1
|
Li Y, Xiao W, Gao Z. A systematic review and meta-analysis of radio frequency ablation and routine resection in the treatment of small hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:770-780. [PMID: 34012665 DOI: 10.21037/jgo-21-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background This study sought to conduct a meta-analysis of the relevant literature on radiofrequency ablation (RFA) and routine resection in the treatment of small hepatocellular carcinoma (SHCC) in recent years, and to examine the clinical efficacy and safety of different schemes. Methods PubMed, The Cochrane Library, Embase, CNKI, Chinese biomedical literature, VIP Chinese journal and the Wanfang Database were used to comprehensively search for relevant papers on clinical control studies of RFA and the routine resection SHCC published between January 2008 and December 2019. The clinical efficacy and safety of different schemes in the treatment of SHCC were compared, including the overall survival rate within 1, 3, and 5 years, and the incidence of complications during treatment. A meta-analysis was undertaken using methods provided by the Cochrane Collaboration and RevMan 5.3 software. Results A total of 13 publications of studies were retrieved in which 2,384 patients participated. Of these patients, 1,256 (52.68%) were allocated to the RFA group and 1,128 patients (47.32%) to the conventional resection group. The effect size of the 1-year overall survival rate for the two groups was odds ratio (OR): 0.78 [95% confidence interval (CI), 0.43-1.38]; Z test: P=0.32. The effect size of the overall survival rate within 3 years was OR: 0.71 (95% CI, 0.48-1.05); Z test: P=0.07. The difference was not statistically significant. The 5-year overall survival rate of the RFA group and conventional resection group was OR: 0.55 (95% CI, 0.40-0.72). The OR value fell within the CI, excluding 1; Z test: P<0.0001. The difference was statistically significant. The incidence of complications in the RFA group during treatment was lower than that in the conventional resection group (OR: 0.45; 95% CI, 0.32-0.69). The OR value was within the CI, excluding 1; Z test: P=0.0002. The difference was statistically significant. Conclusions The short-term effect of RFA in the treatment of SHCC is basically the same as that of routine resection; however, the long-term effect is significantly lower than that of routine resection. RFA has a lower incidence of complications during treatment, and thus better clinical safety.
Collapse
Affiliation(s)
- Yu Li
- Department of General Surgery, PLA 942 Hospital, Yinchuan, China
| | - Weike Xiao
- Department of General Surgery, PLA 942 Hospital, Yinchuan, China
| | - Zhenrong Gao
- Department of General Surgery, PLA 942 Hospital, Yinchuan, China
| |
Collapse
|
2
|
Ahmed R, Doyley MM. Parallel Receive Beamforming Improves the Performance of Focused Transmit-Based Single-Track Location Shear Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2057-2068. [PMID: 32746171 PMCID: PMC7590368 DOI: 10.1109/tuffc.2020.2998979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Single-track location shear wave elastography (STL-SWEI) is robust against speckle-induced noise in shear wave speed (SWS) estimates; however, it is not immune to other incoherent sources of noise (such as electronic noise) that increases the variance in SWS estimates. Although estimation averaging enabled by parallel receive beamforming adequately suppresses these noise sources, these beamforming techniques often rely on broad transmit beams (plane or diverging). While broad beam approaches, such as plane-wave imaging, are becoming ubiquitous in research ultrasound systems, clinical systems usually employ focused transmit beams due to compatibility with hardware beamforming and deeper penetration. Consequently, improving the noise robustness of focused transmit-based STL-SWEI may enable easier translation to clinical scenarios. In this article, we experimentally evaluated the performance of parallel beamforming for STL-SWEI using fixed or multiple transmit focus. By imaging tissue-mimicking phantoms, we found that parallel beamforming improved the focal zone elastographic signal-to-noise ratio (SNRe) by 40.9%. For a receive line spacing equivalent to transducer pitch, averaging estimates from three parallel lines produced peak SNRe at the focal zone (25 mm), while, at the shallower regions (< 20 mm), a larger number of parallel lines (>7) were needed. Increasing the beamforming line density by a factor of 8 increased the focal zone SNRe only by 13.2%. When SWS quantification was desirable at a fixed depth (such as within the push focal depth), using a deeper tracking focal zone enabled higher parallel line count and improved the peak SNRe by 33%. The multifocusing strategy produced a lower SNRe than the single-focus configurations. For a fixed tracking focal zone, a depth-dependent averaging based on the simulated transmit intensity adequately accounted for the transmit beamwidth. The results in this work demonstrated that STL-SWEI can be implemented using focused transmit beams with robust noise-suppression capability.
Collapse
|
3
|
Ahmed R, Ye J, Gerber SA, Linehan DC, Doyley MM. Preclinical Imaging Using Single Track Location Shear Wave Elastography: Monitoring the Progression of Murine Pancreatic Tumor Liver Metastasis In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2426-2439. [PMID: 32012006 PMCID: PMC7329602 DOI: 10.1109/tmi.2020.2971422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recently, researchers have discovered the direct impact of the tumor mechanical environment on the growth, drug uptake and prognosis of tumors. While estimating the mechanical parameters (solid stress, fluid pressure, stiffness) can aid in the treatment planning and monitoring, most of these parameters cannot be quantified noninvasively. Shear wave elastography (SWE) has shown promise as a means of noninvasively measuring the stiffness of soft tissue. However, stiffness is still not a recognized imaging biomarker. While SWE has been shown to be capable of measuring tumor stiffness in humans, much important research is done in small animal preclinical models, where tumors are often too small for the resolution of traditional SWE tools. Single-track location SWE (STL-SWE) has previously been shown to overcome the fundamental resolution limit of SWE imposed by ultrasound speckle, which may make it suitable for preclinical imaging. Using STL-SWE, in this work, we demonstrate, for the first time, that the stiffness changes occurring inside metastatic murine pancreatic tumors can be monitored over long time scales (up to 9 weeks). To prevent the respiration motion from degrading the STL-SWE estimates, we developed a real-time software-based respiration gating scheme that we implemented on a Verasonics ultrasound imaging system. By imaging the liver of three healthy mice and performing correlation analysis, we confirmed that the respiration-gated STL-SWE data was free from motion corruption. By performing coregistered power-doppler imaging, we found that the local variability in liver shear wave speed (SWS) measurements increased from 5.4% to 9.9% due to blood flow. We performed a longitudinal study using a murine model of pancreatic cancer liver metastasis to assess the temporal changes (over nine weeks) in SWS in two groups: a controlled group receiving no treatment (n=8), and an experimental group (n=6) treated with Gemcitabine, a chemotherapy agent. We independently evaluated tumor burden using bioluminescence imaging (BLI). The initial and endpoint SWS measurements were statistically different (p<0.05). Additionally, when the liver SWS exceeded 2.5 ± 0.3 and 2.73 ± 0.34 m/s in untreated and treated mice, respectively, the death of the mice was imminent within approximately 10 days. The time taken for the SWS to exceed the thresholds was 17 days (on average) longer in Gemcitabine treated mice compared to the untreated ones. The survival statistics corroborated the effectiveness of Gemcitabine. Spearman correlation analysis revealed a monotonic relationship between SWE measurements (SWS) and BLI measurements (radiance) for tumors whose radiance exceeded 1×107 photons/s/cm2/sr. Longitudinal measurements on the liver of four healthy mice revealed a maximum coefficient of variation of 11.4%. The results of this investigation demonstrate that with appropriate gating, researchers can use STL-SWE for small animal imaging and perform longitudinal studies using preclinical cancer models.
Collapse
|
4
|
Andersen MV, Moore C, Søgaard P, Friedman D, Atwater BD, Arges K, LeFevre M, Struijk JJ, Kisslo J, Schmidt SE, von Ramm OT. Quantitative Parameters of High-Frame-Rate Strain in Patients with Echocardiographically Normal Function. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1197-1207. [PMID: 30773380 DOI: 10.1016/j.ultrasmedbio.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Recently, we developed a high-frame-rate echocardiographic imaging system capable of acquiring images at rates up to 2500 per second. High imaging rates were used to quantify longitudinal strain parameters in patients with echocardiographically normal function. These data can serve as a baseline for comparing strain parameters in disease states. The derived timing data also reveal the propagation of mechanical events in the left ventricle throughout the cardiac cycle. High-frame-rate echocardiographic images were acquired from 17 patients in the apical four-chamber view using Duke University's phased array ultrasound system, T5. B-Mode images were acquired at 500-1000 images per second by employing 16:1 or 32:1 parallel processing in receive, a scan depth ≤14 cm and an 80° field of view with a 3.5-MegaHertZ (MHz), 96-element linear array. The images were analyzed using a speckle tracking algorithm tailored for high-frame-rate echocardiographic images developed at Aalborg and Duke University. Four specific mechanical events were defined using strain curves from six regions along the myocardial contour of the left ventricle. The strain curves measure the local deformation events of the myocardium and are independent of the overall cardiac motion. We observed statistically significant differences in the temporal sequence among different myocardial segments for the first mechanical event described, myocardial tissue shortening onset (p < 0.01). We found that the spatial origin of tissue shortening was located near the middle of the interventricular septum in patients with echocardiographically normal function. The quantitative parameters defined here, based on high-speed strain measurements in patients with echocardiographically normal function, can serve as a means of assessing degree of contractile abnormality in the myocardium and enable the identification of contraction propagation. The relative timing pattern among specific events with respect to the Q wave may become an important new metric in assessing cardiac function and may, in turn, improve diagnosis and prognosis.
Collapse
Affiliation(s)
| | | | - Peter Søgaard
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | | | | | | | - Joseph Kisslo
- Duke University Hospital, Durham, North Carolina, USA
| | | | | |
Collapse
|
5
|
Ahmed R, Gerber SA, McAleavey SA, Schifitto G, Doyley MM. Plane-Wave Imaging Improves Single-Track Location Shear Wave Elasticity Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1402-1414. [PMID: 29993543 PMCID: PMC6117195 DOI: 10.1109/tuffc.2018.2842468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single-track location shear wave elasticity imaging (STL-SWEI) is immune to speckle bias, but the quality of the images is depth dependent. We hypothesize that plane-wave imaging can reduce the depth dependence of STL-SWEI. To test this hypothesis, we developed a novel technique known as plane-wave STL-SWEI (pSTL-SWEI). To evaluate the pSTL-SWEI's potential, we performed studies on phantoms and excised murine pancreatic tumors. The mean shear wave speeds measured with STL-SWEI and pSTL-SWEI were similar. However, the elastographic signal-to-noise ratio (SNRe) of pSTL-SWEI elastograms was noticeably higher than that produced with STL-SWEI. Specifically, we observed an improvement in SNRe ranging from 39.9%-55.1%, depending on tissue stiffness. The spatial resolution of pSTL-SWEI elastograms was 2.7%-12.1% lower than that produced with STL-SWEI. pSTL-SWEI elastograms displayed higher contrast-to-noise ratio (CNRe) than those produced with STL-SWEI, especially when imaging was performed with low push pulse intensities and low pulse durations.
Collapse
|
6
|
Rezajoo S, Sharafat AR. Robust Estimation of Displacement in Real-Time Freehand Ultrasound Strain Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1664-1677. [PMID: 29969417 DOI: 10.1109/tmi.2018.2795085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a novel and efficient approach for robust estimation of displacement in real-time strain imaging for freehand ultrasound elastography by utilizing pre- and post-deformation ultrasound images. We define a quality factor for image lines and find the line with the highest value of quality factor to serve as the seed line for generating the displacement map. We also develop an analytical framework for coarse-to-fine displacement estimation, obtain an initial estimate of the seed line's displacement with subsample precision, and propagate it to the entire image to obtain a high quality strain image. Our fast strategy for estimating the seed line's displacement enables us to enhance the robustness without sacrificing the speed by identifying a new seed line when the quality falls below a given threshold. This is more efficient than the existing approaches that utilize multiple seed lines to improve robustness. Simulations, phantom experiments, and clinical studies show high signal-to-noise-ratio and contrast-to-noise-ratio values in our method for a wide range of average strain levels (1%-10%). Phantom experiments also demonstrate that our method is robust against corrupt and decorrelated data. Our method is superior to the existing real-time methods as it can produce high-quality strain images for up to 10% average strain levels at the rate of 20 frames/s on conventional CPUs.
Collapse
|
7
|
Linte CA, Camp JJ, Rettmann ME, Haemmerich D, Aktas MK, Huang DT, Packer DL, Holmes DR. Lesion modeling, characterization, and visualization for image-guided cardiac ablation therapy monitoring. J Med Imaging (Bellingham) 2018; 5:021218. [PMID: 29531966 PMCID: PMC5831757 DOI: 10.1117/1.jmi.5.2.021218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/02/2018] [Indexed: 11/14/2022] Open
Abstract
In spite of significant efforts to improve image-guided ablation therapy, a large number of patients undergoing ablation therapy to treat cardiac arrhythmic conditions require repeat procedures. The delivery of insufficient thermal dose is a significant contributor to incomplete tissue ablation, in turn leading to the arrhythmia recurrence. Ongoing research efforts aim to better characterize and visualize RF delivery to monitor the induced tissue damage during therapy. Here, we propose a method that entails modeling and visualization of the lesions in real-time. The described image-based ablation model relies on classical heat transfer principles to estimate tissue temperature in response to the ablation parameters, tissue properties, and duration. The ablation lesion quality, geometry, and overall progression are quantified on a voxel-by-voxel basis according to each voxel's cumulative temperature and time exposure. The model was evaluated both numerically under different parameter conditions, as well as experimentally, using ex vivo bovine tissue samples undergoing ex vivo clinically relevant ablation protocols. The studies demonstrated less than 5°C difference between the model-predicted and experimentally measured end-ablation temperatures. The model predicted lesion patterns were within 0.5 to 1 mm from the observed lesion patterns, suggesting sufficiently accurate modeling of the ablation lesions. Lastly, our proposed method enables therapy delivery feedback with no significant workflow latency. This study suggests that the proposed technique provides reasonably accurate and sufficiently fast visualizations of the delivered ablation lesions.
Collapse
Affiliation(s)
- Cristian A. Linte
- Rochester Institute of Technology, Biomedical Engineering and Chester F. Carlson Center for Imaging Science, Rochester, New York, United States
| | - Jon J. Camp
- Mayo Clinic, Biomedical Imaging Resource, Rochester, Minnesota, United States
| | - Maryam E. Rettmann
- Mayo Clinic, Division of Cardiology, Rochester, Minnesota, United States
| | - Dieter Haemmerich
- Medical University of South Carolina, Department of Pediatrics, Charleston, South Carolina, United States
| | - Mehmet K. Aktas
- University of Rochester Medical Center, Division of Cardiology, Rochester, New York, United States
| | - David T. Huang
- University of Rochester Medical Center, Division of Cardiology, Rochester, New York, United States
| | - Douglas L. Packer
- Mayo Clinic, Division of Cardiology, Rochester, Minnesota, United States
| | - David R. Holmes
- Mayo Clinic, Biomedical Imaging Resource, Rochester, Minnesota, United States
| |
Collapse
|