1
|
Li M, Liang S, Lu M. Fourier-based beamforming for 3D plane wave imaging and application in vector flow imaging using selective compounding. Phys Med Biol 2024; 69:185008. [PMID: 39168145 DOI: 10.1088/1361-6560/ad7224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Objective. Ultrafast ultrasound imaging using planar or diverging waves for transmission is a promising approach for efficient 3D imaging with matrix arrays. This technique has advantages for B-mode imaging and advanced techniques, such as 3D vector flow imaging (VFI). The computation load of the cross-beam technique is associated with the number of transmit anglesmand receive anglesn. The full velocity vector is obtained using the least square fashion. However, the beamforming is repeatedm × ntimes using a conventional time-domain delay-and-sum (DAS) beamformer. In the 3D case, the collection and processing of data from different beams increase the amount of data that must be processed, requiring more storage capacity and processing power. Furthermore, the large computation complexity of DAS is another major concern. These challenges translate into longer computational times, increased complexity in data processing, and difficulty in real-time applications.Approach. In response to this issue, this study proposes a novel Fourier domain beamformer for 3D plane wave imaging, which significantly increases the computational speed. Additionally, a selective compounding strategy is proposed for VFI, which reduces the beamforming process fromm × ntom(wheremandnrepresent the number of transmission and reception, respectively), effectively shortening the processing time. The underlying principle is to decompose the receive wavefront into a series of plane waves with different slant angles. Each slant angle can produce a sub-volume for coherent or selective compounding. This method does not rely on the assumption that the plane wave is perfect and the results show that our proposed beamformer is better than DAS in terms of resolution and image contrast. In the case of velocity estimation, for the Fourier-based method, only Tx angles are assigned in the beamformer and the selective compounding method produces the final image with a specialized Rx angle.Main results. Simulation studies andin vitroexperiments confirm the efficacy of this new method. The proposed beamformer shows improved resolution and contrast performance compared to the DAS beamformer for B-mode imaging, with a suppressed sidelobe level. Furthermore, the proposed technique outperforms the conventional DAS method, as evidenced by lower mean bias and standard deviation in velocity estimation for VFI. Notably, the computation time has been shortened by 40 times, thus promoting the real-time application of this technique. The efficacy of this new method is verified through simulation studies andin vitroexperiments and evaluated by mean bias and standard deviation. Thein vitroresults reveal a better velocity estimation: the mean bias is 2.3%, 3.4%, and 5.0% forvx,vy, andvz, respectively. The mean standard deviation is 1.8%, 1.7%, and 3.4%. With DAS, the evaluated mean bias is 9.8%, 4.6%, and 6.7% and the measured mean standard deviation is 7.5%, 2.5%, and 3.9%.Significance. In this work, we propose a novel Fourier-based method for both B-mode imaging and functional VFI. The new beamformer is shown to produce better image quality and improved velocity estimation. Moreover, the new VFI computation time is reduced by 40 times compared to conventional methods. This new method may pave a new way for real-time 3D VFI applications.
Collapse
Affiliation(s)
- Menghan Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Siyi Liang
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, People's Republic of China
| | - Minhua Lu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Garcia D, Varray F. SIMUS3: An open-source simulator for 3-D ultrasound imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108169. [PMID: 38643604 DOI: 10.1016/j.cmpb.2024.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Computational Ultrasound Imaging (CUI) has become increasingly popular in the medical ultrasound community, facilitated by free simulation software. These tools enable the design and exploration of transmit sequences, transducer arrays, and signal processing. We recently introduced SIMUS, a frequency-based ultrasound simulator within the open-source MUST toolbox, which offers numerical advantages and allows easy consideration of frequency-dependent factors. In response to the growing interest in simulating ultrasound imaging with 2-D matrix arrays, we present 3-D versions, PFIELD3 and SIMUS3. METHOD The linear acoustic equations driving these functions are described, with theoretical assumptions reviewed for user guidance. RESULTS Comparative analyses with Field II, using a 32×32 element 3-MHz matrix array, highlight the performance of PFIELD3 and SIMUS3 under various transmission conditions. CONCLUSIONS This work extends the capabilities of existing CUI tools and provides researchers with valuable resources for advanced ultrasound simulations.
Collapse
Affiliation(s)
- Damien Garcia
- CREATIS (Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé), CNRS UMR 5220 - INSERM U1294 - Université Lyon 1 - INSA Lyon - Université Jean Monnet Saint-Étienne, France.
| | - François Varray
- CREATIS (Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé), CNRS UMR 5220 - INSERM U1294 - Université Lyon 1 - INSA Lyon - Université Jean Monnet Saint-Étienne, France
| |
Collapse
|
3
|
Tanaka T, Imai R, Takeshima H. Split-based elevational localization of photoacoustic guidewire tip by 1D array probe using spatial impulse response. Phys Med Biol 2024; 69:065013. [PMID: 38344935 DOI: 10.1088/1361-6560/ad27fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Objective. Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the tip potentially deviating from the ultrasound-imaged plane.Approach. Our method uses the 'interference split' that appears when the emitter is off-plane. Here, a point source from the emitter splits into two points in images. Based on the split, 'split-based elevation localization (SEL)' is introduced to estimate the absolute elevation position of the emitter. Additionally, 'Signed SEL' incorporates an asymmetric feature into the 1D probe to obtain the sign of the elevation localization. An attenuative coupler is attached to the half side of the probe to control the interference split. In SEL and Signed SEL, we propose a modeled split matching (MSM) algorithm to localize the tip position. MSM performs pattern matching of a measured split waveform with modeled split waveforms corresponding to all emitter positions in a region of interest. The modeled waveforms are precalculated using the spatial impulse response. The proposed method is numerically and experimentally validated.Main results. Numerical simulations for time-domain wave propagation clearly demonstrated the interference split phenomena. In the experimental validation with a vessel-mimicking phantom, the proposed methods successfully estimated the elevation positions,yb.SEL exhibited a root-mean-squared error (RMSE) of 2.0 mm for the range of 0 mm ≤yb≤ 30 mm, while Signed SEL estimated the absolute position with an RMSE of 2.4 mm and the sign with an accuracy of 80.8% for the range of -30 mm ≤yb≤ 30 mm.Significance.These results suggest that the proposed method could provide approximate tip positions and help sonographers track it by fanning the probe.
Collapse
Affiliation(s)
- Tomohiko Tanaka
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Ryo Imai
- Research & Development Group, Hitachi, Ltd, Tokyo, Japan
| | - Hirozumi Takeshima
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| |
Collapse
|
4
|
Wang N, Qiang Y, Qiu C, Chen Y, Wang X, Pan Y, Liu R, Wu W, Zheng H, Qiu W, Zhang Z. A Multiplexed 32 × 32 2D Matrix Array Transducer for Flexible Sub-Aperture Volumetric Ultrasound Imaging. IEEE Trans Biomed Eng 2024; 71:831-840. [PMID: 37756181 DOI: 10.1109/tbme.2023.3319513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A fully-sampled two-dimensional (2D) matrix array ultrasonic transducer is essential for fast and accurate three-dimensional (3D) volumetric ultrasound imaging. However, these arrays, usually consisting of thousands of elements, not only face challenges of poor performance and complex wiring due to high-density elements and small element sizes but also put high requirements for electronic systems. Current commercially available fully-sampled matrix arrays, dividing the aperture into four fixed sub-apertures to reduce system channels through multiplexing are widely used. However, the fixed sub-aperture configuration limits imaging flexibility and the gaps between sub-apertures lead to reduced imaging quality. In this study, we propose a high-performance multiplexed matrix array by the design of 1-3 piezocomposite and gapless sub-aperture configuration, as well as optimized matching layer materials. Furthermore, we introduce a sub-aperture volumetric imaging method based on the designed matrix array, enabling high-quality and flexible 3D ultrasound imaging with a low-cost 256-channel system. The influence of imaging parameters, including the number of sub-apertures and steering angle on imaging quality was investigated by simulation, in vitro and in vivo imaging experiments. The fabricated matrix array has a center frequency of 3.4 MHz and a -6 dB bandwidth of above 70%. The proposed sub-aperture volumetric imaging method demonstrated a 10% improvement in spatial resolution, a 19% increase in signal-to-noise ratio, and a 57.7% increase in contrast-to-noise ratio compared with the fixed sub-aperture array imaging method. This study provides a new strategy for high-quality volumetric ultrasound imaging with a low-cost system.
Collapse
|
5
|
Qi B, Tian X, Fu L, Li Y, Chan KS, Ling C, Yim W, Zhang S, Jokerst JV. Deep learning assisted sparse array ultrasound imaging. PLoS One 2023; 18:e0293468. [PMID: 37903113 PMCID: PMC10615290 DOI: 10.1371/journal.pone.0293468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
This study aims to restore grating lobe artifacts and improve the image resolution of sparse array ultrasonography via a deep learning predictive model. A deep learning assisted sparse array was developed using only 64 or 16 channels out of the 128 channels in which the pitch is two or eight times the original array. The deep learning assisted sparse array imaging system was demonstrated on ex vivo porcine teeth. 64- and 16-channel sparse array images were used as the input and corresponding 128-channel dense array images were used as the ground truth. The structural similarity index measure, mean squared error, and peak signal-to-noise ratio of predicted images improved significantly (p < 0.0001). The resolution of predicted images presented close values to ground truth images (0.18 mm and 0.15 mm versus 0.15 mm). The gingival thickness measurement showed a high level of agreement between the predicted sparse array images and the ground truth images, as indicated with a bias of -0.01 mm and 0.02 mm for the 64- and 16-channel predicted images, respectively, and a Pearson's r = 0.99 (p < 0.0001) for both. The gingival thickness bias measured by deep learning assisted sparse array imaging and clinical probing needle was found to be <0.05 mm. Additionally, the deep learning model showed capability of generalization. To conclude, the deep learning assisted sparse array can reconstruct high-resolution ultrasound image using only 16 channels of 128 channels. The deep learning model performed generalization capability for the 64-channel array, while the 16-channel array generalization would require further optimization.
Collapse
Affiliation(s)
- Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California, United States of America
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Fu
- Department of NanoEngineering, University of California San Diego, La Jolla, California, United States of America
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, La Jolla, California, United States of America
| | - Kai San Chan
- Biomedical Engineering Program, The University of Hong Kong, Hong Kong SAR, China
| | - Chuxuan Ling
- Department of NanoEngineering, University of California San Diego, La Jolla, California, United States of America
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California, United States of America
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jesse V. Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California, United States of America
- Department of NanoEngineering, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Le Moign G, Masson P, Basset O, Liebgott H, Quaegebeur N. Optimized Virtual Sources Distributions for 3-D Ultrafast Diverging Wave Compounding Imaging: A Simulation Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1319-1328. [PMID: 37643094 DOI: 10.1109/tuffc.2023.3307336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ultrafast ultrasound imaging allows observing rapid phenomena; combined with 3-D imaging it has the potential to provide a more accurate analysis of organs which leads, in the end, to better diagnosis. Coherent compounding using diverging waves is commonly used to reconstruct high-quality images on large volumes while keeping the frame rate high enough to allow dynamic analysis. In practice, the virtual sources (VSs) that drive the diverging waves are often distributed in a deterministic way: following a regular grid, concentric rings, and spirals. Even though those deterministic distributions can offer various tradeoffs in terms of imaging performance, other distributions can be considered to improve imaging performance. It is herein suggested to look at alternative VSs distributions for optimizing the lateral resolution and the secondary lobes level (SLL) on several point spread functions (PSFs) by means of a multiobjective genetic algorithm. The optimization framework has led to seven pseudo-irregular distributions of VSs distributions that have not yet been found in the literature. An analysis of the imaging performance with a simulated phantom shows that these new distributions offer different tradeoffs between lateral resolution and contrast, respectively, measured on point-like reflectors and anechoic cysts. As an example, one of these optimized distributions improves the lateral resolution by 16% and gives equivalent contrast values on cysts and PSF isotropy properties, when compared to a concentric-rings-based distribution.
Collapse
|
7
|
Yue J, Hong X, Zhang B. An intelligent colony optimization imaging method for composites health monitoring using ultrasonic guided wave. ULTRASONICS 2023; 132:107019. [PMID: 37105020 DOI: 10.1016/j.ultras.2023.107019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/29/2023]
Abstract
Damage imaging technology based on ultrasonic guided wave can characterize and visualize structural damage. However, current imaging methods require high accuracy in wave packets information extraction, resulting in artifacts, large spots and false imaging. Therefore, an intelligent colony optimization imaging method is proposed to transform the damage imaging problem into the scattering sources search problem. The number of imaging trajectories through potential scattering sources is employed as the fitness function to assess the damage possibility in this individual. The fitness function is further implemented to particle swarm optimization algorithm for iterative search of actual scattering sources to find out the damage area with highest damage possibility. After the scattering sources search, the location of the damage can be identified through observing the distribution of the population. The experimental results illustrate that the proposed intelligent imaging method can accurately locate the crack damage of different lengths and delamination damage in composites, and the damage imaging effect is better than that of elliptic imaging.
Collapse
Affiliation(s)
- Jikang Yue
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xiaobin Hong
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Bin Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
8
|
Masoumi MH, Kaddoura T, Zemp RJ. Costas Sparse 2-D Arrays for High-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:460-472. [PMID: 37028300 DOI: 10.1109/tuffc.2023.3256339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Two-dimensional arrays enable volumetric ultrasound imaging but have been limited to small aperture size and hence low resolution due to the high cost and complexity of fabrication, addressing, and processing associated with large fully addressed arrays. Here, we propose Costas arrays as a gridded sparse 2-D array architecture for volumetric ultrasound imaging. Costas arrays have exactly one element for every row and column, such that the vector displacement between any pair of elements is unique. These properties ensure aperiodicity, which helps eliminate grating lobes. Compared with previously reported works, we studied the distribution of active elements based on an order-256 Costas layout on a wider aperture ( 96 λ×96 λ at 7.5 MHz center frequency) for high-resolution imaging. Our investigations with focused scanline imaging of point targets and cyst phantoms showed that Costas arrays exhibit lower peak sidelobe levels compared with random sparse arrays of the same size and offer comparable performance in terms of contrast compared with Fermat spiral arrays. In addition, Costas arrays are gridded, which could ease the manufacturing and has one element for each row/column, which enables simple interconnection strategies. Compared with state-of-the-art matrix probes, which are commonly 32×32 , the proposed sparse arrays achieve higher lateral resolution and a wider field of view.
Collapse
|
9
|
Ilkhechi AK, Palamar R, Sobhani MR, Dahunsi D, Ceroici C, Ghavami M, Brown J, Zemp R. High-Voltage Bias-Switching Electronics for Volumetric Imaging Using Electrostrictive Row-Column Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:324-335. [PMID: 37027674 DOI: 10.1109/tuffc.2023.3246424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Top orthogonal to bottom electrode (TOBE) arrays, also known as row-column arrays, hold great promise for fast high-quality volumetric imaging. Bias-voltage-sensitive TOBE arrays based on electrostrictive relaxors or micromachined ultrasound transducers can enable readout from every element of the array using only row and column addressing. However, these transducers require fast bias-switching electronics which are not part of a conventional ultrasound system and are nontrivial. Here we report on the first modular bias-switching electronics enabling transmit, receive, and biasing on every row and every column of TOBE arrays, supporting up to 1024 channels. We demonstrate the performance of these arrays by connection to a transducer testing interface board (IB) and demonstrate 3-D structural imaging of tissue and 3-D power Doppler imaging of phantoms with real-time B-scan imaging and reconstruction rates. Our developed electronics enable interfacing of bias-switchable TOBE arrays to channel-domain ultrasound platforms with software-defined reconstruction for next-generation 3-D imaging at unprecedented scales and imaging rates.
Collapse
|
10
|
Tai H, Basavarajappa L, Hoyt K. 3-D H-scan ultrasound imaging of relative scatterer size using a matrix array transducer and sparse random aperture compounding. Comput Biol Med 2022; 151:106316. [PMID: 36442278 PMCID: PMC9749370 DOI: 10.1016/j.compbiomed.2022.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
H-scan ultrasound (US) is a high-resolution imaging technique for soft tissue characterization. By acquiring data in volume space, H-scan US can provide insight into subtle tissue changes or heterogenous patterns that might be missed using traditional cross-sectional US imaging approaches. In this study, we introduce a 3-dimensional (3-D) H-scan US imaging technology for voxel-level tissue characterization in simulation and experimentation. Using a matrix array transducer, H-scan US imaging was developed to evaluate the relative size of US scattering aggregates in volume space. Experimental data was acquired using a programmable US system (Vantage 256, Verasonics Inc, Kirkland, WA) equipped with a 1024-element (32 × 32) matrix array transducer (Vermon Inc, Tours, France). Imaging was performed using the full array in transmission. Radiofrequency (RF) data sequences were collected using a sparse random aperture compounding technique with 6 different data compounding approaches. Plane wave imaging at five angles was performed at a center frequency of 8 MHz. Scan conversion and attenuation correction were applied. To generate the 3-D H-scan US images, a convolution filter bank (N = 256) was then used to process the RF data sequences and measure the spectral content of the backscattered US signals before volume reconstruction. Preliminary experimental studies were conducted using homogeneous phantom materials embedded with spherical US scatterers of varying diameter, i.e., 27 to 45, 63 to 75, or 106-126 μm. Both simulated and experimental results revealed that 3-D H-scan US images have a low spatial variance when tested with homogeneous phantom materials. Furthermore, H-scan US is considerably more sensitive than traditional B-mode US imaging for differentiating US scatterers of varying size (p = 0.001 and p = 0.93, respectively). Overall, this study demonstrates the feasibility of 3-D H-scan US imaging using a matrix array transducer for tissue characterization in volume space.
Collapse
Affiliation(s)
- Haowei Tai
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
11
|
Tsumura R, Gao S, Tang Y, Zhang HK. Concentric-ring arrays for forward-viewing ultrasound imaging. J Med Imaging (Bellingham) 2022; 9:065002. [PMID: 36444284 PMCID: PMC9683378 DOI: 10.1117/1.jmi.9.6.065002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2023] Open
Abstract
Purpose Current ultrasound (US)-image-guided needle insertions often require an expertized technique for clinicians because the performance of tasks in a three-dimensional space using two-dimensional images requires operators to cognitively maintain the spatial relationships between the US probe, the needle, and the lesion. This work presents forward-viewing US imaging with a ring array configuration to enable needle interventions without requiring the registration between tools and targets. Approach The center-open ring array configuration allows the needle to be inserted from the center of the visualized US image, providing simple and intuitive guidance. To establish the feasibility of the ring array configuration, the design parameters causing the image quality, including the radius of the center hole and the number of ring layers and transducer elements, were investigated. Results Experimental results showed successful visualization, even with a hole in the transducer elements, and the target visibility was improved by increasing the number of ring layers and the number of transducer elements in each ring layer. Reducing the hole radius improved the region's image quality at a shallow depth. Conclusions Forward-viewing US imaging with a ring array configuration has the potential to be a viable alternative to conventional US image-guided needle insertion methods.
Collapse
Affiliation(s)
- Ryosuke Tsumura
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, Massachusetts, United States
- National Institute of Advanced Industrial Science and Technology, Health and Medical Research Institute, Tsukuba, Japan
| | - Shang Gao
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| | - Yichuan Tang
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| | - Haichong K. Zhang
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, Massachusetts, United States
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| |
Collapse
|
12
|
Ramalli A, Boni E, Roux E, Liebgott H, Tortoli P. Design, Implementation, and Medical Applications of 2-D Ultrasound Sparse Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2739-2755. [PMID: 35333714 DOI: 10.1109/tuffc.2022.3162419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultrasound sparse array consists of a sparse distribution of elements over a 2-D aperture. Such an array is typically characterized by a limited number of elements, which in most cases is compatible with the channel number of the available scanners. Sparse arrays represent an attractive alternative to full 2-D arrays that may require the control of thousands of elements through expensive application-specific integrated circuits (ASICs). However, their massive use is hindered by two main drawbacks: the possible beam profile deterioration, which may worsen the image contrast, and the limited signal-to-noise ratio (SNR), which may result too low for some applications. This article reviews the work done for three decades on 2-D ultrasound sparse arrays for medical applications. First, random, optimized, and deterministic design methods are reviewed together with their main influencing factors. Then, experimental 2-D sparse array implementations based on piezoelectric and capacitive micromachined ultrasonic transducer (CMUT) technologies are presented. Sample applications to 3-D (Doppler) imaging, super-resolution imaging, photo-acoustic imaging, and therapy are reported. The final sections discuss the main shortcomings associated with the use of sparse arrays, the related countermeasures, and the next steps envisaged in the development of innovative arrays.
Collapse
|
13
|
Maffett R, Boni E, Chee AJY, Yiu BYS, Savoia AS, Ramalli A, Tortoli P, Yu ACH. Unfocused Field Analysis of a Density-Tapered Spiral Array for High-Volume-Rate 3-D Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2810-2822. [PMID: 35786553 DOI: 10.1109/tuffc.2022.3188245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spiral array transducers with a sparse 2-D aperture have demonstrated their potential in realizing 3-D ultrasound imaging with reduced data rates. Nevertheless, their feasibility in high-volume-rate imaging based on unfocused transmissions has yet to be established. From a metrology standpoint, it is essential to characterize the acoustic field of unfocused transmissions from spiral arrays not only to assess their safety but also to identify the root cause of imaging irregularities due to the array's sparse aperture. Here, we present a field profile analysis of unfocused transmissions from a density-tapered spiral array transducer (256 hexagonal elements, 220- [Formula: see text] element diameter, and 1-cm aperture diameter) through both simulations and hydrophone measurements. We investigated plane- and diverging-wave transmissions (five-cycle, 7.5-MHz pulses) from 0° to 10° steering for their beam intensity characteristics and wavefront arrival time profiles. Unfocused firings were also tested for B-mode imaging performance (ten compounded angles, -5° to 5° span). The array was found to produce unfocused transmissions with a peak negative pressure of 93.9 kPa at 2 cm depth. All transmissions steered up to 5° were free of secondary lobes within 12 dB of the main beam peak intensity. All wavefront arrival time profiles were found to closely match the expected profiles with maximum root-mean-squared errors of [Formula: see text] for plane wave (PW) and [Formula: see text] for diverging wave. The B-mode images showed good spatial resolution with a penetration depth of 22 mm in PW imaging. Overall, these results demonstrate that the density-tapered spiral array can facilitate unfocused transmissions below regulatory limits (mechanical index: 0.034; spatial-peak, pulse-average intensity: 0.298 W/cm2) and with suppressed secondary lobes while maintaining smooth wavefronts.
Collapse
|
14
|
Garcia D. SIMUS: An open-source simulator for medical ultrasound imaging. Part I: Theory & examples. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 218:106726. [PMID: 35339918 DOI: 10.1016/j.cmpb.2022.106726] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Computational ultrasound imaging has become a well-established methodology in the ultrasound community. Simulations of ultrasound sequences and images allow the study of innovative techniques in terms of emission strategy, beamforming, and probe design. There is a wide spectrum of software dedicated to ultrasound imaging, each having its specificities in its applications and the numerical method. METHODS We describe in this two-part paper a new ultrasound simulator (SIMUS) for MATLAB, which belongs to the MATLAB UltraSound Toolbox (MUST). The SIMUS software simulates acoustic pressure fields and radiofrequency RF signals for uniform linear or convex probes. SIMUS is an open-source software whose features are 1) ease of use, 2) time-harmonic analysis, 3) pedagogy. The main goal was to offer a comprehensive turnkey tool, along with a detailed theory for pedagogical and research purposes. RESULTS This article describes in detail the underlying linear theory of SIMUS and provides examples of simulated acoustic fields and ultrasound images. The accompanying article (part II) is devoted to the comparison of SIMUS with several software packages: Field II, k-Wave, FOCUS, and the Verasonics simulator. The MATLAB open codes for the simulator SIMUS are distributed under the terms of the GNU Lesser General Public License, and can be downloaded from https://www.biomecardio.com/MUST. CONCLUSIONS The simulations described in this part and in the accompanying paper (Part II) show that SIMUS can be used for realistic simulations in medical ultrasound imaging.
Collapse
Affiliation(s)
- Damien Garcia
- CREATIS: Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Lyon, France.
| |
Collapse
|
15
|
Design of 2D Planar Sparse Binned Arrays Based on the Coarray Analysis. SENSORS 2021; 21:s21238018. [PMID: 34884023 PMCID: PMC8659468 DOI: 10.3390/s21238018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022]
Abstract
The analysis of the beampattern is the base of sparse arrays design process. However, in the case of bidimensional arrays, this analysis has a high computational cost, turning the design process into a long and complex task. If the imaging system development is considered a holistic process, the aperture is a sampling grid that must be considered in the spatial domain through the coarray structure. Here, we propose to guide the aperture design process using statistical parameters of the distribution of the weights in the coarray. We have studied three designs of sparse matrix binned arrays with different sparseness degrees. Our results prove that there is a relationship between these parameters and the beampattern, which is valuable and improves the array design process. The proposed methodology reduces the computational cost up to 58 times with respect to the conventional fitness function based on the beampattern analysis.
Collapse
|
16
|
Design of Ultrasonic Synthetic Aperture Imaging Systems Based on a Non-Grid 2D Sparse Array. SENSORS 2021; 21:s21238001. [PMID: 34884002 PMCID: PMC8659915 DOI: 10.3390/s21238001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
This work provides a guide to design ultrasonic synthetic aperture systems for non-grid two-dimensional sparse arrays such as spirals or annular segmented arrays. It presents an algorithm that identifies which elements have a more significant impact on the beampattern characteristics and uses this information to reduce the number of signals, the number of emitters and the number of parallel receiver channels involved in the beamforming process. Consequently, we can optimise the 3D synthetic aperture ultrasonic imaging system for a specific sparse array, reducing the computational cost, the hardware requirements and the system complexity. Simulations using a Fermat spiral array and experimental data based on an annular segmented array with 64 elements are used to assess this algorithm.
Collapse
|
17
|
Current Status and Advancement of Ultrasound Imaging Technologies in Musculoskeletal Studies. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-021-00337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Cohen R, Fingerhut N, Varray F, Liebgott H, Eldar YC. Sparse Convolutional Beamforming for 3-D Ultrafast Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2444-2459. [PMID: 33755562 DOI: 10.1109/tuffc.2021.3068078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Real-time 3-D ultrasound (US) provides a complete visualization of inner body organs and blood vasculature, crucial for diagnosis and treatment of diverse diseases. However, 3-D systems require massive hardware due to the huge number of transducer elements and consequent data size. This increases cost significantly and limit both frame rate and image quality, thus preventing the 3-D US from being common practice in clinics worldwide. A recent study presented a technique called sparse convolutional beamforming algorithm (SCOBA), which obtains improved image quality while allowing notable element reduction in the context of 2-D focused imaging. In this article, we build upon previous work and introduce a nonlinear beamformer for 3-D imaging, called COBA-3D, consisting of 2-D spatial convolution of the in-phase and quadrature received signals. The proposed technique considers diverging-wave transmission and achieves improved image resolution and contrast compared with standard delay-and-sum beamforming while enabling a high frame rate. Incorporating 2-D sparse arrays into our method creates SCOBA-3D: a sparse beamformer that offers significant element reduction and, thus, allows performing 3-D imaging with the resources typically available for 2-D setups. To create 2-D thinned arrays, we present a scalable and systematic way to design 2-D fractal sparse arrays. The proposed framework paves the way for affordable ultrafast US devices that perform high-quality 3-D imaging, as demonstrated using phantom and ex-vivo data.
Collapse
|
19
|
Ramalli A, Boni E, Giangrossi C, Mattesini P, Dallai A, Liebgott H, Tortoli P. Real-Time 3-D Spectral Doppler Analysis With a Sparse Spiral Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1742-1751. [PMID: 33444135 DOI: 10.1109/tuffc.2021.3051628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2-D sparse arrays may push the development of low-cost 3-D systems, not needing to control thousands of elements by expensive application-specific integrated circuits (ASICs). However, there is still some concern about their suitability in applications, such as Doppler investigation, which inherently involve poor signal-to-noise ratios (SNRs). In this article, a novel real-time 3-D pulsed-wave (PW) Doppler system, based on a 256-element 2-D spiral array, is presented. Coded transmission (TX) and matched filtering were implemented to improve the system SNR. Standard sonograms as well as multigate spectral Doppler (MSD) profiles, along lines that can be arbitrarily located in different planes, are presented. The performance of the system was assessed quantitatively on experimental data obtained from a straight tube flow phantom. An SNR increase of 11.4 dB was measured by transmitting linear chirps instead of standard sinusoidal bursts. For a qualitative assessment of the system performance in more realistic conditions, an anthropomorphic phantom of the carotid arteries was used. Finally, real-time B-mode and MSD images were obtained from healthy volunteers.
Collapse
|
20
|
Sciallero C, Trucco A. Wideband 2-D sparse array optimization combined with multiline reception for real-time 3-D medical ultrasound. ULTRASONICS 2021; 111:106318. [PMID: 33333484 DOI: 10.1016/j.ultras.2020.106318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3-D) ultrasound medical imaging provides advantages over a traditional 2-D visualization method. However, the use of a 2-D array to acquire 3-D images may result in a transducer composed of thousands of elements and a large amount of data in the front-end, making it impractical to implement high volume rate imaging and individually control all elements with the scanner. This paper proposes an original approach, valid for wideband operations centered on the design center frequency, to maintain a limited number of active elements and firing events, while preserving high resolution and volume rate. A 7 MHz 2-D array is composed of two circular concentric subparts. In the inner footprint the elements are distributed following a regular grid, while in the outer subpart a sparse non-grid solution is adopted. The inner circular dense array is composed of 256 elements with a pitch of 0.5λ. The overall footprint, delimited by the outer subpart, is equivalent to a 256-element array with a pitch of 1.5λ. All the elements of the inner subpart are activated in transmission. Following an optimization procedure, both subparts, including a subset of the elements placed in the inner footprint (i.e., sparse on-the-grid array) and the elements spread over the outer subpart (i.e., sparse off-the-grid array) are used to receive. A total number of 256 elements, defined by the sum of elements distributed in the inner and outer subparts, is fixed in reception. The proposed approach implies a multiline reception strategy, where for each transmission 3 × 3 firing events occur in reception. The sparse receive array is optimized by using a simulated annealing optimization. An original cost function is designed specifically to achieve successful results in wideband conditions. The receive array is optimized in order to obtain consistent results for different signal bandwidths of the excitation pulse. For all the desired bandwidths, the optimized array will provide the recovery of the lower lateral resolution of the transmission phase and, at the same time, a significant reduction of the undesired side lobe raised in the 3-D two-way beam pattern. The 3-D two-way beam pattern analysis reveals that the proposed solution is able to guarantee a lateral resolution of 1.35 mm at a focus depth of 25 mm for the three fractional signal bandwidths of interest (i.e., 30%, 50% and 70%) considered in the optimization process. The undesired side lobes are successfully suppressed especially when, as a consequence of the multiline strategy, non-coincident steering angles are used in transmission and reception. Moreover, thanks to the firing scheme adopted, a high-volume rate of 63 volumes per second may be achieved at the focus depth. The volume rate decreases to 32 volumes per second at twice the focal depth. Phantom image simulations show that the proposed method maintains a satisfactory and almost uniform image quality in terms of resolution and contrast for all the signal bandwidths of interest.
Collapse
Affiliation(s)
- Claudia Sciallero
- Dept. of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture (DITEN), University of Genoa, Via all'Opera Pia 11, Genova 16145, Italy.
| | - Andrea Trucco
- Dept. of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture (DITEN), University of Genoa, Via all'Opera Pia 11, Genova 16145, Italy.
| |
Collapse
|
21
|
Sauvage J, Poree J, Rabut C, Ferin G, Flesch M, Rosinski B, Nguyen-Dinh A, Tanter M, Pernot M, Deffieux T. 4D Functional Imaging of the Rat Brain Using a Large Aperture Row-Column Array. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1884-1893. [PMID: 31841403 DOI: 10.1109/tmi.2019.2959833] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Functional ultrasound imaging (fUS) recently emerged as a promising neuroimaging modality to image and monitor brain activity based on cerebral blood volume response (CBV) and neurovascular coupling. fUS offers very good spatial and temporal resolutions compared to fMRI gold standard as well as simplicity and portability. It was recently extended to 4D fUS imaging in preclinical settings although this approach remains limited and complex. Indeed 4D fUS requires a 2D matrix probe and specific hardware able to drive the N2 elements of the probe with thousands of electronic channels. Several under-sampling approaches are currently investigated to limit the channel count and spread ultrasound 4D modalities. Among them, the Row Column Addressing (RCA) approach combined with ultrafast imaging is a compelling alternative using only N + N channels. We present a large field of view RCA probe prototype of 128 + 128 channels and 15 MHz central frequency adapted for preclinical imaging. Based on the Orthogonal Plane Wave compounding scheme, we were able to perform 4D vascular brain acquisitions at high volume rate. Doppler volumes of the whole rat brain were obtained in vivo at high rates (23 dB CNR at 156 Hz and 19 dB CNR at 313 Hz). Visual and whiskers stimulations were performed and the corresponding CBV increases were reconstructed in 3D with successful functional activation detected in the superior colliculus and somato-sensorial cortex respectively. This proof of concept study demonstrates for the first time the use of a low-channel count RCA array for in vivo 4D fUS imaging in the whole rat brain.
Collapse
|
22
|
Kumar V, Lee PY, Kim BH, Fatemi M, Alizad A. Gap-filling method for suppressing grating lobes in ultrasound imaging: Experimental study with deep-learning approach. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:76276-76286. [PMID: 32612897 PMCID: PMC7328874 DOI: 10.1109/access.2020.2989337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sparse arrays reduce the number of active channels that effectively increases the inter-element spacing. Large inter-element spacing results in grating lobe artifacts degrading the ultrasound image quality and reducing the contrast-to-noise ratio. A deep learning-based custom algorithm is proposed to estimate inactive channel data in periodic sparse arrays. The algorithm uses data from multiple active channels to estimate inactive channels. The estimated inactive channel data effectively reduces the inter-element spacing for beamforming, thus suppressing the grating lobes. Estimated inactive element channel data was combined with active element channel data resulting in a pseudo fully sampled array. The channel data was beamformed using a simple delay-and-sum method and compared with the sparse array and fully sampled array. The performance of the algorithm was validated using a wire target in a water tank, multi-purpose tissue-mimicking phantom, and in-vivo carotid data. Grating lobes suppression up to 15.25 dB was observed with an increase in contrast-to-noise (CNR) for the pseudo fully sampled array. Hypoechoic regions showed more improvement in CNR than hyperechoic regions. Root-mean-square error for unwrapped phase between fully sampled array and the pseudo fully sampled array was low, making the estimated data suitable for Doppler and elastography applications. Speckle pattern was also preserved; thus, the estimated data can also be used for quantitative ultrasound applications. The algorithm can improve the quality of sparse array images and has applications in small scale ultrasound devices and 2D arrays.
Collapse
Affiliation(s)
- Viksit Kumar
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Po-Yang Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Bae-Hyung Kim
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mostafa Fatemi
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
23
|
Turco S, Frinking P, Wildeboer R, Arditi M, Wijkstra H, Lindner JR, Mischi M. Contrast-Enhanced Ultrasound Quantification: From Kinetic Modeling to Machine Learning. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:518-543. [PMID: 31924424 DOI: 10.1016/j.ultrasmedbio.2019.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 05/14/2023]
Abstract
Ultrasound contrast agents (UCAs) have opened up immense diagnostic possibilities by combined use of indicator dilution principles and dynamic contrast-enhanced ultrasound (DCE-US) imaging. UCAs are microbubbles encapsulated in a biocompatible shell. With a rheology comparable to that of red blood cells, UCAs provide an intravascular indicator for functional imaging of the (micro)vasculature by quantitative DCE-US. Several models of the UCA intravascular kinetics have been proposed to provide functional quantitative maps, aiding diagnosis of different pathological conditions. This article is a comprehensive review of the available methods for quantitative DCE-US imaging based on temporal, spatial and spatiotemporal analysis of the UCA kinetics. The recent introduction of novel UCAs that are targeted to specific vascular receptors has advanced DCE-US to a molecular imaging modality. In parallel, new kinetic models of increased complexity have been developed. The extraction of multiple quantitative maps, reflecting complementary variables of the underlying physiological processes, requires an integrative approach to their interpretation. A probabilistic framework based on emerging machine-learning methods represents nowadays the ultimate approach, improving the diagnostic accuracy of DCE-US imaging by optimal combination of the extracted complementary information. The current value and future perspective of all these advances are critically discussed.
Collapse
Affiliation(s)
- Simona Turco
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | - Rogier Wildeboer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel Arditi
- École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Hessel Wijkstra
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jonathan R Lindner
- Knight Cardiovascular Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
24
|
Harput S, Christensen-Jeffries K, Ramalli A, Brown J, Zhu J, Zhang G, Leow CH, Toulemonde M, Boni E, Tortoli P, Eckersley RJ, Dunsby C, Tang MX. 3-D Super-Resolution Ultrasound Imaging With a 2-D Sparse Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:269-277. [PMID: 31562080 PMCID: PMC7614008 DOI: 10.1109/tuffc.2019.2943646] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-frame-rate 3-D ultrasound imaging technology combined with super-resolution processing method can visualize 3-D microvascular structures by overcoming the diffraction-limited resolution in every spatial direction. However, 3-D super-resolution ultrasound imaging using a full 2-D array requires a system with a large number of independent channels, the design of which might be impractical due to the high cost, complexity, and volume of data produced. In this study, a 2-D sparse array was designed and fabricated with 512 elements chosen from a density-tapered 2-D spiral layout. High-frame-rate volumetric imaging was performed using two synchronized ULA-OP 256 research scanners. Volumetric images were constructed by coherently compounding nine-angle plane waves acquired at a pulse repetition frequency of 4500 Hz. Localization-based 3-D super-resolution images of two touching subwavelength tubes were generated from 6000 volumes acquired in 12 s. Finally, this work demonstrates the feasibility of 3-D super-resolution imaging and super-resolved velocity mapping using a customized 2-D sparse array transducer.
Collapse
Affiliation(s)
- Sevan Harput
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K., and also with the Division of Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, U.K
| | | | - Alessandro Ramalli
- Department of Information Engineering, University of Florence, 50139 Florence, Italy, and also with the Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Jemma Brown
- Biomedical Engineering Department, Division of Imaging Sciences, King’s College London, London SE1 7EH, U.K
| | - Jiaqi Zhu
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Ge Zhang
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Chee Hau Leow
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Matthieu Toulemonde
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Enrico Boni
- Department of Information Engineering, University of Florence, 50139 Florence, Italy
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, 50139 Florence, Italy
| | - Robert J. Eckersley
- Biomedical Engineering Department, Division of Imaging Sciences, King’s College London, London SE1 7EH, U.K
| | - Chris Dunsby
- Department of Physics and the Centre for Pathology, Imperial College London, London SW7 2AZ, U.K
| | - Meng-Xing Tang
- ULIS Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
25
|
Mattesini P, Ramalli A, Petrusca L, Basset O, Liebgott H, Tortoli P. Spectral Doppler Measurements With 2-D Sparse Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:278-285. [PMID: 31562082 DOI: 10.1109/tuffc.2019.2944090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The 2-D sparse arrays, in which a few hundreds of elements are distributed on the probe surface according to an optimization procedure, represent an alternative to full 2-D arrays, including thousands of elements usually organized in a grid. Sparse arrays have already been used in B-mode imaging tests, but their application to Doppler investigations has not been reported yet. Since the sparsity of the elements influences the acoustic field, a corresponding influence on the mean frequency (Fm), bandwidth (BW), and signal-to-noise ratio (SNR) of the Doppler spectra is expected. This article aims to assess, by simulations and experiments, to what extent the use of a sparse rather than a full gridded 2-D array has an impact on spectral Doppler measurements. Parabolic flows were investigated by a 3 MHz, 1024-element gridded array and by a sparse array; the latter was obtained by properly selecting a subgroup of 256 elements from the full array. Simulations show that the mean Doppler frequency does not change between the sparse and the full array while there are significant differences on the BW (average reduction of 17.2% for the sparse array, due to different apertures of the two probes) and on the signal power (Ps) (22 dB, due to the different number of active elements). These results are confirmed by flow phantom experiments, which also highlight that the most critical difference between sparse and full gridded array in Doppler measurements is in terms of SNR (-16.8 dB).
Collapse
|
26
|
Ramalli A, Harput S, Bezy S, Boni E, Eckersley RJ, Tortoli P, D'Hooge J. High-Frame-Rate Tri-Plane Echocardiography With Spiral Arrays: From Simulation to Real-Time Implementation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:57-69. [PMID: 31514130 DOI: 10.1109/tuffc.2019.2940289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Major cardiovascular diseases (CVDs) are associated with (regional) dysfunction of the left ventricle. Despite the 3-D nature of the heart and its dynamics, the assessment of myocardial function is still largely based on 2-D ultrasound imaging, thereby making diagnosis heavily susceptible to the operator's expertise. Unfortunately, to date, 3-D echocardiography cannot provide adequate spatiotemporal resolution in real-time. Hence, tri-plane imaging has been introduced as a compromise between 2-D and true volumetric ultrasound imaging. However, tri-plane imaging typically requires high-end ultrasound systems equipped with fully populated matrix array probes embedded with expensive and little flexible electronics for two-stage beamforming. This article presents an advanced ultrasound system for real-time, high frame rate (HFR), and tri-plane echocardiography based on low element count sparse arrays, i.e., the so-called spiral arrays. The system was simulated, experimentally validated, and implemented for real-time operation on the ULA-OP 256 system. Five different array configurations were tested together with four different scan sequences, including multi-line and planar diverging wave transmission. In particular, the former can be exploited to achieve, in tri-plane imaging, the same temporal resolution currently used in clinical 2-D echocardiography, at the expenses of contrast (-3.5 dB) and signal-to-noise ratio (SNR) (-8.7 dB). On the other hand, the transmission of planar diverging waves boosts the frame rate up to 250 Hz, but further compromises contrast (-10.5 dB), SNR (-9.7 dB), and lateral resolution (+46%). In conclusion, despite an unavoidable loss in image quality and sensitivity due to the limited number of elements, HFR tri-plane imaging with spiral arrays is shown to be feasible in real-time and may enable real-time functional analysis of all left ventricular segments of the heart.
Collapse
|
27
|
Kalkhoran MA, Vray D. Sparse sampling and reconstruction for an optoacoustic ultrasound volumetric hand-held probe. BIOMEDICAL OPTICS EXPRESS 2019; 10:1545-1556. [PMID: 31061757 PMCID: PMC6484982 DOI: 10.1364/boe.10.001545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Accurate anatomical localization of functional information is the main goal of hybridizing optoacoustic and ultrasound imaging, with the promise of early stage diagnosis and disease pathophysiology. Optoacoustic integration to ultrasound is a relatively mature technique for clinical two-dimensional imaging, however the complexity of biological samples places particular demands for volumetric measurement and reconstruction. This integration is a multi-fold challenge that is mainly associated with the system geometry, the sampling and beam quality. In this study, we evaluated the design geometry for the sparse ultrasonic hand-held probe that is popularly associated with three-dimensional imaging of anatomical deformation, to incorporate the three-dimensional optoacoustic physiological information. We explored the imaging performance of three unconventional annular geometries; namely, segmented, spiral, and circular geometries. To avoid bias evaluation, two classes of analytical and model-based algorithms were used. The superior performance of the segmented annular array for recovery of the true object is demonstrated. Along with the model-based approach, this geometry offers spatial invariant resolution for the optoacoustic mode for the given field of view.The analytical approach, on the other hand, is computationally less expensive and is the method of choice for ultrasound imaging. Our design can potentially evolve into a valuable diagnostic tool, particularly for vascular-related disease.
Collapse
Affiliation(s)
| | - Didier Vray
- Université de Lyon, Université Claude Bernard Lyon 1, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Lyon,
France
| |
Collapse
|
28
|
Daeichin V, Bera D, Raghunathan S, Shabani Motlagh M, Chen Z, Chen C, Noothout E, Vos HJ, Pertijs M, Bosch JG, de Jong N, Verweij M. Acoustic characterization of a miniature matrix transducer for pediatric 3D transesophageal echocardiography. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2143-2154. [PMID: 30072206 DOI: 10.1016/j.ultrasmedbio.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
This paper presents the design, fabrication and characterization of a miniature PZT-on-CMOS matrix transducer for real-time pediatric 3-dimensional (3D) transesophageal echocardiography (TEE). This 3D TEE probe consists of a 32 × 32 array of PZT elements integrated on top of an Application Specific Integrated Circuit (ASIC). We propose a partitioned transmit/receive array architecture wherein the 8 × 8 transmitter elements, located at the centre of the array, are directly wired out and the remaining receive elements are grouped into 96 sub-arrays of 3 × 3 elements. The echoes received by these sub-groups are locally processed by micro-beamformer circuits in the ASIC that allow pre-steering up to ±37°. The PZT-on-CMOS matrix transducer has been characterized acoustically and has a centre frequency of 5.8 MHz, -6 dB bandwidth of 67%, a transmit efficiency of 6 kPa/V at 30 mm, and a receive dynamic range of 85 dB with minimum and maximum detectable pressures of 5 Pa and 84 kPa respectively. The properties are very suitable for a miniature pediatric real-time 3D TEE probe.
Collapse
Affiliation(s)
- Verya Daeichin
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands.
| | - Deep Bera
- Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Shreyas Raghunathan
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Maysam Shabani Motlagh
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Zhao Chen
- Electron. Instrum. Lab., Delft University of Technology, Delft, The Netherlands
| | - Chao Chen
- Electron. Instrum. Lab., Delft University of Technology, Delft, The Netherlands
| | - Emile Noothout
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Hendrik J Vos
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands; Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Michiel Pertijs
- Electron. Instrum. Lab., Delft University of Technology, Delft, The Netherlands
| | - Johan G Bosch
- Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands; Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Martin Verweij
- Lab. of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands; Dept. of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Zhou J, Wei S, Jintamethasawat R, Sampson R, Kripfgans OD, Fowlkes JB, Wenisch TF, Chakrabarti C. High-Volume-Rate 3-D Ultrasound Imaging Based on Synthetic Aperture Sequential Beamforming With Chirp-Coded Excitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1346-1358. [PMID: 29994304 DOI: 10.1109/tuffc.2018.2839085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three-dimensional (3-D) ultrasound imaging is a promising modality for many medical applications. Unfortunately, it generates voluminous data in the front end, making it unattractive for high-volume-rate portable medical applications. We apply synthetic aperture sequential beamforming (SASB) to greatly compress the front-end receive data. Baseline 3-D SASB has a low volume rate, because subapertures fire one by one. In this paper, we propose to increase the volume rate of 3-D SASB without degrading imaging quality through: 1) transmitting and receiving simultaneously with four subapertures and 2) using linear chirps as the excitation waveform to reduce interference. We design four linear chirps that operate on two overlapped frequency bands with chirp pairs in each band having opposite chirp rates. Direct implementation of this firing scheme results in grating lobes. Therefore, we design a sparse array that mitigates the grating lobe levels through optimizing the locations of transducer elements in the bin-based random array. Compared with the baseline 3-D SASB, the proposed method increases the volume rate from 8.56 to 34.2 volumes/s without increasing the front-end computation requirement. Field-II-based cyst simulations show that the proposed method achieves imaging quality comparable with baseline 3-D SASB in both shallow and deep regions.
Collapse
|
30
|
Experimental 3-D Ultrasound Imaging with 2-D Sparse Arrays using Focused and Diverging Waves. Sci Rep 2018; 8:9108. [PMID: 29904182 PMCID: PMC6002520 DOI: 10.1038/s41598-018-27490-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/24/2018] [Indexed: 02/02/2023] Open
Abstract
Three dimensional ultrasound (3-D US) imaging methods based on 2-D array probes are increasingly investigated. However, the experimental test of new 3-D US approaches is contrasted by the need of controlling very large numbers of probe elements. Although this problem may be overcome by the use of 2-D sparse arrays, just a few experimental results have so far corroborated the validity of this approach. In this paper, we experimentally compare the performance of a fully wired 1024-element (32 × 32) array, assumed as reference, to that of a 256-element random and of an “optimized” 2-D sparse array, in both focused and compounded diverging wave (DW) transmission modes. The experimental results in 3-D focused mode show that the resolution and contrast produced by the optimized sparse array are close to those of the full array while using 25% of elements. Furthermore, the experimental results in 3-D DW mode and 3-D focused mode are also compared for the first time and they show that both the contrast and the resolution performance are higher when using the 3-D DW at volume rates up to 90/second which represent a 36x speed up factor compared to the focused mode.
Collapse
|
31
|
Kalkhoran MA, Vray D. Theoretical characterization of annular array as a volumetric optoacoustic ultrasound handheld probe. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29488361 DOI: 10.1117/1.jbo.23.2.025004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Optoacoustic ultrasound (OPUS) is a promising hybridized technique for simultaneous acquisition of functional and morphological data. The optical specificity of optoacoustic leverages the diagnostic aptitude of ultrasonography beyond anatomy. However, this integration has been rarely practiced for volumetric imaging. The challenge lies in the effective imaging probes that preserve the functionality of both modalities. The potentials of a sparse annular array for volumetric OPUS imaging are theoretically investigated. In order to evaluate and optimize the performance characteristics of the probe, series of analysis in the framework of system model matrix was carried out. The two criteria of voxel crosstalk and eigenanalysis have been employed to unveil information about the spatial sensitivity, aliasing, and number of definable spatial frequency components. Based on these benchmarks, the optimal parameters for volumetric handheld probe are determined. In particular, the number, size, and the arrangement of the elements and overall aperture dimension were investigated. The result of the numerical simulation suggests that the segmented-annular array of 128 negatively focused elements with 1λ × 20λ size, operating at 5-MHz central frequency showcases a good agreement with the physical requirement of both imaging systems. We hypothesize that these features enable a high-throughput volumetric passive/active ultrasonic imaging system with great potential for clinical applications.
Collapse
Affiliation(s)
- Mohammad Azizian Kalkhoran
- Université de Lyon, Université Claude Bernard Lyon 1, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, France
| | - Didier Vray
- Université de Lyon, Université Claude Bernard Lyon 1, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, France
| |
Collapse
|
32
|
Fast Volumetric Ultrasound B-Mode and Doppler Imaging with a New High-Channels Density Platform for Advanced 4D Cardiac Imaging/Therapy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020200] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Ho CK, Chee AJY, Yiu BYS, Tsang ACO, Chow KW, Yu ACH. Wall-Less Flow Phantoms With Tortuous Vascular Geometries: Design Principles and a Patient-Specific Model Fabrication Example. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:25-38. [PMID: 27959808 DOI: 10.1109/tuffc.2016.2636129] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Flow phantoms with anatomically realistic geometry and high acoustic compatibility are valuable investigative tools in vascular ultrasound studies. Here, we present a new framework to fabricate ultrasound-compatible flow phantoms to replicate human vasculature that is tortuous, nonplanar, and branching in nature. This framework is based upon the integration of rapid prototyping and investment casting principles. A pedagogical walkthrough of our engineering protocol is presented in this paper using a patient-specific cerebral aneurysm model as an exemplar demonstration. The procedure for constructing the flow circuit component of the phantoms is also presented, including the design of a programmable flow pump system, the fabrication of blood mimicking fluid, and flow rate calibration. Using polyvinyl alcohol cryogel as the tissue mimicking material, phantoms developed with the presented protocol exhibited physiologically relevant acoustic properties [attenuation coefficient: 0.229±0.032 dB/( [Formula: see text]) and acoustic speed: 1535±2.4 m/s], and their pulsatile flow dynamics closely resembled the flow profile input. As a first application of our developed phantoms, the flow pattern of the patient-specific aneurysm model was visualized by performing high-frame-rate color-encoded speckle imaging over multiple time-synchronized scan planes. Persistent recirculation was observed, and the vortex center was found to shift in position over a cardiac cycle, indicating the 3-D nature of flow recirculation inside an aneurysm. These findings suggest that phantoms produced from our reported protocol can serve well as acoustically compatible test beds for vascular ultrasound studies, including 3-D flow imaging.
Collapse
|