastic properties of normal rat liver measured by ultrasound elastography: Comparison with oscillatory rheometry. Biorheology 2016; 53:193-207. [PMID: 27858670 DOI: 10.3233/bir-16091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ultrasound elastography has been widely used to measure liver stiffness. However, the accuracy of liver viscoelasticity obtained by ultrasound elastography has not been well established. OBJECTIVE To assess the accuracy of ultrasound elastography for measuring liver viscoelasticity and compare to conventional rheometry methods. In addition, to determine if combining these two methods could delineate the rheological behavior of liver over a wide range of frequencies. METHODS The phase velocities of shear waves were measured in livers over a frequency range from 100 to 400 Hz using the ultrasound elastography method of shearwave dispersion ultrasound vibrometry (SDUV), while the complex shear moduli were obtained by rheometry over a frequency range of 1 to 30 Hz. Three rheological models, Maxwell, Voigt, and Zener, were fit to the measured data obtained from the two separate methods and from the combination of the two methods. RESULTS The elasticity measured by SDUV was in good agreement with that of rheometry. However, the viscosity measured by SDUV was significantly different from that of rheometry. CONCLUSIONS The results indicate that the high frequency components of the dispersive data play a much more important role in determining the dispersive pattern or the viscous value than the low frequency components. It was found that the Maxwell model is not as appropriate as the Voigt and Zener models for describing the rheological behavior of liver.
Collapse
Affiliation(s)
- Haoming Lin
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Ying Zhu
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Yi Zheng
- Department of Electrical and Computer Engineering, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Xinyu Zhang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Yanrong Guo
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Tianfu Wang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Siping Chen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| |
Collapse
|
6
|
Kazemirad S, Bernard S, Hybois S, Tang A, Cloutier G. Ultrasound Shear Wave Viscoelastography: Model-Independent Quantification of the Complex Shear Modulus. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1399-1408. [PMID: 27362951 DOI: 10.1109/tuffc.2016.2583785] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrasound shear wave elastography methods are commonly used for estimation of mechanical properties of soft biological tissues in diagnostic medicine. A limitation of most currently used elastography methods is that they yield only the shear storage modulus ( G' ) but not the loss modulus ( G'' ). Therefore, no information on viscosity or loss tangent (tan δ) is provided. In this paper, an ultrasound shear wave viscoelastography method is developed for model-independent quantification of frequency-dependent viscoelastic complex shear modulus of macroscopically homogeneous tissues. Three in vitro tissue-mimicking phantoms and two ex vivo porcine liver samples were evaluated. Shear waves were remotely induced within the samples using several acoustic radiation force pushes to generate a semicylindrical wave field similar to those generated by most clinically used elastography systems. The complex shear modulus was estimated over a broad frequency range (up to 1000 Hz) through the analytical solution of the developed inverse wave propagation problem using the measured shear wave speed and amplitude decay versus propagation distance. The shear storage and loss moduli obtained for the in vitro phantoms were compared with those from a planar shear wave method and the average differences over the whole frequency range studied were smaller than 7% and 15%, respectively. The reliability of the proposed method highlights its potential for viscoelastic tissue characterization, which may improve noninvasive diagnosis.
Collapse
|
7
|
Ouared A, Montagnon E, Cloutier G. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts. Phys Med Biol 2015; 60:8161-85. [DOI: 10.1088/0031-9155/60/20/8161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Ouared A, Montagnon E, Kazemirad S, Gaboury L, Robidoux A, Cloutier G. Frequency adaptation for enhanced radiation force amplitude in dynamic elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1453-1466. [PMID: 26276955 DOI: 10.1109/tuffc.2015.007023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In remote dynamic elastography, the amplitude of the generated displacement field is directly related to the amplitude of the radiation force. Therefore, displacement improvement for better tissue characterization requires the optimization of the radiation force amplitude by increasing the push duration and/or the excitation amplitude applied on the transducer. The main problem of these approaches is that the Food and Drug Administration (FDA) thresholds for medical applications and transducer limitations may be easily exceeded. In the present study, the effect of the frequency used for the generation of the radiation force on the amplitude of the displacement field was investigated. We found that amplitudes of displacements generated by adapted radiation force sequences were greater than those generated by standard nonadapted ones (i.e., single push acoustic radiation force impulse and supersonic shear imaging). Gains in magnitude were between 20 to 158% for in vitro measurements on agar-gelatin phantoms, and 170 to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved more than 4-fold with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy without increasing the risk of damaging tissues and transducer elements.
Collapse
|