1
|
Measuring the Power Law Phase Noise of an RF Oscillator with a Novel Indirect Quantitative Scheme. ELECTRONICS 2019. [DOI: 10.3390/electronics8070767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In conventional phase noise metrology, the phase noise of an oscillator is measured by instruments equipped with specialized and sophisticated devices. Such hardware-based testing usually requires high-performance and costly apparatuses. In this paper, we carried out a novel phase noise measurement method based on a mathematical model. The relationship between the phase noise of a radio frequency oscillator and its power spectral density (PSD) was established, different components of the power law phase noise were analyzed in the frequency domain with their characteristic parameters. Based on the complete physical model of an oscillator, we fitted and extracted the parameters for the near-carrier Gaussian and the power law PSD with Levenberg-Marquardt optimization algorithm. The fitted parameters were used to restore the power law phase noise with considerable precision. Experimental validation showed an excellent agreement between the estimation from the proposed method and the data measured by a high-performance commercial instrument. This methodology can be potentially used to realize fast and simple phase noise measurement and reduce the overall cost of hardware.
Collapse
|