1
|
Bi D, Shi L, Li B, Li Y, Liu C, Le LH, Luo J, Wang S, Ta D. The Protocol of Ultrasonic Backscatter Measurements of Musculoskeletal Properties. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:72-80. [PMID: 38605911 PMCID: PMC11004104 DOI: 10.1007/s43657-023-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 04/13/2024]
Abstract
This study aims to introduce the protocol for ultrasonic backscatter measurements of musculoskeletal properties based on a novel ultrasonic backscatter bone diagnostic (UBBD) instrument. Dual-energy X-ray absorptiometry (DXA) can be adopted to measure bone mineral density (BMD) in the hip, spine, legs and the whole body. The muscle and fat mass in the legs and the whole body can be also calculated by DXA body composition analysis. Based on the proposed protocol for backscatter measurements by UBBD, ultrasonic backscatter signals can be measured in vivo, deriving three backscatter parameters [apparent integral backscatter (AIB), backscatter signal peak amplitude (BSPA) and the corresponding arrival time (BSPT)]. AIB may provide important diagnostic information about bone properties. BSPA and BSPT may be important indicators of muscle and fat properties. The standardized backscatter measurement protocol of the UBBD instrument may have the potential to evaluate musculoskeletal characteristics, providing help for promoting the application of the backscatter technique in the clinical diagnosis of musculoskeletal disorders (MSDs), such as osteoporosis and muscular atrophy.
Collapse
Affiliation(s)
- Dongsheng Bi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Lingwei Shi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
| | - Lawrence H. Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, T6G2B7 Canada
| | - Jingchun Luo
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| | - Sijia Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| |
Collapse
|
2
|
Hoffmeister BK, Lawler BC, Viano AM, Mobley J. Effect of transducer position on ultrasonic backscatter measurements of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2858-2868. [PMID: 37930178 DOI: 10.1121/10.0022324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in bone caused by osteoporosis and other diseases. Backscatter measurements performed at peripheral skeletal sites such as the heel may place the interrogated region of bone tissue in the acoustic near field of the transducer. The purpose of this study is to investigate how measurements in the near field affect backscatter parameters used for ultrasonic bone assessment. Ultrasonic measurements were performed in a water tank using a planar 2.25 MHz transducer. Signals were acquired for five transducer-specimen distances: N/4, N/2, 3 N/4, N, and 5 N/4, where N is the near-field distance, a location that represents the transition from the near field to far field. Five backscatter parameters previously identified as potentially useful for ultrasonic bone assessment purposes were measured: apparent integrated backscatter, frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter, normalized mean of the backscatter difference, and backscatter amplitude decay constant. All five parameters depended on transducer-specimen distance to varying degrees with FSAB exhibiting the greatest dependence on distance. These results suggest that laboratory studies of bone should evaluate the performance of backscatter parameters using transducer-specimen distances that may be encountered clinically including distances where the ultrasonically interrogated region is in the near field of the transducer.
Collapse
Affiliation(s)
| | - Blake C Lawler
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Joel Mobley
- Department of Physics and Astronomy/National Center for Physical Acoustics, University of Mississippi, University, Mississippi 38677, USA
| |
Collapse
|
3
|
Hoffmeister BK, Delahunt SI, Downey KL, Viano AM, Thomas DM, Georgiou LA, Gray AJ, Newman WR, Main EN, Pirro G. In Vivo Comparison of Backscatter Techniques for Ultrasonic Bone Assessment at the Femoral Neck. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:997-1009. [PMID: 35282987 DOI: 10.1016/j.ultrasmedbio.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Ultrasonic techniques are being developed to detect changes in cancellous bone caused by osteoporosis. The goal of this study was to test the relative in vivo performance of eight backscatter parameters developed over the last several years for ultrasonic bone assessment: apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter (FIAB), normalized mean of the backscatter difference (nMBD), normalized slope of the backscatter difference (nSBD), normalized intercept of the backscatter difference (nIBD), normalized backscatter amplitude ratio (nBAR) and backscatter amplitude decay constant (BADC). Backscatter measurements were performed on the left and right femoral necks of 80 adult volunteers (age = 25 ± 11 y) using an imaging system equipped with a convex array transducer. For comparison, additional ultrasonic measurements were performed at the left and right heel using a commercially available heel-bone ultrasonometer that measured the stiffness index. Six of the eight backscatter parameters (all but nSBD and nIBD) exhibited similar and highly significant (p < 0.000001) left-right correlations (0.51 ≤ R ≤ 0.68), indicating sensitivity to naturally occurring variations in bone tissue. Left-right correlations for the stiffness index measured at the heel (R = 0.75) were not significantly better than those produced by AIB, FSAB and FIAB. The short-term precisions of AIB, nMBD, nBAR and BADC (7.8%-11.7%) were comparable to that of the stiffness index measured with the heel-bone ultrasonometer (7.5%).
Collapse
Affiliation(s)
| | | | - Kiera L Downey
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Doni M Thomas
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | | | - Aubrey J Gray
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Will R Newman
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Evan N Main
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Gia Pirro
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Shi Q, Li Y, Liu Y, Gu M, Song X, Liu C, Ta D, Wang W. Index-Rotated Fast Ultrasound Imaging of Cortical Bone Based on Predicted Velocity Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1582-1595. [PMID: 35275812 DOI: 10.1109/tuffc.2022.3157256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the significant acoustic impedance contrast at cortical boundaries, highly inside attenuation, and the unknown sound velocity distribution, accurate ultrasound cortical bone imaging remains a challenge, especially for the traditional pulse-echo modalities using unique sound velocity. Moreover, the large amounts of data recorded by multielement probe results in a relatively time-consuming reconstruction process. To overcome these limitations, this article proposed an index-rotated fast ultrasound imaging method based on predicted velocity model (IR-FUI-VP) for cortical cross section ultrasound tomography (UST) imaging, utilizing ray-tracing synthetic aperture (RTSA). In virtue of ring probe, the sound velocity model was predicted in advance using bent-ray inversion (BRI). With the predicted velocity model, index-rotated fast ultrasound imaging (IR-FUI) was further applied to image the cortical cross sections in the sectors corresponding to the dynamic apertures (DAs) and ring center. The final result was merged by all sector images. One cortical bone phantom and two ex vivo bovine femurs were utilized to demonstrate the performance of the proposed method. Compared to the conventional synthetic aperture (SA) imaging, the method can not only accurately image the outer cortical boundary but also precisely reconstruct the inner cortical surface. The mean relative errors of the predicted sound velocity in the region of interest (ROI) were all smaller than 7%, and the mean errors of cortical thickness are all less than 0.31 mm. The reconstructed images of bovine femurs were in good agreement with the reference images scanned by micro-computed tomography ( μ CT) with respect to the morphology and thickness. The speed of IR-FUI is about 3.73 times faster than the traditional SA. It is proved that the proposed IR-FUI-VP-based UST is an effective way for fast and accurate cortical bone imaging.
Collapse
|
5
|
Wang CY, Chu SY, Lin YC, Tsai YW, Tai CL, Yang KC, Tsui PH. Quantitative imaging of ultrasound backscattered signals with information entropy for bone microstructure characterization. Sci Rep 2022; 12:414. [PMID: 35013540 PMCID: PMC8748747 DOI: 10.1038/s41598-021-04425-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a critical problem during aging. Ultrasound signals backscattered from bone contain information associated with microstructures. This study proposed using entropy imaging to collect the information in bone microstructures as a possible solution for ultrasound bone tissue characterization. Bone phantoms with different pounds per cubic foot (PCF) were used for ultrasound scanning by using single-element transducers of 1 (nonfocused) and 3.5 MHz (nonfocused and focused). Clinical measurements were also performed on lumbar vertebrae (L3 spinal segment) in participants with different ages (n = 34) and postmenopausal women with low or moderate-to-high risk of osteoporosis (n = 50; identified using the Osteoporosis Self-Assessment Tool for Taiwan). The signals backscattered from the bone phantoms and subjects were acquired for ultrasound entropy imaging by using sliding window processing. The independent t-test, one-way analysis of variance, Spearman correlation coefficient rs, and the receiver operating characteristic (ROC) curve were used for statistical analysis. The results indicated that ultrasound entropy imaging revealed changes in bone microstructures. Using the 3.5-MHz focused ultrasound, small-window entropy imaging (side length: one pulse length of the transducer) was found to have high performance and sensitivity in detecting variation among the PCFs (rs = − 0.83; p < 0.05). Small-window entropy imaging also performed well in discriminating young and old participants (p < 0.05) and postmenopausal women with low versus moderate-to-high osteoporosis risk (the area under the ROC curve = 0.80; cut-off value = 2.65; accuracy = 86.00%; sensitivity = 71.43%; specificity = 88.37%). Ultrasound small-window entropy imaging has great potential in bone tissue characterization and osteoporosis assessment.
Collapse
Affiliation(s)
- Chiao-Yin Wang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyüan, Taiwan
| | - Sung-Yu Chu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyüan, Taiwan
| | - Yu-Ching Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Taoyüan, Taiwan
| | - Yu-Wei Tsai
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyüan, Taiwan
| | - Ching-Lung Tai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyüan, Taiwan
| | - Kuen-Cheh Yang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyüan, Taiwan. .,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyüan, Taiwan. .,Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyüan, Taiwan.
| |
Collapse
|
6
|
Viano AM, Ankersen JP, Hoffmeister BK, Huang J, Fairbanks LC. Ultrasonic Bone Assessment: Ability of Apparent Backscatter Techniques to Detect Changes in the Microstructure of Human Cancellous Bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3309-3325. [PMID: 34138705 DOI: 10.1109/tuffc.2021.3090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasonic backscatter techniques may offer a useful approach for detecting changes in bone caused by osteoporosis. The goal of this study was to investigate how bone mineral density (BMD) and the microstructure of human cancellous bone affect three ultrasonic backscatter parameters that have been identified as potentially useful for ultrasonic bone assessment purposes: the apparent integrated backscatter (AIB), the frequency slope of apparent backscatter (FSAB), and the frequency intercept of apparent backscatter (FIAB). Ultrasonic measurements were performed with a 3.5-MHz broadband transducer on 54 specimens of human cancellous bone prepared from the proximal femur. Microstructural parameters and BMD were measured using X-ray microcomputed tomography (micro-CT). Relationships between AIB, FSAB, FIAB, and the micro-CT parameters were investigated using univariate and multivariate statistical analysis techniques. Moderate-to-strong univariate correlations were observed between the backscatter parameters and microstructure and BMD in many cases. The partial correlation analysis indicated that the backscatter parameters are dependent on microstructure independently of BMD in some cases. Multiple stepwise linear regression analysis used to generate multivariate models found that microstructure was a significant predictor of the backscatter parameters in most cases.
Collapse
|
7
|
Gautam UC, Pydi YS, Selladurai S, Das CJ, Thittai AK, Roy S, Datla NV. A Poly-vinyl Alcohol (PVA)-based phantom and training tool for use in simulated Transrectal Ultrasound (TRUS) guided prostate needle biopsy procedures. Med Eng Phys 2021; 96:46-52. [PMID: 34565552 DOI: 10.1016/j.medengphy.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Trans-rectal ultrasound-guided needle biopsy is a well-established diagnosis technique for prostate cancer. To enhance the needle manoeuvring skills under ultrasound (US) guidance, it is preferable to train medical practitioners in needle biopsy on tissue-mimicking phantoms. This phantom should mimic the morphology as well as mechanical and acoustic properties of the human male pelvic region to provide a surgical experience and feedback. In this study, polyvinyl alcohol (PVA) was used and evaluated for prostate phantom development, that is stiffness tunable, US-compatible and durable phantom material. Three samples, each with 5%, 10%, and 15% concentration of PVA material, were prepared, and their mechanical and shrinkage characteristics were investigated. The anatomy of male pelvic region was used to develop an anatomically correct phantom. Later US-guided needle biopsy was performed on the phantom. The range of elastic moduli of the PVA samples was 2∼146 kPa. Their elastic moduli and volumes were found to remain statistically close from seventh to eighth freeze-thaw cycle (p>0.05). Initial US scans of the phantom resulted in satisfactory B-mode images, with a clear distinction between the prostate and its surrounding organs. This study demonstrated the applicability of PVA hydrogel as a phantom material for training in US-guided needle biopsy.
Collapse
Affiliation(s)
- Umesh C Gautam
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Department of Applied Mechanics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yeswanth S Pydi
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | - Chandan J Das
- Department of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Arun K Thittai
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sitikantha Roy
- Department of Applied Mechanics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naresh V Datla
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
8
|
Li Y, Shi Q, Liu Y, Gu M, Liu C, Song X, Ta D, Wang W. Fourier-Domain Ultrasonic Imaging of Cortical Bone Based on Velocity Distribution Inversion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2619-2634. [PMID: 33844628 DOI: 10.1109/tuffc.2021.3072657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is a significant acoustic impedance contrast between the cortical bone and the surrounding soft tissue, resulting in difficulty for ultrasound penetration into bone tissue with high frequency. It is challenging for the conventional pulse-echo modalities to give accurate cortical bone images using uniform sound velocity model. To overcome these limitations, an ultrasound imaging method called full-matrix Fourier-domain synthetic aperture based on velocity inversion (FM-FDSA-VI) was developed to provide accurate cortical bone images. The dual linear arrays were located on the upper and lower sides of the imaging region. After full-matrix acquisition with two identical linear array probes facing each other, travel-time inversion was used to estimate the velocity distribution in advance. Then, full-matrix Fourier-domain synthetic aperture (FM-FDSA) imaging based on the estimated velocity model was applied twice to image the cortical bone, utilizing the data acquired from top and bottom linear array, respectively. Finally, to further improve the image quality, the two images were merged to give the ultimate result. The performance of the method was verified by two simulated models and two bone phantoms (i.e., regular and irregular hollow bone phantom). The mean relative errors of estimated sound velocity in the region-of-interest (ROI) are all below 12%, and the mean errors of cortical section thickness are all less than 0.3 mm. Compared to the conventional synthetic aperture (SA) imaging, the FM-FDSA-VI method is able to accurately image cortical bone with respect to the structure. Moreover, the result of irregular bone phantom was close to the image scanned by microcomputed tomography ( μ CT) in terms of macro geometry and thickness. It is demonstrated that the proposed FM-FDSA-VI method is an efficient way for cortical bone ultrasonic imaging.
Collapse
|
9
|
Bi D, Dai Z, Liu D, Wu F, Liu C, Li Y, Li B, Li Z, Li Y, Ta D. Ultrasonic Backscatter Measurements of Human Cortical and Trabecular Bone Densities in a Head-Down Bed-Rest Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2404-2415. [PMID: 34052063 DOI: 10.1016/j.ultrasmedbio.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
This study aims to investigate the feasibility of quantitative ultrasonic backscatter in evaluating human cortical and trabecular bone densities in vivo based on a head-down-tilt bed rest study, with 36 participants tested through 90 d of bed rest and 180 d of recovery. Backscatter measurements were performed using an ultrasonic backscatter bone diagnostic instrument. Backscatter parameters were calculated with a dynamic signal-of-interest method, which was proposed to ensure the same ultrasonic interrogated volume in cortical and trabecular bones. The backscatter parameters exhibited significant correlations with site-matched bone densities provided by high-resolution peripheral quantitative computed tomography (0.33 < |R| < 0.72, p < 0.05). Some bone densities and backscatter parameters exhibited significant changes after the 90-d bed rest. The proposed method can be used to characterize bone densities, and the portable ultrasonic backscatter bone diagnostic device might be used to non-invasively reveal mean bone loss (across a group of people) after long-term bed rest and microgravity conditions of spaceflight missions.
Collapse
Affiliation(s)
- Dongsheng Bi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Duwei Liu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Zhili Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Academy for Engineering and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Hoffmeister BK, Gray AJ, Sharp PC, Fairbanks LC, Huang J. Ultrasonic Bone Assessment Using the Backscatter Amplitude Decay Constant. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2412-2423. [PMID: 32553693 DOI: 10.1016/j.ultrasmedbio.2020.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/29/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in bone caused by osteoporosis. The present study introduces a new technique that measures the exponential decay in the amplitude of the backscatter signal quantified by a parameter called the backscatter amplitude decay constant (BADC). Measurements were performed on 54 specimens of cancellous bone from 14 human femurs using a 3.5-MHz transducer. Six methods were tested to determine BADC. The recommended method measures the time slope of the natural log of the rectified signal. Measured values of BADC ranged from approximately 0.1 μs-1 to 0.6 μs-1. Moderate to strong correlations (Spearman's ρ >0.7) were found between BADC and the density and microstructural characteristics of the specimens determined using X-ray microcomputed tomography. The results of this study suggest that BADC may be able to detect changes in the density and microstructure of cancellous bone caused by osteoporosis and other diseases.
Collapse
Affiliation(s)
| | - Aubrey J Gray
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Phoebe C Sharp
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | | | - Jinsong Huang
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Il Lee K. Relationships of the ultrasonic backscatter measurements with the bone mineral density and the microarchitectural parameters in bovine trabecular bone in vitro. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:EL51. [PMID: 32752773 DOI: 10.1121/10.0001605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Relationships of the backscatter coefficient (BC), the apparent integrated backscatter (AIB), and the integrated reflection coefficient (IRC) with the bone mineral density (BMD) and the microarchitectural parameters were investigated in 28 bovine femoral trabecular bone samples. The BC was highly correlated with the BMD and the microarchitectural parameters (R = -0.66 to 0.71). In contrast, the AIB and the IRC exhibited high correlations with the BMD and the bone volume fraction (R = -0.68 to 0.77) and relatively lower correlations with the remaining microarchitectural parameters (R = -0.62 to 0.60). The multiple regression models yielded the adjusted squared correlation coefficients of 0.54-0.76.
Collapse
Affiliation(s)
- Kang Il Lee
- Department of Physics, Kangwon National University, Chuncheon 24341, Republic of
| |
Collapse
|
12
|
A Combined Ultrasonic Backscatter Parameter for Bone Status Evaluation in Neonates. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:3187268. [PMID: 32411279 PMCID: PMC7211244 DOI: 10.1155/2020/3187268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
Metabolic bone disease (MBD) is one of the major complications of prematurity. Ultrasonic backscatter technique has the potential to be a portable and noninvasive method for early diagnosis of MBD. This study firstly applied CAS to neonates, which was defined as a linear combination of the apparent integrated backscatter coefficient (AIB) and spectral centroid shift (SCS). The objective was to evaluate the feasibility of ultrasonic backscatter technique for assessing neonatal bone health using AIB, SCS, and CAS. Ultrasonic backscatter measurements at 3.5 MHz, 5.0 MHz, and 7.5 MHz were performed on a total of 505 newborns within 48 hours after birth. The values of backscatter parameters were calculated and compared among gestational age groups. Correlations between backscatter parameters, gestational age, anthropometric indices, and biochemical markers were analyzed. The optimal predicting models for CAS were determined. The results showed term infants had lower SCS and higher AIB and CAS than preterm infants. Gestational age and anthropometric indices were negatively correlated with SCS (|r| = 0.45 – 0.57, P < 0.001), and positively correlated with AIB (|r| = 0.36 – 0.60, P < 0.001) and CAS (|r| = 0.56 – 0.69, P < 0.001). Biochemical markers yielded weak or nonsignificant correlations with backscatter parameters. CAS had relatively stronger correlations with the neonatal variables than AIB and SCS. At 3.5 MHz and 5.0 MHz, only gestational age (P < 0.001) independently contributed to the measurements of CAS, and could explain up to 40.5% – 44.3% of CAS variation. At 7.5 MHz, the combination of gestational age (P < 0.001), head circumference (P = 0.002), and serum calcium (P = 0.037) explained up to 40.3% of CAS variation. This study suggested ultrasonic backscatter technique was feasible to evaluate neonatal bone status. CAS was a promising parameter to provide more information about bone health than AIB or SCS alone.
Collapse
|
13
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
14
|
Rodriguez-Sendra J, Jimenez N, Pico R, Faus J, Camarena F. Monitoring the Setting of Calcium Sulfate Bone-Graft Substitute Using Ultrasonic Backscattering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1658-1666. [PMID: 31283503 DOI: 10.1109/tuffc.2019.2926827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a method to monitor the setting process of bone-graft substitutes (calcium sulfate) using ultrasonic backscattering techniques. Analyzing the backscattered fields using a pulse-echo technique, we show that it is possible to dynamically describe the acoustic properties of the material which are linked to its setting state. Several experiments were performed to control the setting process of calcium sulfate using a 3.5-MHz transducer. The variation of the apparent integrated backscatter (AIB) with time during the setting process is analyzed and compared with measurements of the speed of sound (SOS) and temperature of the sample. The correlation of SOS and AIB allows us to clearly identify two different states of the samples, liquid and solid, in addition to the transition period. Results show that using backscattering analysis, the setting state of the material can be estimated with a threshold of 15 dB. This ultrasonic technique is indeed the first step to develop real-time monitoring systems for time-varying complex media as those present in bone regeneration for dental implantology applications.
Collapse
|
15
|
Li Y, Li B, Li Y, Liu C, Xu F, Zhang R, Ta D, Wang W. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone. ULTRASONIC IMAGING 2019; 41:271-289. [PMID: 31307317 DOI: 10.1177/0161734619862190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultrasonic backscatter technique holds the promise of characterizing bone density and microstructure. This paper conducts ultrasonic backscatter parametric imaging based on measurements of apparent integrated backscatter (AIB), spectral centroid shift (SCS), frequency slope of apparent backscatter (FSAB), and frequency intercept of apparent backscatter (FIAB) for representing trabecular bone mass and microstructure. We scanned 33 bovine trabecular bone samples using a 7.5 MHz focused transducer in a 20 mm × 20 mm region of interest (ROI) with a step interval of 0.05 mm. Images based on the ultrasonic backscatter parameters (i.e., AIB, SCS, FSAB, and FIAB) were constructed to compare with photographic images of the specimens as well as two-dimensional (2D) μ-CT images from approximately the same depth and location of the specimen. Similar structures and trabecular alignments can be observed among these images. Statistical analyses demonstrated that the means and standard deviations of the ultrasonic backscatter parameters exhibited significant correlations with bone density (|R| = 0.45-0.78, p < 0.01) and bone microstructure (|R| = 0.44-0.87, p < 0.001). Some bovine trabecular bone microstructure parameters were independently associated with the ultrasonic backscatter parameters (ΔR2 = 4.18%-44.45%, p < 0.05) after adjustment for bone apparent density (BAD). The results show that ultrasonic backscatter parametric imaging can provide a direct view of the trabecular microstructure and can reflect information about the density and microstructure of trabecular bone.
Collapse
Affiliation(s)
- Ying Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Boyi Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yifang Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Chengcheng Liu
- 2 Institute of Acoustics, Tongji University, Shanghai, China
| | - Feng Xu
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Rong Zhang
- 3 Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Dean Ta
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
- 4 Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
- 5 Human Phenome Institute, Fudan University, Shanghai, China
| | - Weiqi Wang
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Chen F, He A, Fu S, Liu X, Liu Y, Qu X. A method to locate spatial distribution of scattering centers from ultrasonic backscatter signal. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2453. [PMID: 31046378 DOI: 10.1121/1.5098947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this work is to find a method to locate the scattering centers in spatial domain; by using this information, the mean scatter spacing (MSS) can be estimated, and the spatial information is the one-dimensional imaging of scattering centers. This paper presents a method that can locate the scattering centers in spatial domain robustly and automatically. By incorporating it with fast Fourier transformation, the MSS can be estimated. The three foremost processes, matched filtering, envelope extraction, and peak reconstruction, are incorporated in the authors' algorithm. Monte Carlo simulations demonstrate that the proposed method is a robust one to locate scattering centers in spatial domain, and has a better performance than spectrum-based MSS estimation techniques. Especially exploited in estimating MSS which varies from 0.6 to 1.2 mm in the range of human mean trabecular bone spacing, the proposed method shows great potential in medical use. Simple but widely used phantom experiments demonstrate that the proposed algorithm has the capacity to locate scattering centers in spatial domain.
Collapse
Affiliation(s)
- Fang Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Aijun He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Sidong Fu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaozhou Liu
- Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Yunqing Liu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoli Qu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Liu C, Li B, Diwu Q, Li Y, Zhang R, Ta D, Wang W. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2311-2321. [PMID: 30575524 DOI: 10.1109/tuffc.2018.2872084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was designed to investigate the associations among ultrasonic backscatter, bone densities, and microstructure in bovine cancellous bone. Ultrasonic backscatter measurements were performed on 33 bovine cancellous bone specimens with a 2.25-MHz transducer. Ultrasonic apparent backscatter parameters ("apparent" means not compensating for ultrasonic attenuation and diffraction) were calculated with optimal signals of interest. The results showed that ultrasonic backscatter was significantly related to bone densities and microstructure ( R2 = 0.17 -0.88 and ). After adjusting the correlations by bone mineral density (BMD), the bone apparent density (BAD) and some trabecular structural features still contributed significantly to the adjusted correlations, with moderate additional variance explained ( ∆R2 = 9.7 % at best). Multiple linear regressions revealed that both BAD and trabecular structure contributed significantly and independently to the prediction of ultrasound backscatter (adjusted R2 = 0.75 -0.89 and ), explaining an additional 14% of the variance at most, compared with that of BMD measurements alone. The results proved that ultrasonic backscatter was primarily determined by BAD, not BMD, but the combination of bone structure and densities could achieve encouragingly better performances (89% of the variance explained at best) in predicting backscatter properties. This study demonstrated that ultrasonic apparent backscatter might provide additional density and structural features unrelated to current BMD measurement. Therefore, we suggest that ultrasonic backscatter measurement could play a more important role in cancellous bone evaluation.
Collapse
|
18
|
Hoffmeister BK, Huber MT, Viano AM, Huang J. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:911. [PMID: 29495707 PMCID: PMC5812744 DOI: 10.1121/1.5023219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 05/28/2023]
Abstract
Materials that simulate the ultrasonic properties of tissues are used widely for clinical and research purposes. However, relatively few materials are known to simulate the ultrasonic properties of cancellous bone. The goal of the present study was to investigate the suitability of using a polymer, open-cell rigid foam (OCRF) produced by Sawbones®. Measurements were performed on OCRF specimens with four different densities. Ultrasonic speed of sound and normalized broadband ultrasonic attenuation were measured with a 0.5 MHz transducer. Three backscatter parameters were measured with a 5 MHz transducer: apparent integrated backscatter, frequency slope of apparent backscatter, and normalized mean of the backscatter difference. X-ray micro-computed tomography was used to measure the microstructural characteristics of the OCRF specimens. The trabecular thickness and relative bone volume of the OCRF specimens were similar to those of human cancellous bone, but the trabecular separation was greater. In most cases, the ultrasonic properties of the OCRF specimens were similar to values reported in the literature for cancellous bone, including dependence on density. In addition, the OCRF specimens exhibited an ultrasonic anisotropy similar to that reported for cancellous bone.
Collapse
Affiliation(s)
| | - Matthew T Huber
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Jinsong Huang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
19
|
Variability in Ultrasound Backscatter Induced by Trabecular Microstructure Deterioration in Cancellous Bone. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4786329. [PMID: 29780823 PMCID: PMC5892598 DOI: 10.1155/2018/4786329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/01/2018] [Indexed: 12/02/2022]
Abstract
To determine the relationship between the ultrasonic backscatter parameters and trabecular microstructural variations in cancellous bone, three erosion procedures were performed to simulate various changes in the cancellous bone microstructure. The finite difference time domain (FDTD) method was used to simulate the backscatter signal in cancellous bone. Ultrasonic backscatter properties were derived as functions of the porosity when the ultrasound incident directions were perpendicular and parallel to the major trabeculae direction (MTD), respectively. The variability in the apparent backscatter coefficient (ABC) and apparent integrated backscatter (AIB) due to the trabecular microstructure was revealed. Significant negative correlations between the backscatter parameters (ABC and AIB) and the porosity of the cancellous bone were observed. The simulations showed that the ABC and AIB were influenced by the direction of the trabecular microstructural variations. The linear regressions between the ultrasonic backscatter parameters (ABC and AIB) and the porosity showed significantly different slopes for three erosion procedures when they are ultrasonically perpendicular (for ABC, −1.22 dB, −0.98 dB, and −0.46 dB; for AIB, −0.74 dB, −0.69 dB, and −0.25 dB) and parallel (for ABC, −1.87 dB, −0.69 dB, and −0.51 dB; for AIB, −0.9 dB, −0.5 dB, and −0.34 dB) to the MTD. This paper investigated the relationship between ultrasonic backscatter and cancellous bone microstructure deterioration and indicated that the ultrasonic backscatter could be affected by cancellous bone microstructure deterioration direction.
Collapse
|
20
|
Hoffmeister BK, Viano AM, Fairbanks LC, Ebron SC, McPherson JA, Huber MT. Effect of gate choice on backscatter difference measurements of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:540. [PMID: 28863582 PMCID: PMC5552398 DOI: 10.1121/1.4996140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 05/28/2023]
Abstract
A variety of ultrasonic techniques have been developed to detect changes in bone caused by osteoporosis. One approach, called the backscatter difference technique, analyzes the power difference between two different portions of a backscatter signal. Analysis gates with a certain delay τd, width τw, and separation τs are used to define portions of the backscatter signal for analysis. The goal of the present study was to investigate how different choices of τd, τw, and τs affect four backscatter difference parameters: the normalized mean of the backscatter difference (nMBD), the normalized slope of the backscatter difference (nSBD), the normalized intercept of the backscatter difference (nIBD), and the normalized backscatter amplitude ratio (nBAR). Backscatter measurements were performed on 54 cube shaped specimens of human cancellous bone. nMBD, nSBD, nIBD, and nBAR were determined for 34 different combinations of τd, τw, and τs for each specimen. nMBD and nBAR demonstrated the strongest correlations with apparent bone density (0.48 ≤ Rs ≤ 0.90). Generally, the correlations were found to improve as τw + τs was increased and as τd was decreased. Among the four backscatter difference parameters, the measured values of nMBD were least sensitive to gate choice (<16%).
Collapse
Affiliation(s)
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Luke C Fairbanks
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Sheldon C Ebron
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | | | - Matthew T Huber
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| |
Collapse
|