1
|
Pialot B, Guidi F, Bonciani G, Varray F, Loupas T, Tortoli P, Ramalli A. Computationally Efficient SVD Filtering for Ultrasound Flow Imaging and Real-Time Application to Ultrafast Doppler. IEEE Trans Biomed Eng 2025; 72:921-929. [PMID: 39531568 DOI: 10.1109/tbme.2024.3479414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over the past decade, ultrasound microvasculature imaging has seen the rise of highly sensitive techniques, such as ultrafast power Doppler (UPD) and ultrasound localization microscopy (ULM). The cornerstone of these techniques is the acquisition of a large number of frames based on unfocused wave transmission, enabling the use of singular value decomposition (SVD) as a powerful clutter filter to separate microvessels from surrounding tissue. Unfortunately, SVD is computationally expensive, hampering its use in real-time UPD imaging and weighing down the ULM processing chain, with evident impact in a clinical context. To solve this problem, we propose a new approach to implement SVD filtering, based on simplified and elementary operations that can be optimally parallelized on GPU (GPU sSVD), unlike standard SVD algorithms that are mainly serial. First, we show that GPU sSVD filters UPD and ULM data with high computational efficiency compared to standard SVD implementations, and without losing image quality. Second, we demonstrate that the proposed method is suitable for real-time operation. GPU sSVD was embedded in a research scanner, along with the spatial similarity matrix (SSM), a well-known efficient approach to automate the selection of SVD blood components. High real-time throughput of GPU sSVD is demonstrated when using large packets of frames, with and without SSM. For example, more than 15000 frames/s were filtered with 512 packet size on a 128 × 64 samples beamforming grid. Finally, GPU sSVD was used to perform, for the first time, UPD imaging with real-time and adaptive SVD filtering on healthy volunteers.
Collapse
|
2
|
Zhang X, Qi S, Li Y, Xu L, Ma J. Ultrafast Ultrasound Imaging System With Beamforming on Single FPGA. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2025; 74:1-9. [DOI: 10.1109/tim.2025.3554873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Affiliation(s)
- Xi Zhang
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Sheng Qi
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Yifan Li
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Jianguo Ma
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Praesius SK, Jorgensen LT, Jensen JA. Real-Time Full-Volume Row-Column Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; PP:109-126. [PMID: 40030559 DOI: 10.1109/tuffc.2024.3509683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
An implementation of volumetric beamforming for row-column addressed arrays (RCAs) is proposed, with optimizations for Graphics Processing Units (GPUs). It is hypothesized that entire volumes can imaged in real time by a consumer-class GPU at an emission rate ≥12 kHz. A separable beamforming algorithm was used to reduce the number of calculations with a negligible impact on the image quality. Here, a single image was beamformed for each emission and then extrapolated to reproduce the volume, which resulted in 65 times fewer calculations per volume. Reusing computations and samples among adjacent pixels and frames reduced the amount of overhead and load instructions, increasing performance. A GPU beamformer, written in CUDA C++, was modified to implement the dual-stage imaging with optimizations. In-vivo rat kidney data was acquired using a 6 MHz Vermon 128+128 RCA probe and a Verasonics Vantage 256 scanner. The acquisition used 96 defocused emissions at a 12 kHz rate for a volume acquisition rate of 125 Hz. Processing time, including all pre-processing, was measured for an NVIDIA GeForce RTX 4090 GPU, and the resulting beamforming rate was 1440 volumes per second, greatly exceeding the real-time rate. Based on the GPU's floating-point throughput, this corresponds to 22% of the theoretically achievable rate. High efficiency was also shown for an RTX 2080 Ti and RTX 3090, both achieving real-time imaging. This shows that 3D imaging can be performed in real time with a setup similar to 2D imaging: Using a single graphics card, one scanner, and 128 transmit/receive channels.
Collapse
|
4
|
Parra Raad J, Lock D, Liu YY, Solomon M, Peralta L, Christensen-Jeffries K. Optically Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1833-1843. [PMID: 39475744 DOI: 10.1109/tuffc.2024.3484770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Super-resolution ultrasound (SRUS) visualizes microvasculature beyond the ultrasound (US) diffraction limit (wavelength( )/2) by localizing and tracking spatially isolated microbubble (MB) contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below m are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane (PDMS) to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to m ( ; m). SRUS imaging was performed and validated with optical measurements. The average SRUS error was m ( ) with a standard deviation error of m. The average error decreased to m ( ) once the number of localized MBs surpassed 1000 per estimated diameter. In addition, less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.
Collapse
|
5
|
Denis L, Chabouh G, Heiles B, Couture O. Volumetric Ultrasound Localization Microscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1643-1656. [PMID: 39453807 DOI: 10.1109/tuffc.2024.3485556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Super-resolution ultrasound (SRUS) has evolved significantly with the advent of ultrasound localization microscopy (ULM). This technique enables subwavelength resolution imaging using microbubble contrast agents. Initially confined to 2-D imaging, ULM has progressed toward volumetric approaches, allowing for comprehensive 3-D visualization of microvascular networks. This review explores the technological advancements and challenges associated with volumetric ULM, focusing on key aspects such as transducer design, acquisition speed, data processing algorithms, or integration into clinical practice. We discuss the limitations of traditional 2-D ULM, including dependence on precise imaging plane selection and compromised resolution in microvasculature quantification. In contrast, volumetric ULM offers enhanced spatial resolution and allows motion correction in all directions, promising transformative insights into microvascular pathophysiology. By examining current research and future directions, this review highlights the potential of volumetric ULM to contribute significantly to diagnostic across various medical conditions, including cancers, arteriosclerosis, strokes, diabetes, and neurodegenerative diseases.
Collapse
|
6
|
Bosco E, Spairani E, Toffali E, Meacci V, Ramalli A, Matrone G. A Deep Learning Approach for Beamforming and Contrast Enhancement of Ultrasound Images in Monostatic Synthetic Aperture Imaging: A Proof-of-Concept. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:376-382. [PMID: 38899024 PMCID: PMC11186640 DOI: 10.1109/ojemb.2024.3401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Goal: In this study, we demonstrate that a deep neural network (DNN) can be trained to reconstruct high-contrast images, resembling those produced by the multistatic Synthetic Aperture (SA) method using a 128-element array, leveraging pre-beamforming radiofrequency (RF) signals acquired through the monostatic SA approach. Methods: A U-net was trained using 27200 pairs of RF signals, simulated considering a monostatic SA architecture, with their corresponding delay-and-sum beamformed target images in a multistatic 128-element SA configuration. The contrast was assessed on 500 simulated test images of anechoic/hyperechoic targets. The DNN's performance in reconstructing experimental images of a phantom and different in vivo scenarios was tested too. Results: The DNN, compared to the simple monostatic SA approach used to acquire pre-beamforming signals, generated better-quality images with higher contrast and reduced noise/artifacts. Conclusions: The obtained results suggest the potential for the development of a single-channel setup, simultaneously providing good-quality images and reducing hardware complexity.
Collapse
Affiliation(s)
- Edoardo Bosco
- Department of Electrical, Computer and Biomedical EngineeringUniversity of Pavia27100PaviaItaly
| | - Edoardo Spairani
- Department of Electrical, Computer and Biomedical EngineeringUniversity of Pavia27100PaviaItaly
| | - Eleonora Toffali
- Department of Electrical, Computer and Biomedical EngineeringUniversity of Pavia27100PaviaItaly
| | - Valentino Meacci
- Department of Information EngineeringUniversity of Florence50134FlorenceItaly
| | - Alessandro Ramalli
- Department of Information EngineeringUniversity of Florence50134FlorenceItaly
| | - Giulia Matrone
- Department of Electrical, Computer and Biomedical EngineeringUniversity of Pavia27100PaviaItaly
| |
Collapse
|
7
|
Kou Z, You Q, Kim J, Dong Z, Lowerison MR, Sekaran NVC, Llano DA, Song P, Oelze ML. High-Level Synthesis Design of Scalable Ultrafast Ultrasound Beamformer With Single FPGA. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:446-457. [PMID: 37067960 PMCID: PMC10405367 DOI: 10.1109/tbcas.2023.3267614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ultrafast ultrasound imaging is essential for advanced ultrasound imaging techniques such as ultrasound localization microscopy (ULM) and functional ultrasound (fUS). Current ultrafast ultrasound imaging is challenged by the ultrahigh data bandwidth associated with the radio frequency (RF) signal, and by the latency of the computationally expensive beamforming process. As such, continuous ultrafast data acquisition and beamforming remain elusive with existing software beamformers based on CPUs or GPUs. To address these challenges, the proposed work introduces a novel method of implementing an ultrafast ultrasound beamformer specifically for ultrafast plane wave imaging (PWI) on a field programmable gate array (FPGA) by using high-level synthesis. A parallelized implementation of the beamformer on a single FPGA was proposed by 1) utilizing a delay compression technique to reduce the delay profile size, which enables both run-time pre-calculated delay profile loading from external memory and delay reuse, 2) vectorizing channel data fetching which is enabled by delay reuse, and 3) using fixed summing networks to reduce consumption of logic resources. Our proposed method presents two unique advantages over current FPGA beamformers: 1) high scalability that allows fast adaptation to different FPGA resources and beamforming speed demands by using Xilinx High-Level Synthesis as the development tool, and 2) allow a compact form factor design by using a single FPGA to complete the beamforming instead of multiple FPGAs. Current Xilinx FPGAs provide the capabilities of connecting up to 1024 ultrasound channels with a single FPGA and the newest JESD204B interface analog front end (AFE). This channel count is much more than the channel count needed by current linear arrays, which normally have 128 or 256 channels. With the proposed method, a sustainable average beamforming rate of 4.83 G samples/second in terms of input raw RF sample was achieved. The resulting image quality of the proposed beamformer was compared with the software beamformer on the Verasonics Vantage system for both phantom imaging and in vivo imaging of a mouse brain. Multiple imaging schemes including B-mode, power Doppler and ULM were assessed to verify that the image quality was not compromised for speed.
Collapse
|
8
|
Haniel J, Yiu BYS, Chee AJY, Huebner R, Yu ACH. Efficacy of ultrasound vector flow imaging in tracking omnidirectional pulsatile flow. Med Phys 2023; 50:1699-1714. [PMID: 36546560 DOI: 10.1002/mp.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ultrasound vector flow imaging (VFI) shows potential as an emerging non-invasive modality for time-resolved flow mapping. However, its efficacy in tracking multidirectional pulsatile flow with temporal resolvability has not yet been systematically evaluated because of the lack of an appropriate test protocol. PURPOSE We present the first systematic performance investigation of VFI in tracking pulsatile flow in a meticulously designed scenario with time-varying, omnidirectional flow fields (with flow angles from 0° to 360°). METHODS Ultrasound VFI was performed on a three-loop spiral flow phantom (4 mm diameter; 5 mm pitch) that was configured to operate under pulsatile flow conditions (10 ml/s peak flow rate; 1 Hz pulse rate; carotid pulse shape). The spiral lumen geometry was designed to simulate recirculatory flow dynamics observed in the heart and in curvy blood vessel segments such as the carotid bulb. The imaging sequence was based on steered plane wave pulsing (-10°, 0°, +10° steering angles; 5 MHz imaging frequency; 3.3 kHz interleaved pulse repetition frequency). VFI's pulsatile flow estimation performance and its ability to detect secondary flow were comparatively assessed against flow fields derived from computational fluid dynamics (CFD) simulations that included consideration of fluid-structure interactions (FSI). The mean percentage error (MPE) and the coefficient of determination (R2 ) were computed to assess the correspondence of the velocity estimates derived from VFI and CFD-FSI simulations. In addition, VFI's efficacy in tracking pulse waves was analyzed with respect to pressure transducer measurements made at the phantom's inlet and outlet. RESULTS Pulsatile flow patterns rendered by VFI agreed with the flow profiles computed from CFD-FSI simulations (average MPE: -5.3%). The shape of the VFI-measured velocity magnitude profile generally matched the inlet flow profile. High correlation exists between VFI measurements and simulated flow vectors (lateral velocity: R2 = 0.8; axial velocity R2 = 0.89; beam-flow angle: R2 = 0.98; p < 0.0001 for all three quantities). VFI was found to be capable of consistently tracking secondary flow. It also yielded pulse wave velocity (PWV) estimates (5.72 ± 1.02 m/s) that, on average, are within 6.4% of those obtained from pressure transducer measurements (6.11 ± 1.15 m/s). CONCLUSION VFI can consistently track omnidirectional pulsatile flow on a time-resolved basis. This systematic investigation serves well as a quality assurance test of VFI.
Collapse
Affiliation(s)
- Jonathas Haniel
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Billy Y S Yiu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Rudolf Huebner
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Peralta L, Mazierli D, Gomez A, Hajnal JV, Tortoli P, Ramalli A. 3-D Coherent Multitransducer Ultrasound Imaging With Sparse Spiral Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:197-206. [PMID: 37022372 DOI: 10.1109/tuffc.2023.3241774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coherent multitransducer ultrasound (CoMTUS) creates an extended effective aperture through the coherent combination of multiple arrays, which results in images with enhanced resolution, extended field-of-view, and higher sensitivity. The subwavelength localization accuracy of the multiple transducers required to coherently beamform the data is achieved by using the echoes backscattered from targeted points. In this study, CoMTUS is implemented and demonstrated for the first time in 3-D imaging using a pair of 256-element 2-D sparse spiral arrays, which keep the channel count low and limit the amount of data to be processed. The imaging performance of the method was investigated using both simulations and phantom tests. The feasibility of free-hand operation is also experimentally demonstrated. Results show that, in comparison with a single dense array system using the same total number of active elements, the proposed CoMTUS system improves spatial resolution (up to ten times) in the direction where both arrays are aligned, contrast-to-noise ratio (CNR; up to 46%), and generalized CNR (gCNR; up to 15%). Overall, CoMTUS shows a narrower main lobe and higher CNR, which results in an increased dynamic range and better target detectability.
Collapse
|
10
|
dos Santos DS, Fool F, Mozaffarzadeh M, Shabanimotlagh M, Noothout E, Kim T, Rozsa N, Vos HJ, Bosch JG, Pertijs MAP, Verweij MD, de Jong N. A Tiled Ultrasound Matrix Transducer for Volumetric Imaging of the Carotid Artery. SENSORS (BASEL, SWITZERLAND) 2022; 22:9799. [PMID: 36560168 PMCID: PMC9784751 DOI: 10.3390/s22249799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfaced with an application-specific integrated circuit (ASIC) for channel reduction. However, the fabrication of such a transducer integrated with one very large ASIC is very challenging and expensive. In this study, we develop a prototype matrix transducer mounted on top of multiple identical ASICs in a tiled configuration. The matrix was designed to have 7680 piezoelectric elements with a pitch of 300 μm × 150 μm integrated with an array of 8 × 1 tiled ASICs. The performance of the prototype is characterized by a series of measurements. The transducer exhibits a uniform behavior with the majority of the elements working within the -6 dB sensitivity range. In transmit, the individual elements show a center frequency of 7.5 MHz, a -6 dB bandwidth of 45%, and a transmit efficiency of 30 Pa/V at 200 mm. In receive, the dynamic range is 81 dB, and the minimum detectable pressure is 60 Pa per element. To demonstrate the imaging capabilities, we acquired 3D images using a commercial wire phantom.
Collapse
Affiliation(s)
- Djalma Simões dos Santos
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Fabian Fool
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Moein Mozaffarzadeh
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Maysam Shabanimotlagh
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Emile Noothout
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Taehoon Kim
- Electronic Instrumentation Laboratory, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Nuriel Rozsa
- Electronic Instrumentation Laboratory, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Hendrik J. Vos
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Johan G. Bosch
- Department Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Michiel A. P. Pertijs
- Electronic Instrumentation Laboratory, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Martin D. Verweij
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nico de Jong
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
11
|
Jensen JA, Schou M, Jorgensen LT, Tomov BG, Stuart MB, Traberg MS, Taghavi I, Oygaard SH, Ommen ML, Steenberg K, Thomsen EV, Panduro NS, Nielsen MB, Sorensen CM. Anatomic and Functional Imaging Using Row-Column Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2722-2738. [PMID: 35839193 DOI: 10.1109/tuffc.2022.3191391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Row-column (RC) arrays have the potential to yield full 3-D ultrasound imaging with a greatly reduced number of elements compared to fully populated arrays. They, however, have several challenges due to their special geometry. This review article summarizes the current literature for RC imaging and demonstrates that full anatomic and functional imaging can attain a high quality using synthetic aperture (SA) sequences and modified delay-and-sum beamforming. Resolution can approach the diffraction limit with an isotropic resolution of half a wavelength with low sidelobe levels, and the field of view can be expanded by using convex or lensed RC probes. GPU beamforming allows for three orthogonal planes to be beamformed at 30 Hz, providing near real-time imaging ideal for positioning the probe and improving the operator's workflow. Functional imaging is also attainable using transverse oscillation and dedicated SA sequence for tensor velocity imaging for revealing the full 3-D velocity vector as a function of spatial position and time for both blood velocity and tissue motion estimation. Using RC arrays with commercial contrast agents can reveal super-resolution imaging (SRI) with isotropic resolution below [Formula: see text]. RC arrays can, thus, yield full 3-D imaging at high resolution, contrast, and volumetric rates for both anatomic and functional imaging with the same number of receive channels as current commercial 1-D arrays.
Collapse
|
12
|
Maffett R, Boni E, Chee AJY, Yiu BYS, Savoia AS, Ramalli A, Tortoli P, Yu ACH. Unfocused Field Analysis of a Density-Tapered Spiral Array for High-Volume-Rate 3-D Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2810-2822. [PMID: 35786553 DOI: 10.1109/tuffc.2022.3188245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spiral array transducers with a sparse 2-D aperture have demonstrated their potential in realizing 3-D ultrasound imaging with reduced data rates. Nevertheless, their feasibility in high-volume-rate imaging based on unfocused transmissions has yet to be established. From a metrology standpoint, it is essential to characterize the acoustic field of unfocused transmissions from spiral arrays not only to assess their safety but also to identify the root cause of imaging irregularities due to the array's sparse aperture. Here, we present a field profile analysis of unfocused transmissions from a density-tapered spiral array transducer (256 hexagonal elements, 220- [Formula: see text] element diameter, and 1-cm aperture diameter) through both simulations and hydrophone measurements. We investigated plane- and diverging-wave transmissions (five-cycle, 7.5-MHz pulses) from 0° to 10° steering for their beam intensity characteristics and wavefront arrival time profiles. Unfocused firings were also tested for B-mode imaging performance (ten compounded angles, -5° to 5° span). The array was found to produce unfocused transmissions with a peak negative pressure of 93.9 kPa at 2 cm depth. All transmissions steered up to 5° were free of secondary lobes within 12 dB of the main beam peak intensity. All wavefront arrival time profiles were found to closely match the expected profiles with maximum root-mean-squared errors of [Formula: see text] for plane wave (PW) and [Formula: see text] for diverging wave. The B-mode images showed good spatial resolution with a penetration depth of 22 mm in PW imaging. Overall, these results demonstrate that the density-tapered spiral array can facilitate unfocused transmissions below regulatory limits (mechanical index: 0.034; spatial-peak, pulse-average intensity: 0.298 W/cm2) and with suppressed secondary lobes while maintaining smooth wavefronts.
Collapse
|
13
|
Gargani L, Baldini M, Berchiolli R, Bort IR, Casolo G, Chiappino D, Cosottini M, D'Angelo G, De Santis M, Erba P, Fabiani I, Fabiani P, Gabbriellini I, Galeotti GG, Ghicopulos I, Goncalves I, Lapi S, Masini G, Morizzo C, Napoli V, Nilsson J, Orlandi G, Palombo C, Pieraccini F, Ricci S, Siciliano G, Slart RHJA, De Caterina R. Detecting the vulnerable carotid plaque: the Carotid Artery Multimodality imaging Prognostic study design. J Cardiovasc Med (Hagerstown) 2022; 23:466-473. [PMID: 35763768 DOI: 10.2459/jcm.0000000000001314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Carotid artery disease is highly prevalent and a main cause of ischemic stroke and vascular dementia. There is a paucity of information on predictors of serious vascular events. Besides percentage diameter stenosis, international guidelines also recommend the evaluation of qualitative characteristics of carotid artery disease as a guide to treatment, but with no agreement on which qualitative features to assess. This inadequate knowledge leads to a poor ability to identify patients at risk, dispersion of medical resources, and unproven use of expensive and resource-consuming techniques, such as magnetic resonance imaging, positron emission tomography, and computed tomography. OBJECTIVES The Carotid Artery Multimodality imaging Prognostic (CAMP) study will: prospectively determine the best predictors of silent and overt ischemic stroke and vascular dementia in patients with asymptomatic subcritical carotid artery disease by identifying the noninvasive diagnostic features of the 'vulnerable carotid plaque'; assess whether 'smart' use of low-cost diagnostic methods such as ultrasound-based evaluations may yield at least the same level of prospective information as more expensive techniques. STUDY DESIGN We will compare the prognostic/predictive value of all proposed techniques with regard to silent or clinically manifest ischemic stroke and vascular dementia. The study will include ≥300 patients with asymptomatic, unilateral, intermediate degree (40-60% diameter) common or internal carotid artery stenosis detected at carotid ultrasound, with a 2-year follow-up. The study design has been registered on Clinicaltrial.gov on December 17, 2020 (ID number NCT04679727).
Collapse
Affiliation(s)
- Luna Gargani
- Institute of Clinical Physiology, National Research Council
| | | | - Raffaella Berchiolli
- Vascular Surgery Unit, Cardio Thoracic and Vascular Department, University of Pisa
| | | | | | | | | | | | - Mariella De Santis
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Paola Erba
- Department of Nuclear Medicine, University of Pisa, Pisa, Italy
- Medical Imaging Center, Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Plinio Fabiani
- Internal Medicine, S.M. Annunziata Hospital, Florence, Italy
| | - Ilaria Gabbriellini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gian Giacomo Galeotti
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Irene Ghicopulos
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Isabel Goncalves
- Department of Clinical Sciences - Malmö University Hospital, University of Lund, Malmö, Sweden
| | - Simone Lapi
- BMS Multispecialistic Biobank-Biobank Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gabriele Masini
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Carmela Morizzo
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Vinicio Napoli
- Diagnostic and Interventional Radiology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Jan Nilsson
- Department of Clinical Sciences - Malmö University Hospital, University of Lund, Malmö, Sweden
| | - Giovanni Orlandi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Palombo
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | | | - Stefano Ricci
- Department of Information Engineering (DINFO), University of Florence, Florence, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Raffaele De Caterina
- Cardiology Unit, Cardio-Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The spread of high frame rate and 3-D imaging techniques has raised pressing requirements for ultrasound systems. In particular, the processing power and data transfer rate requirements may be so demanding to hinder the real-time (RT) implementation of such techniques. This paper first analyzes the general requirements involved in RT ultrasound systems. Then, it identifies the main bottlenecks in the receiving section of a specific RT scanner, the ULA-OP 256, which is one of the most powerful available open scanners and may therefore be assumed as a reference. This case study has evidenced that the “star” topology, used to digitally interconnect the system’s boards, may easily saturate the data transfer bandwidth, thus impacting the achievable frame/volume rates in RT. The architecture of the digital scanner was exploited to tackle the bottlenecks by enabling a new “ring“ communication topology. Experimental 2-D and 3-D high-frame-rate imaging tests were conducted to evaluate the frame rates achievable with both interconnection modalities. It is shown that the ring topology enables up to 4400 frames/s and 510 volumes/s, with mean increments of +230% (up to +620%) compared to the star topology.
Collapse
|
15
|
Favre H, Pernot M, Tanter M, Papadacci C. Boosting transducer matrix sensitivity for 3D large field ultrasound localization microscopy using a multi-lens diffracting layer: a simulation study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5f72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Mapping blood microflows of the whole brain is crucial for early diagnosis of cerebral diseases. Ultrasound localization microscopy (ULM) was recently applied to map and quantify blood microflows in 2D in the brain of adult patients down to the micron scale. Whole brain 3D clinical ULM remains challenging due to the transcranial energy loss which significantly reduces the imaging sensitivity. Large aperture probes with a large surface can increase both resolution and sensitivity. However, a large active surface implies thousands of acoustic elements, with limited clinical translation. In this study, we investigate via simulations a new high-sensitive 3D imaging approach based on large diverging elements, combined with an adapted beamforming with corrected delay laws, to increase sensitivity. First, pressure fields from single elements with different sizes and shapes were simulated. High directivity was measured for curved element while maintaining high transmit pressure. Matrix arrays of 256 elements with a dimension of 10 × 10 cm with small (λ/2), large (4λ), and curved elements (4λ) were compared through point spread functions analysis. A large synthetic microvessel phantom filled with 100 microbubbles per frame was imaged using the matrix arrays in a transcranial configuration. 93% of the bubbles were detected with the proposed approach demonstrating that the multi-lens diffracting layer has a strong potential to enable 3D ULM over a large field of view through the bones.
Collapse
|
16
|
Song J, Zhang Q, Zhou L, Quan Z, Wang S, Liu Z, Fang X, Wu Y, Yang Q, Yin H, Ding M, Yuchi M. Design and Implementation of a Modular and Scalable Research Platform for Ultrasound Computed Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:62-72. [PMID: 34410922 DOI: 10.1109/tuffc.2021.3105691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing attention has been attracted to the research of ultrasound computed tomography (USCT). This article reports the design considerations and implementation details of a novel USCT research system named UltraLucid, which aims to provide a user-friendly platform for researchers to develop new algorithms and conduct clinical trials. The modular design strategy is adopted to make the system highly scalable. A prototype has been assembled in our laboratory, which is equipped with a 2048-element ring transducer, 1024 transmit (TX) channels, 1024 receive (RX) channels, two servers, and a control unit. The prototype can acquire raw data from 1024 channels simultaneously using a modular data acquisition and a transfer system, consisting of 16 excitation and data acquisition (EDAQ) boards. Each EDAQ board has 64 independent TX and RX channels and 4-Gb Ethernet interfaces for raw data transmission. The raw data can be transferred to two servers at a theoretical rate of 64 Gb/s. Both servers are equipped with a 10.9-TB solid-state drive (SSD) array that can store raw data for offline processing. Alternatively, after processing by onboard field-programmable gate arrays (FPGAs), the raw data can be processed online using multicore central processing units (CPUs) and graphics processing units (GPUs) in each server. Through control software running on the host computer, the researchers can configure parameters for transmission, reception, and data acquisition. Novel TX-RX scheme and coded imaging can be implemented. The modular hardware structure and the software-based processing strategy make the system highly scalable and flexible. The system performance is evaluated with phantoms and in vivo experiments.
Collapse
|
17
|
Matrone G, Bell MAL, Ramalli A. Spatial Coherence Beamforming With Multi-Line Transmission to Enhance the Contrast of Coherent Structures in Ultrasound Images Degraded by Acoustic Clutter. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3570-3582. [PMID: 34310298 DOI: 10.1109/tuffc.2021.3099730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work demonstrates that the combination of multi-line transmission (MLT) and short-lag spatial coherence (SLSC) imaging improves the contrast of highly coherent structures within soft tissues when compared to both traditional SLSC imaging and conventional delay and sum (DAS) beamforming. Experimental tests with small (i.e., [Formula: see text]-3 mm) targets embedded in homogeneous and heterogeneous backgrounds were conducted. DAS or SLSC images were reconstructed when implementing MLT with varying numbers of simultaneously transmitted beams. In images degraded by acoustic clutter, MLT SLSC achieved up to 34.1 dB better target contrast and up to 16 times higher frame rates when compared to the more conventional single-line transmission SLSC images, with lateral resolution improvements as large as 38.2%. MLT SLSC thus represents a promising technique for clinical applications in which ultrasound visualization of highly coherent targets is required (e.g., breast microcalcifications, kidney stones, and percutaneous biopsy needle tracking) and would otherwise be challenging due to the strong presence of acoustic clutter.
Collapse
|
18
|
Matera R, Ricci S. Automatic Measurement of the Carotid Blood Flow for Wearable Sensors: A Pilot Study. SENSORS 2021; 21:s21175877. [PMID: 34502768 PMCID: PMC8434437 DOI: 10.3390/s21175877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023]
Abstract
The assessment of the velocity of blood flowing in the carotid, in modern clinical practice, represents an important exam performed both in emergency situations and as part of scheduled screenings. It is typically performed by an expert sonographer who operates a complex and costly clinical echograph. Unfortunately, in developing countries, in rural areas, and even in crowded modern cities, the access to this exam can be limited by the lack of suitable personnel and ultrasound equipment. The recent availability of low-cost, handheld devices has contributed to solving part of the problem, but a wide access to the exam is still hampered by the lack of expert sonographers. In this work, an automated procedure is presented with the hope that, in the near future, it can be integrated into a low-cost, handheld instrument that is also suitable for self-measurement, for example, as can be done today with the finger oximeter. The operator should only place the probe on the neck, transversally with respect to the common tract of the carotid. The system, in real-time, automatically locates the vessel lumen, places the sample volume, and performs an angle-corrected velocity measurement of the common carotid artery peak velocity. In this study, the method was implemented for testing on the ULA-OP 256 scanner. Experiments on flow phantoms and volunteers show a performance in sample volume placement similar to that achieved by expert operators, and an accuracy and repeatability of 3.2% and 4.5%, respectively.
Collapse
|
19
|
Stuart MB, Jensen PM, Olsen JTR, Kristensen AB, Schou M, Dammann B, Sorensen HHB, Jensen JA. Real-Time Volumetric Synthetic Aperture Software Beamforming of Row-Column Probe Data. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2608-2618. [PMID: 33830920 DOI: 10.1109/tuffc.2021.3071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two delay-and-sum beamformers for 3-D synthetic aperture imaging with row-column addressed arrays are presented. Both beamformers are software implementations for graphics processing unit (GPU) execution with dynamic apodizations and third-order polynomial subsample interpolation. The first beamformer was written in the MATLAB programming language and the second was written in C/C++ with the compute unified device architecture (CUDA) extensions by NVIDIA. Performance was measured as volume rate and sample throughput on three different GPUs: a 1050 Ti, a 1080 Ti, and a TITAN V. The beamformers were evaluated across 112 combinations of output geometry, depth range, transducer array size, number of virtual sources, floating-point precision, and Nyquist rate or in-phase/quadrature beamforming using analytic signals. Real-time imaging defined as more than 30 volumes per second was attained by the CUDA beamformer on the three GPUs for 13, 27, and 43 setups, respectively. The MATLAB beamformer did not attain real-time imaging for any setup. The median, single-precision sample throughput of the CUDA beamformer was 4.9, 20.8, and 33.5 Gsamples/s on the three GPUs, respectively. The throughput of CUDA beamformer was an order of magnitude higher than that of the MATLAB beamformer.
Collapse
|
20
|
Guidi F, Tortoli P. Real-Time High Frame Rate Color Flow Mapping System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2193-2201. [PMID: 33690116 DOI: 10.1109/tuffc.2021.3064612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plane wave (PW) transmission (TX) can be profitably used to improve the performance of color flow mapping (CFM) systems by increasing the autocorrelation ensemble length (EL) and/or the frame rate (FR). Although high-end scanners tend to include imaging schemes using PW TX and parallel receive beams, high frame rate (HFR) CFM has been so far experimentally implemented mostly through research platforms that transmit PWs and beamform/process the received channel data off-line. In this article, full real-time implementation of PW CFM with continuous-time clutter filtering and extended FR/EL is reported. The field-programmable gate arrays (FPGAs) and digital signal processors (DSPs) onboard the ULA-OP 256 research scanner were programmed to perform high-speed parallel beamforming and autocorrelation-based CFM processing, respectively. Different strategies were tested, in which the TX of PWs for CFM is either continuous or interleaved with the TX of packets of B-mode pulses. A fourth-order Chebyshev continuous-time high-pass filter with programmable cutoff frequency was implemented and its clutter rejection performance was positively compared with that obtained when operating on packet data. CFM FRs up to 575 were obtained. The possibility of programming the autocorrelation EL up to 64 permitted to detect flow with high sensitivity and accuracy (average relative errors down to 0.4% ± 8.4%). In vivo HFR movies are presented, showing the dynamics of flow in the common carotid artery, which highlight the presence of secondary flow components.
Collapse
|
21
|
Giangrossi C, Meacci V, Ricci S, Matera R, Boni E, Dallai A, Tortoli P. Virtual Real-Time for High PRF Multiline Vector Doppler on ULA-OP 256. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:624-631. [PMID: 32813652 DOI: 10.1109/tuffc.2020.3017940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The recent development of high-frame-rate (HFR) imaging/Doppler methods based on the transmission of plane or diverging waves has proposed new challenges to echographic data management and display. Due to the huge amount of data that need to be processed at very high speed, the pulse repetition frequency (PRF) is typically limited to hundreds hertz or few kilohertz. In Doppler applications, a PRF limitation may result unacceptable since it inherently translates to a corresponding limitation in the maximum detectable velocity. In this article, the ULA-OP 256 implementation of a novel ultrasound modality, called virtual real-time (VRT), is described. First, for a given HFR RT modality, the scanner displays the processed results while saving channel data into an internal buffer. Then, ULA-OP 256 switches to VRT mode, according to which the raw data stored in the buffer are immediately reprocessed by the same hardware used in RT. In the two phases, the ULA-OP 256 calculation power can be differently distributed to increase the acquisition frame rate or the quality of processing results. VRT was here used to extend the PRF limit in a multiline vector Doppler (MLVD) application. In RT, the PRF was maximized at the expense of the display quality; in VRT, data were reprocessed at a lower rate in a high-quality display format, which provides more detailed flow information. Experiments are reported in which the MLVD technique is shown capable of working at 16-kHz PRF, so that flow jet velocities higher up to 3 m/s can be detected.
Collapse
|
22
|
Peralta L, Ramalli A, Reinwald M, Eckersley RJ, Hajnal JV. Impact of Aperture, Depth, and Acoustic Clutter on the Performance of Coherent Multi-Transducer Ultrasound Imaging. APPLIED SCIENCES-BASEL 2020; 10:7655. [PMID: 33680504 PMCID: PMC7116862 DOI: 10.3390/app10217655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transducers with a larger aperture size are desirable in ultrasound imaging to improve resolution and image quality. A coherent multi-transducer ultrasound imaging system (CoMTUS) enables an extended effective aperture through the coherent combination of multiple transducers. In this study, the discontinuous extended aperture created by CoMTUS and its performance for deep imaging and through layered media are investigated by both simulations and experiments. Typical image quality metrics—resolution, contrast and contrast-to-noise ratio—are evaluated and compared with a standard single probe imaging system. Results suggest that the image performance of CoMTUS depends on the relative spatial location of the arrays. The resulting effective aperture significantly improves resolution, while the separation between the arrays may degrade contrast. For a limited gap in the effective aperture (less than a few centimetres), CoMTUS provides benefits to image quality compared to the standard single probe imaging system. Overall, CoMTUS shows higher sensitivity and reduced loss of resolution with imaging depth. In general, CoMTUS imaging performance was unaffected when imaging through a layered medium with different speed of sound values and resolution improved up to 80% at large imaging depths.
Collapse
Affiliation(s)
- Laura Peralta
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
- Correspondence:
| | - Alessandro Ramalli
- Department of Information Engineering, University of Florence, 50139 Florence, Italy
| | - Michael Reinwald
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Robert J. Eckersley
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Joseph V. Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
23
|
Kim P, Song JH, Song TK. A new frequency domain passive acoustic mapping method using passive Hilbert beamforming to reduce the computational complexity of fast Fourier transform. ULTRASONICS 2020; 102:106030. [PMID: 31785584 DOI: 10.1016/j.ultras.2019.106030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Passive acoustic mapping (PAM) is the current state-of-the-art imaging tool for monitoring cavitation activity during focused ultrasound therapy such as blood-brain barrier opening. However, PAM incurs huge computational complexity. To address this issue, frequency-domain PAM (FD-PAM) was proposed. Nevertheless, FD-PAM still requires a large number of fast Fourier transforms (FFTs) to produce the frequency components utilized for cavitation monitoring with PAM. Hence, in this paper, we proposes a frequency domain PAM method using passive Hilbert beamforming (PHB-PAM), which can significantly reduce the number of input samples for FFT by down-sampling the analytic signal of the received RF samples at each channel at a rate equal to the bandwidth of the frequency components of interest. The experimental results show that the proposed PHB-PAM provides comparable image quality to that of FD-PAM (correlation coefficient > 0.98). Additionally, the study experimentally verifies that the pre-processing block for generating the decimated analytic signal and FFT in PHB-PAM can be realized using lesser logic resources than FFT in FD-PAM when implemented in an FPGA. Especially, with 128-fold decimation, PHB-PAM reduces the amount of LUTs and DSP slices to implement the pre-processing block by 72.16% and 53.4%, respectively, compared to those of FD-PAM, which allows the 64-channel implementation of the pre-processing block in a low-cost single FPGA. Finally, a hardware-efficient architecture for the pre-processing block of PHB-PAM is described, which can be implemented by replacing the two lowpass filters of an off-the-shelf analog front-end component for ultrasound imaging with a pair of band-pass filters. If PHB-PAM is realized using such a component, it can truly minimize the computational complexity of FD-PAM.
Collapse
Affiliation(s)
- Pilsu Kim
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Hee Song
- Queensland Brain Institute, University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia.
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
24
|
Jensen JA, Ommen ML, Oygard SH, Schou M, Sams T, Stuart MB, Beers C, Thomsen EV, Larsen NB, Tomov BG. Three-Dimensional Super-Resolution Imaging Using a Row-Column Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:538-546. [PMID: 31634831 DOI: 10.1109/tuffc.2019.2948563] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A 3-D super-resolution (SR) pipeline based on data from a row-column (RC) array is presented. The 3-MHz RC array contains 62 rows and 62 columns with a half wavelength pitch. A synthetic aperture (SA) pulse inversion sequence with 32 positive and 32 negative row emissions is used for acquiring volumetric data using the SARUS research ultrasound scanner. Data received on the 62 columns are beamformed on a GPU for a maximum volume rate of 156 Hz when the pulse repetition frequency is 10 kHz. Simulated and 3-D printed point and flow microphantoms are used for investigating the approach. The flow microphantom contains a 100- [Formula: see text] radius tube injected with the contrast agent SonoVue. The 3-D processing pipeline uses the volumetric envelope data to find the bubble's positions from their interpolated maximum signal and yields a high resolution in all three coordinates. For the point microphantom, the standard deviation on the position is (20.7, 19.8, 9.1) [Formula: see text]. The precision estimated for the flow phantom is below [Formula: see text] in all three coordinates, making it possible to locate structures on the order of a capillary in all three dimensions. The RC imaging sequence's point spread function has a size of 0.58 × 1.05 × 0.31 mm3 ( 1.17λ×2.12λ×0.63λ ), so the possible volume resolution is 28900 times smaller than for SA RC B-mode imaging.
Collapse
|
25
|
Harput S, Christensen-Jeffries K, Ramalli A, Brown J, Zhu J, Zhang G, Leow CH, Toulemonde M, Boni E, Tortoli P, Eckersley RJ, Dunsby C, Tang MX. 3-D Super-Resolution Ultrasound Imaging With a 2-D Sparse Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:269-277. [PMID: 31562080 PMCID: PMC7614008 DOI: 10.1109/tuffc.2019.2943646] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-frame-rate 3-D ultrasound imaging technology combined with super-resolution processing method can visualize 3-D microvascular structures by overcoming the diffraction-limited resolution in every spatial direction. However, 3-D super-resolution ultrasound imaging using a full 2-D array requires a system with a large number of independent channels, the design of which might be impractical due to the high cost, complexity, and volume of data produced. In this study, a 2-D sparse array was designed and fabricated with 512 elements chosen from a density-tapered 2-D spiral layout. High-frame-rate volumetric imaging was performed using two synchronized ULA-OP 256 research scanners. Volumetric images were constructed by coherently compounding nine-angle plane waves acquired at a pulse repetition frequency of 4500 Hz. Localization-based 3-D super-resolution images of two touching subwavelength tubes were generated from 6000 volumes acquired in 12 s. Finally, this work demonstrates the feasibility of 3-D super-resolution imaging and super-resolved velocity mapping using a customized 2-D sparse array transducer.
Collapse
Affiliation(s)
- Sevan Harput
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K., and also with the Division of Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, U.K
| | | | - Alessandro Ramalli
- Department of Information Engineering, University of Florence, 50139 Florence, Italy, and also with the Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Jemma Brown
- Biomedical Engineering Department, Division of Imaging Sciences, King’s College London, London SE1 7EH, U.K
| | - Jiaqi Zhu
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Ge Zhang
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Chee Hau Leow
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Matthieu Toulemonde
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Enrico Boni
- Department of Information Engineering, University of Florence, 50139 Florence, Italy
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, 50139 Florence, Italy
| | - Robert J. Eckersley
- Biomedical Engineering Department, Division of Imaging Sciences, King’s College London, London SE1 7EH, U.K
| | - Chris Dunsby
- Department of Physics and the Centre for Pathology, Imperial College London, London SW7 2AZ, U.K
| | - Meng-Xing Tang
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
26
|
Au JS, Yiu BYS, So H, Chee AJY, Greaves DK, Hughson RL, Yu ACH. Ultrasound vector projectile imaging for detection of altered carotid bifurcation hemodynamics during reductions in cardiac output. Med Phys 2019; 47:431-440. [PMID: 31693196 DOI: 10.1002/mp.13905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/13/2019] [Accepted: 10/30/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Complex blood flow is commonly observed in the carotid bifurcation, although the factors that regulate these patterns beyond arterial geometry are unknown. The emergence of high-frame-rate ultrasound vector flow imaging allows for noninvasive, time-resolved analysis of complex hemodynamic behavior in humans, and it can potentially help researchers understand which physiological stressors can alter carotid bifurcation hemodynamics in vivo. Here, we seek to pursue the first use of vector projectile imaging (VPI), a dynamic form of vector flow imaging, to analyze the regulation of carotid bifurcation hemodynamics during experimental reductions in cardiac output induced via a physiological stressor called lower body negative pressure (LBNP). METHODS Seven healthy adults (age: 27 ± 4 yr, 4 men) underwent LBNP at -45 mmHg to simulate a postural hemodynamic response in a controlled environment. Using a research-grade, high-frame-rate ultrasound platform, vector flow estimation in each subject's right carotid bifurcation was performed through a multi-angle plane wave imaging (two transmission angles of 10° and -10°) formulation, and VPI cineloops were generated at a frame rate of 750 fps. Vector concentration was quantified by the resultant blood velocity vector angles within a region of interest; lower concentration indicated greater flow dispersion. Discrete concentration values during peak and late systole were compared across different segments of the carotid artery bifurcation before, and during, LBNP. RESULTS Vector projectile imaging revealed that external and internal carotid arteries exhibited regional hemodynamic changes during LBNP, which acted to reduce both the subject's cardiac output (Δ - 1.2 ± 0.5 L/min, -19%; P < 0.01) and peak carotid blood velocity (Δ - 6.30 ± 8.27 cm/s, -7%; P = 0.05). In these carotid artery branches, the vector concentration time trace before and during LBNP were observed to be different. The impact of LBNP on flow complexity in the two carotid artery branches showed variations between subjects. CONCLUSIONS Using VPI, intuitive visualization of complex hemodynamic changes can be obtained in healthy humans subjected to LBNP. This imaging tool has potential for further applications in vascular physiology to identify and quantify complex hemodynamic features in humans during different physiological stressor tests that regulate hemodynamics.
Collapse
Affiliation(s)
- Jason S Au
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Billy Y S Yiu
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Hélène So
- Faculty of Science and Engineering, Sorbonne Université, 75005, Paris, France
| | - Adrian J Y Chee
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Danielle K Greaves
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,University of Caen Normandy, Espl. De la Paix, 14032, Caen, France
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada
| | - Alfred C H Yu
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| |
Collapse
|
27
|
Leitner C, Hager PA, Penasso H, Tilp M, Benini L, Peham C, Baumgartner C. Ultrasound as a Tool to Study Muscle-Tendon Functions during Locomotion: A Systematic Review of Applications. SENSORS 2019; 19:s19194316. [PMID: 31590410 PMCID: PMC6806279 DOI: 10.3390/s19194316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Movement science investigating muscle and tendon functions during locomotion utilizes commercial ultrasound imagers built for medical applications. These limit biomechanics research due to their form factor, range of view, and spatio-temporal resolution. This review systematically investigates the technical aspects of applying ultrasound as a research tool to investigate human and animal locomotion. It provides an overview on the ultrasound systems used and of their operating parameters. We present measured fascicle velocities and discuss the results with respect to operating frame rates during recording. Furthermore, we derive why muscle and tendon functions should be recorded with a frame rate of at least 150 Hz and a range of view of 250 mm. Moreover, we analyze why and how the development of better ultrasound observation devices at the hierarchical level of muscles and tendons can support biomechanics research. Additionally, we present recent technological advances and their possible application. We provide a list of recommendations for the development of a more advanced ultrasound sensor system class targeting biomechanical applications. Looking to the future, mobile, ultrafast ultrasound hardware technologies create immense opportunities to expand the existing knowledge of human and animal movement.
Collapse
Affiliation(s)
- Christoph Leitner
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, 8010 Graz, Austria.
- Institute of Sport Science, University of Graz, Mozartgasse 14, 8010 Graz, Austria.
| | - Pascal A Hager
- Integrated Systems Laboratory, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland.
| | - Harald Penasso
- Institute of Sport Science, University of Graz, Mozartgasse 14, 8010 Graz, Austria.
| | - Markus Tilp
- Institute of Sport Science, University of Graz, Mozartgasse 14, 8010 Graz, Austria.
| | - Luca Benini
- Integrated Systems Laboratory, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland.
- Electrical, Electronic and Information Engineering - DEI, Università di Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy.
| | - Christian Peham
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria.
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, 8010 Graz, Austria.
| |
Collapse
|
28
|
Li CH, Shiau YH. FPGA logic design method based on multi resolution image real time acquisition system. EVOLUTIONARY INTELLIGENCE 2019. [DOI: 10.1007/s12065-018-0194-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
29
|
Peralta L, Gomez A, Luan Y, Kim BH, Hajnal JV, Eckersley RJ. Coherent Multi-Transducer Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1316-1330. [PMID: 31180847 PMCID: PMC7115943 DOI: 10.1109/tuffc.2019.2921103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This work extends the effective aperture size by coherently compounding the received radio frequency data from multiple transducers. As a result, it is possible to obtain an improved image, with enhanced resolution, an extended field of view (FoV), and high-acquisition frame rates. A framework is developed in which an ultrasound imaging system consisting of N synchronized matrix arrays, each with partly shared FoV, take turns to transmit plane waves (PWs). Only one individual transducer transmits at each time while all N transducers simultaneously receive. The subwavelength localization accuracy required to combine information from multiple transducers is achieved without the use of any external tracking device. The method developed in this study is based on the study of the backscattered echoes received by the same transducer and resulting from a targeted scatterer point in the medium insonated by the multiple ultrasound probes of the system. The current transducer locations along with the speed of sound in the medium are deduced by optimizing the cross correlation between these echoes. The method is demonstrated experimentally in 2-D for two linear arrays using point targets and anechoic lesion phantoms. The first demonstration of a free-hand experiment is also shown. Results demonstrate that the coherent multi-transducer ultrasound imaging method has the potential to improve ultrasound image quality, improving resolution, and target detectability. Compared with coherent PW compounding using a single probe, lateral resolution improved from 1.56 to 0.71 mm in the coherent multi-transducer imaging method without acquisition frame rate sacrifice (acquisition frame rate 5350 Hz).
Collapse
|
30
|
Yiu BYS, Walczak M, Lewandowski M, Yu ACH. Live Ultrasound Color-Encoded Speckle Imaging Platform for Real-Time Complex Flow Visualization In Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:656-668. [PMID: 30640607 DOI: 10.1109/tuffc.2019.2892731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Complex flow patterns are prevalent in the vasculature, but they are difficult to image noninvasively in real time. This paper presents the first real-time scanning platform for a high-frame-rate ultrasound technique called color-encoded speckle imaging (CESI) and its use in visualizing arterial flow dynamics in vivo. CESI works by simultaneously rendering flow speckles and color-coded flow velocity estimates on a time-resolved basis. Its live implementation was achieved by integrating a 192-channel programmable ultrasound front-end module, a 4.8-GB/s capacity data streaming link, and a series of computing kernels implemented on the graphical processing unit (GPU) for beamforming and Doppler processing. A slow-motion replay mode was also included to offer coherent visualization of CESI frames acquired at high frame rate [3000 frames per second (fps) in our experiments]. The live CESI scanning platform was found to be effective in facilitating real-time image guidance (at least 20 fps for live video display with 55-fps GPU processing throughout). In vivo pilot trials also showed that live CESI, when running in replay mode, can temporally resolve triphasic flow at the brachial bifurcation and can reveal flow dynamics in the brachial vein during a fist-clenching maneuver. Overall, live CESI has potential for use in routine investigations in vivo that seek to identify complex flow dynamics in real time and relate these dynamics to vascular physiology.
Collapse
|
31
|
Harput S, Christensen-Jeffries K, Brown J, Zhu J, Zhang G, Eckersley RJ, Dunsby C, Tang MX. 3-D Motion Correction for Volumetric Super-Resolution Ultrasound Imaging. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2019; 2018. [PMID: 34093969 DOI: 10.1109/ultsym.2018.8580145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motion during image acquisition can cause image degradation in all medical imaging modalities. This is particularly relevant in 2-D ultrasound imaging, since out-of-plane motion can only be compensated for movements smaller than elevational beamwidth of the transducer. Localization based super-resolution imaging creates even a more challenging motion correction task due to the requirement of a high number of acquisitions to form a single super-resolved frame. In this study, an extension of two-stage motion correction method is proposed for 3-D motion correction. Motion estimation was performed on high volumetric rate ultrasound acquisitions with a handheld probe. The capability of the proposed method was demonstrated with a 3-D microvascular flow simulation to compensate for handheld probe motion. Results showed that two-stage motion correction method reduced the average localization error from 136 to 18 μm.
Collapse
Affiliation(s)
- Sevan Harput
- ULIS Group, Department of Bioengineering, Imperial College London, London, SW7 2BP, UK
| | | | - Jemma Brown
- Biomedical Engineering Department, Division of Imaging Sciences, King's College London, SE1 7EH, London, UK
| | - Jiaqi Zhu
- ULIS Group, Department of Bioengineering, Imperial College London, London, SW7 2BP, UK
| | - Ge Zhang
- ULIS Group, Department of Bioengineering, Imperial College London, London, SW7 2BP, UK
| | - Robert J Eckersley
- Biomedical Engineering Department, Division of Imaging Sciences, King's College London, SE1 7EH, London, UK
| | - Chris Dunsby
- Department of Physics and the Centre for Pathology, Imperial College London, London, SW7 2AZ, UK
| | - Meng-Xing Tang
- ULIS Group, Department of Bioengineering, Imperial College London, London, SW7 2BP, UK
| |
Collapse
|
32
|
Boulos P, Varray F, Poizat A, Ramalli A, Gilles B, Bera JC, Cachard C. Weighting the Passive Acoustic Mapping Technique With the Phase Coherence Factor for Passive Ultrasound Imaging of Ultrasound-Induced Cavitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2301-2310. [PMID: 30273149 DOI: 10.1109/tuffc.2018.2871983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound (US) cavitation is currently being explored for low-invasive therapy techniques applied to a wide panel of pathologies. Because of the random behavior of cavitation, a real-time spatial monitoring system may be required. For this purpose, the US passive imaging techniques have been recently investigated. In particular, the passive acoustic mapping (PAM) beamforming method enables the reconstruction of cavitation activity maps by beamforming acoustic signals passively recorded by an array transducer. In this paper, an optimized version of PAM, PAM weighted with a phase coherence factor (PAM-PCF), is considered. A general validation process is developed including simulations on a point source and experiments on a wire. Furthermore, using a focused regulated US-induced cavitation generator, reproducible cavitation experiments are conducted in water and in agar gel. The spatial behavior of a bubble cavitation cloud is determined using the PAM-PCF beamforming method to localize the focal cavitation point in two perpendicular imaging planes.
Collapse
|
33
|
Ramalli A, Dallai A, Guidi F, Bassi L, Boni E, Tong L, Fradella G, D'Hooge J, Tortoli P. Real-Time High-Frame-Rate Cardiac B-Mode and Tissue Doppler Imaging Based on Multiline Transmission and Multiline Acquisition. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2030-2041. [PMID: 30207953 DOI: 10.1109/tuffc.2018.2869473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cardiovascular diseases, the leading cause of death in the world, are often associated with the dysfunction of the left ventricle. Even if, in clinical practice, the myocardial function is often assessed through visual wall motion scoring on B-mode images, quantitative techniques have been introduced, e.g., ultrasound tissue Doppler imaging (TDI). However, this technique suffers from the limited frame rate of currently available imaging techniques that needs to be balanced with the field of view. High-frame-rate (HFR) cardiac imaging has been recently tested off-line by simultaneously transmitting multiple focused beams into different directions and acquiring raw channel data into a PC. Several image lines were then reconstructed from the echoes of each transmission (TX) event. The same approach has been used to increase the TDI frame rate without restricting the field of view. This paper demonstrates the real-time feasibility of multiline TX and acquisition methods for both HFR cardiac B-mode and TDI. These approaches have been implemented on the ULA-OP 256 research scanner, by taking care that the related resources were optimally exploited for these new applications. The obtainable performance in terms of image quality and frame rate has also been investigated. Experiments performed with a 128-element phased array probe show, for the first time, that real-time B-mode imaging is feasible at up to 1150 Hz without significant reduction in image quality or field of view. The implementation of a real-time TDI algorithm allowed obtaining TDI images with a frame rate of 288 Hz for a 90°-wide field of view. Finally, in vivo examples demonstrate the feasibility and the suitability of the method in clinical studies.
Collapse
|
34
|
Wang Y, Zheng C, Peng H, Chen Q. An adaptive beamforming method for ultrasound imaging based on the mean-to-standard-deviation factor. ULTRASONICS 2018; 90:32-41. [PMID: 29906714 DOI: 10.1016/j.ultras.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The beamforming performance has a large impact on image quality in ultrasound imaging. Previously, several adaptive weighting factors including coherence factor (CF) and generalized coherence factor (GCF) have been proposed to improved image resolution and contrast. In this paper, we propose a new adaptive weighting factor for ultrasound imaging, which is called signal mean-to-standard-deviation factor (SMSF). SMSF is defined as the mean-to-standard-deviation of the aperture data and is used to weight the output of delay-and-sum (DAS) beamformer before image formation. Moreover, we develop a robust SMSF (RSMSF) by extending the SMSF to the spatial frequency domain using an altered spectrum of the aperture data. In addition, a square neighborhood average is applied on the RSMSF to offer a more smoothed square neighborhood RSMSF (SN-RSMSF) value. We compared our methods with DAS, CF, and GCF using simulated and experimental synthetic aperture data sets. The quantitative results show that SMSF results in an 82% lower full width at half-maximum (FWHM) but a 12% lower contrast ratio (CR) compared with CF. Moreover, the SN-RSMSF leads to 15% and 10% improvement, on average, in FWHM and CR compared with GCF while maintaining the speckle quality. This demonstrates that the proposed methods can effectively improve the image resolution and contrast.
Collapse
Affiliation(s)
- Yuanguo Wang
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Chen
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
35
|
Ibrahim A, Zhang S, Angiolini F, Arditi M, Kimura S, Goto S, Thiran JP, De Micheli G. Towards Ultrasound Everywhere: A Portable 3D Digital Back-End Capable of Zone and Compound Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:968-981. [PMID: 29993558 DOI: 10.1109/tbcas.2018.2828382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound imaging is a ubiquitous diagnostic technique, but does not fit the requirements of the telemedicine approach, because it relies on the real-time manipulation and image recognition skills of a trained expert, called sonographer. Sonographers are only available in hospitals and clinics, negating or at least delaying access to ultrasound scans in many locales-rural areas, developing countries-as well as in medical rescue operations. Telesonography would require an advanced imager that supports three-dimensional (3-D) acquisition; this would allow untrained operators to acquire broad scans and upload them remotely for diagnosis. Such advanced imagers do exist, but do not meet several other requirements for telesonography, such as being portable, inexpensive, and sufficiently low power to enable battery operation. In this work, we present our prototype of the first portable 3-D digital ultrasound back-end system. The prototype is implemented in a single midrange Xilinx field programmable gate array (FPGA), for an estimated power consumption of 5 W. The device supports up to 1024 input channels, which is state of the art and could be scaled further, and supports multiple image reconstruction modes. We evaluate the resource utilization of the FPGA and provide various quality metrics to ascertain the output image quality.
Collapse
|
36
|
Boni E, Yu ACH, Freear S, Jensen JA, Tortoli P. Ultrasound Open Platforms for Next-Generation Imaging Technique Development. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1078-1092. [PMID: 29993364 PMCID: PMC6057541 DOI: 10.1109/tuffc.2018.2844560] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 05/22/2023]
Abstract
Open platform (OP) ultrasound systems are aimed primarily at the research community. They have been at the forefront of the development of synthetic aperture, plane wave, shear wave elastography, and vector flow imaging. Such platforms are driven by a need for broad flexibility of parameters that are normally preset or fixed within clinical scanners. OP ultrasound scanners are defined to have three key features including customization of the transmit waveform, access to the prebeamformed receive data, and the ability to implement real-time imaging. In this paper, a formative discussion is given on the development of OPs from both the research community and the commercial sector. Both software- and hardware-based architectures are considered, and their specifications are compared in terms of resources and programmability. Software-based platforms capable of real-time beamforming generally make use of scalable graphics processing unit architectures, whereas a common feature of hardware-based platforms is the use of field-programmable gate array and digital signal processor devices to provide additional on-board processing capacity. OPs with extended number of channels (>256) are also discussed in relation to their role in supporting 3-D imaging technique development. With the increasing maturity of OP ultrasound scanners, the pace of advancement in ultrasound imaging algorithms is poised to be accelerated.
Collapse
|
37
|
Matrone G, Ramalli A, Tortoli P, Magenes G. Experimental evaluation of ultrasound higher-order harmonic imaging with Filtered-Delay Multiply And Sum (F-DMAS) non-linear beamforming. ULTRASONICS 2018; 86:59-68. [PMID: 29398065 DOI: 10.1016/j.ultras.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/12/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Tissue Harmonic Imaging (THI) mode is currently one of the preferred choices by the clinicians for its ability to provide enhanced ultrasound images, thanks to the use of the second harmonic component of backscattered echoes. This paper aims at investigating whether the combination of THI with Filtered-Delay Multiply And Sum (F-DMAS) beamforming can provide further improvements in image quality. F-DMAS is a new non-linear beamformer, which, similarly to THI, is based on the use of the second harmonics of beamformed signals and is known to increase image contrast resolution and noise rejection. Thus, we have first compared the images obtained by using F-DMAS and the standard Delay And Sum (DAS) beamformers when only the second harmonics of the received signals was selected. Moreover, possible improvements brought about by other harmonic components generated by the combined use of the fundamental plus second harmonics and F-DMAS beamforming have been explored. Experimental results demonstrate that, as compared to standard harmonic imaging with DAS, THI and F-DMAS can be joined to improve the -20 dB lateral resolution up to 1 mm, the contrast ratio up to 12 dB on a cyst-phantom and up to 9 dB on in vivo images.
Collapse
Affiliation(s)
- Giulia Matrone
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy; Centre for Health Technologies, Università degli Studi di Pavia, Pavia, Italy.
| | - Alessandro Ramalli
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Firenze, Florence, Italy; Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Piero Tortoli
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Firenze, Florence, Italy
| | - Giovanni Magenes
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy; Centre for Health Technologies, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
38
|
Göbl R, Navab N, Hennersperger C. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode. Int J Comput Assist Radiol Surg 2018; 13:759-767. [PMID: 29594853 DOI: 10.1007/s11548-018-1750-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. METHODS With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. RESULTS The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. CONCLUSIONS Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.
Collapse
Affiliation(s)
- Rüdiger Göbl
- Computer Aided Medical Procedures, Technische Universität München, Boltzmannstr. 3, 85748, Garching, Germany.
| | - Nassir Navab
- Computer Aided Medical Procedures, Technische Universität München, Boltzmannstr. 3, 85748, Garching, Germany.,Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Christoph Hennersperger
- Computer Aided Medical Procedures, Technische Universität München, Boltzmannstr. 3, 85748, Garching, Germany
| |
Collapse
|
39
|
Riding the Plane Wave: Considerations for In Vivo Study Designs Employing High Frame Rate Ultrasound. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Ricci S, Ramalli A, Bassi L, Boni E, Tortoli P. Real-Time Blood Velocity Vector Measurement Over a 2-D Region. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:201-209. [PMID: 29389652 DOI: 10.1109/tuffc.2017.2781715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quantitative blood velocity measurements, as currently implemented in commercial ultrasound scanners, are based on pulsed-wave (PW) spectral Doppler and are limited to detect the axial component of the velocity in a single sample volume. On the other hand, vector Doppler methods produce angle-independent estimates by, e.g., combining the frequency shifts measured from different directions. Moreover, thanks to the transmission of plane waves, the investigation of a 2-D region is possible with high temporal resolution, but, unfortunately, the clinical use of these methods is hampered by the massive calculation power required for their real-time execution. In this paper, we present a novel approach based on the transmission of plane waves and the simultaneous reception of echoes from 16 distinct subapertures of a linear array probe, which produces eight lines distributed over a 2-D region. The method was implemented on the ULAO-OP 256 research scanner and tested both in phantom and in vivo. A continuous real-time refresh rate of 36 Hz was achieved in duplex combination with a standard B-mode at pulse repetition frequency of 8 kHz. Accuracies of -11% on velocity and of 2°on angle measurements have been obtained in phantom experiments. Accompanying movies show how the method improves the quantitative measurements of blood velocities and details the flow configurations in the carotid artery of a volunteer.
Collapse
|
41
|
Marzo A, Corkett T, Drinkwater BW. Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:102-111. [PMID: 29283352 DOI: 10.1109/tuffc.2017.2769399] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modern ultrasonic phased-array controllers are electronic systems capable of delaying the transmitted or received signals of multiple transducers. Configurable transmit-receive array systems, capable of electronic steering and shaping of the beam in near real-time, are available commercially, for example, for medical imaging. However, emerging applications, such as ultrasonic haptics, parametric audio, or ultrasonic levitation, require only a small subset of the capabilities provided by the existing controllers. To meet this need, we present Ultraino, a modular, inexpensive, and open platform that provides hardware, software, and example applications specifically aimed at controlling the transmission of narrowband airborne ultrasound. Our system is composed of software, driver boards, and arrays that enable users to quickly and efficiently perform research in various emerging applications. The software can be used to define array geometries, simulate the acoustic field in real time, and control the connected driver boards. The driver board design is based on an Arduino Mega and can control 64 channels with a square wave of up to 17 Vpp and /5 phase resolution. Multiple boards can be chained together to increase the number of channels. The 40-kHz arrays with flat and spherical geometries are demonstrated for parametric audio generation, acoustic levitation, and haptic feedback.
Collapse
|
42
|
Dolet A, Varray F, Roméo E, Dehoux T, Vray D. Spectrophotometry and Photoacoustic Imaging: A Comparative Study. Ing Rech Biomed 2017. [DOI: 10.1016/j.irbm.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Boni E, Bassi L, Dallai A, Meacci V, Ramalli A, Scaringella M, Guidi F, Ricci S, Tortoli P. Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1276-1284. [PMID: 28742032 DOI: 10.1109/tuffc.2017.2727980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.
Collapse
|
44
|
Ibrahim A, Hager PA, Bartolini A, Angiolini F, Arditi M, Thiran JP, Benini L, De Micheli G. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:815-831. [PMID: 28574367 DOI: 10.1109/tbcas.2017.2673547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.
Collapse
|