1
|
Habijan M, Babin D, Galić I, Leventić H, Romić K, Velicki L, Pižurica A. Overview of the Whole Heart and Heart Chamber Segmentation Methods. Cardiovasc Eng Technol 2020; 11:725-747. [DOI: 10.1007/s13239-020-00494-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
|
2
|
Pedrosa J, Queiros S, Bernard O, Engvall J, Edvardsen T, Nagel E, D'hooge J. Fast and Fully Automatic Left Ventricular Segmentation and Tracking in Echocardiography Using Shape-Based B-Spline Explicit Active Surfaces. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2287-2296. [PMID: 28783626 DOI: 10.1109/tmi.2017.2734959] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiac volume/function assessment remains a critical step in daily cardiology, and 3-D ultrasound plays an increasingly important role. Fully automatic left ventricular segmentation is, however, a challenging task due to the artifacts and low contrast-to-noise ratio of ultrasound imaging. In this paper, a fast and fully automatic framework for the full-cycle endocardial left ventricle segmentation is proposed. This approach couples the advantages of the B-spline explicit active surfaces framework, a purely image information approach, to those of statistical shape models to give prior information about the expected shape for an accurate segmentation. The segmentation is propagated throughout the heart cycle using a localized anatomical affine optical flow. It is shown that this approach not only outperforms other state-of-the-art methods in terms of distance metrics with a mean average distances of 1.81±0.59 and 1.98±0.66 mm at end-diastole and end-systole, respectively, but is computationally efficient (in average 11 s per 4-D image) and fully automatic.
Collapse
|
3
|
Morais P, Vilaça JL, Queirós S, Bourier F, Deisenhofer I, Tavares JMRS, D'hooge J. A competitive strategy for atrial and aortic tract segmentation based on deformable models. Med Image Anal 2017; 42:102-116. [PMID: 28780174 DOI: 10.1016/j.media.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/30/2017] [Accepted: 07/26/2017] [Indexed: 01/27/2023]
Abstract
Multiple strategies have previously been described for atrial region (i.e. atrial bodies and aortic tract) segmentation. Although these techniques have proven their accuracy, inadequate results in the mid atrial walls are common, restricting their application for specific cardiac interventions. In this work, we introduce a novel competitive strategy to perform atrial region segmentation with correct delineation of the thin mid walls, and integrated it into the B-spline Explicit Active Surfaces framework. A double-stage segmentation process is used, which starts with a fast contour growing followed by a refinement stage with local descriptors. Independent functions are used to define each region, being afterward combined to compete for the optimal boundary. The competition locally constrains the surface evolution, prevents overlaps and allows refinement to the walls. Three different scenarios were used to demonstrate the advantages of the proposed approach, through the evaluation of its segmentation accuracy, and its performance for heterogeneous mid walls. Both computed tomography and magnetic resonance imaging datasets were used, presenting results similar to the state-of-the-art methods for both atria and aorta. The competitive strategy showed its superior performance with statistically significant differences against the traditional free-evolution approach in cases with bad image quality or missed atrial/aortic walls. Moreover, only the competitive approach was able to accurately segment the atrial/aortic wall. Overall, the proposed strategy showed to be suitable for atrial region segmentation with a correct segmentation of the mid thin walls, demonstrating its added value with respect to the traditional techniques.
Collapse
Affiliation(s)
- Pedro Morais
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Lab on Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KULeuven - University of Leuven, Leuven, Belgium.
| | - João L Vilaça
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; DIGARC - Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
| | - Sandro Queirós
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Lab on Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KULeuven - University of Leuven, Leuven, Belgium; Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal
| | - Felix Bourier
- Department of Electrophysiology, German Heart Center Munich, Technical University, Munich, Germany
| | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University, Munich, Germany
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Jan D'hooge
- Lab on Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KULeuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Almeida N, Papachristidis A, Pearson P, Sarvari SI, Engvall J, Edvardsen T, Monaghan M, Gérard O, Samset E, D'hooge J. Left atrial volumetric assessment using a novel automated framework for 3D echocardiography: a multi-centre analysis. Eur Heart J Cardiovasc Imaging 2016; 18:1008-1015. [DOI: 10.1093/ehjci/jew166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/30/2016] [Indexed: 11/15/2022] Open
|