1
|
Kallweit CM, Chee AJY, Yiu BYS, Peterson SD, Yu ACH. Dual-modality flow phantom for ultrasound and optical flow measurements. Phys Med Biol 2025; 70:035012. [PMID: 39752855 DOI: 10.1088/1361-6560/ada5a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling. The hydrogel's optical attenuation {1.56 dB cm-1with 95% confidence interval (CI) of [1.512 1.608]}, refractive index {1.337, CI: [1.340 1.333]}, acoustic attenuation {0.038 dB/(cm × MHzb), CI: [0.0368 0.0403]; frequency dependent factor of 1.321, CI: [1.296 1.346]}, and speed of sound {1523.6 m s-1, CI: [1523.8 1523.4]} were found to be suitable for PIV and ultrasound flow measurements. As an application demonstration, a bimodal flow phantom with spiral lumen was fabricated and used in simultaneous flow measurements with PIV and ultrasound color flow imaging (CFI). Velocity fields and profiles were compared between the two modalities under a constant flow rate (2.5 ml s-1). CFI was found to overestimate flow speed compared to the PIV measurements, with a 14%, 10%, and 6% difference between PIV and ultrasound for the 60°, 45°, and 30° angles measured. These results demonstrate the new phantom's feasibility in enabling performance validation of ultrasound flow mapping tools.
Collapse
Affiliation(s)
- Chris M Kallweit
- Schlegel Research Institute for Aging, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Adrian J Y Chee
- Schlegel Research Institute for Aging, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Billy Y S Yiu
- Schlegel Research Institute for Aging, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Sean D Peterson
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Fiori G, Scorza A, Schmid M, Conforto S, Sciuto SA. Comparative Approach to Performance Estimation of Pulsed Wave Doppler Equipment Based on Kiviat Diagram. SENSORS (BASEL, SWITZERLAND) 2024; 24:6491. [PMID: 39409530 PMCID: PMC11479340 DOI: 10.3390/s24196491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
Quality assessment of ultrasound medical systems is a demanding task due to the high number of parameters to quantify their performance: in the present study, a Kiviat diagram-based integrated approach was proposed to effectively combine the contribution of some experimental parameters and quantify the overall performance of pulsed wave Doppler (PWD) systems for clinical applications. Four test parameters were defined and assessed through custom-written measurement methods based on image analysis, implemented in the MATLAB environment, and applied to spectral images of a flow phantom, i.e., average maximum velocity sensitivity (AMVS), velocity measurements accuracy (VeMeA), lowest detectable signal (LDS), and the velocity profile discrepancy index (VPDI). The parameters above were scaled in a standard range to represent the four vertices of a Kiviat plot, whose area was considered the overall quality index of the ultrasound system in PWD mode. Five brand-new ultrasound diagnostic systems, equipped with linear array probes, were tested in two different working conditions using a commercial flow phantom as a reference. The promising results confirm the robustness of AMVS, VeMeA, and LDS parameters while suggesting further investigations on the VPDI.
Collapse
Affiliation(s)
- Giorgia Fiori
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy; (A.S.); (M.S.); (S.C.); (S.A.S.)
| | | | | | | | | |
Collapse
|
3
|
Smith C, Shepherd J, Renaud G, van Wijk K. Vector-flow imaging of slowly moving ex vivo blood with photoacoustics and pulse-echo ultrasound. PHOTOACOUSTICS 2024; 38:100602. [PMID: 39687629 PMCID: PMC11649157 DOI: 10.1016/j.pacs.2024.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 12/18/2024]
Abstract
We present a technique called photoacoustic vector-flow (PAVF) to quantify the speed and direction of flowing optical absorbers at each pixel from acoustic-resolution PA images. By varying the receiving angle at each pixel in post-processing, we obtain multiple estimates of the phase difference between consecutive frames. These are used to solve the overdetermined photoacoustic Doppler equation with a least-squares approach to estimate a velocity vector at each pixel. This technique is tested in bench-top experiments and compared to simultaneous pulse-echo ultrasound vector-flow (USVF) on whole rat blood at speeds on the order of 1 mm/s. Unlike USVF, PAVF can detect flow without stationary clutter filtering in this experiment, although the velocity estimates are highly underestimated. When applying spatio-temporal singular value decomposition clutter filtering, the flow speed can be accurately estimated with an error of 16.8% for USVF and - 8.9% for PAVF for an average flow speed of 2.5 mm/s.
Collapse
Affiliation(s)
- Caitlin Smith
- Department of Physics, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Jami Shepherd
- Department of Physics, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| | - Guillaume Renaud
- Department of Imaging Physics, Delft University of Technology, Delft, 2628 CN, The Netherlands
| | - Kasper van Wijk
- Department of Physics, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| |
Collapse
|
4
|
Adusei S, Ternifi R, Fatemi M, Alizad A. Custom-made flow phantoms for quantitative ultrasound microvessel imaging. ULTRASONICS 2023; 134:107092. [PMID: 37364357 PMCID: PMC10530522 DOI: 10.1016/j.ultras.2023.107092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Morphologically realistic flow phantoms are essential experimental tools for quantitative ultrasound-based microvessel imaging. As new quantitative flow imaging tools are developed, the need for more complex vessel-mimicking phantoms is indisputable. In this article, we propose a method for fabricating phantoms with sub-millimeter channels consisting of branches and curvatures in various shapes and sizes suitable for quantifying vessel morphological features. We used different tissue-mimicking materials (TMMs) compatible with ultrasound imaging as the base and metal wires of different diameters (0.15-1.25 mm) to create wall-less channels. The TMMs used are silicone rubber, plastisol, conventional gelatin, and medical gelatin. Mother channels in these phantoms were made in diameters of 1.25 mm or 0.3 mm and the daughter channels in diameters 0.3 mm or 0.15 mm. Bifurcations were created by soldering wires together at branch points. Quantitative parameters were assessed, and accuracy of measurements from the ground truth were determined. Channel diameters were seen to have increased (76-270%) compared to the initial state in the power Doppler images, partly due to blood mimicking fluid pressure. Amongst the microflow phantoms made from the different TMMs, the medical gelatin phantom was selected as the best option for microflow imaging, fulfilling the objective of being easy to fabricate with high transmittance while having a speed of sound and acoustic attenuation close to human tissue. A flow velocity of 0.85 ± 0.01 mm/s, comparable to physiological flow velocity was observed in the smallest diameter phantom (medical gelatin branch) presented here. We successfully constructed more complex geometries, including tortuous and multibranch channels using the medical gelatin as the TMM. We anticipate this will create new avenues for validating quantitative ultrasound microvessel imaging techniques.
Collapse
Affiliation(s)
- Shaheeda Adusei
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Redouane Ternifi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Haniel J, Yiu BYS, Chee AJY, Huebner R, Yu ACH. Efficacy of ultrasound vector flow imaging in tracking omnidirectional pulsatile flow. Med Phys 2023; 50:1699-1714. [PMID: 36546560 DOI: 10.1002/mp.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ultrasound vector flow imaging (VFI) shows potential as an emerging non-invasive modality for time-resolved flow mapping. However, its efficacy in tracking multidirectional pulsatile flow with temporal resolvability has not yet been systematically evaluated because of the lack of an appropriate test protocol. PURPOSE We present the first systematic performance investigation of VFI in tracking pulsatile flow in a meticulously designed scenario with time-varying, omnidirectional flow fields (with flow angles from 0° to 360°). METHODS Ultrasound VFI was performed on a three-loop spiral flow phantom (4 mm diameter; 5 mm pitch) that was configured to operate under pulsatile flow conditions (10 ml/s peak flow rate; 1 Hz pulse rate; carotid pulse shape). The spiral lumen geometry was designed to simulate recirculatory flow dynamics observed in the heart and in curvy blood vessel segments such as the carotid bulb. The imaging sequence was based on steered plane wave pulsing (-10°, 0°, +10° steering angles; 5 MHz imaging frequency; 3.3 kHz interleaved pulse repetition frequency). VFI's pulsatile flow estimation performance and its ability to detect secondary flow were comparatively assessed against flow fields derived from computational fluid dynamics (CFD) simulations that included consideration of fluid-structure interactions (FSI). The mean percentage error (MPE) and the coefficient of determination (R2 ) were computed to assess the correspondence of the velocity estimates derived from VFI and CFD-FSI simulations. In addition, VFI's efficacy in tracking pulse waves was analyzed with respect to pressure transducer measurements made at the phantom's inlet and outlet. RESULTS Pulsatile flow patterns rendered by VFI agreed with the flow profiles computed from CFD-FSI simulations (average MPE: -5.3%). The shape of the VFI-measured velocity magnitude profile generally matched the inlet flow profile. High correlation exists between VFI measurements and simulated flow vectors (lateral velocity: R2 = 0.8; axial velocity R2 = 0.89; beam-flow angle: R2 = 0.98; p < 0.0001 for all three quantities). VFI was found to be capable of consistently tracking secondary flow. It also yielded pulse wave velocity (PWV) estimates (5.72 ± 1.02 m/s) that, on average, are within 6.4% of those obtained from pressure transducer measurements (6.11 ± 1.15 m/s). CONCLUSION VFI can consistently track omnidirectional pulsatile flow on a time-resolved basis. This systematic investigation serves well as a quality assurance test of VFI.
Collapse
Affiliation(s)
- Jonathas Haniel
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Billy Y S Yiu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Rudolf Huebner
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Nilsson DPG, Holmgren M, Holmlund P, Wåhlin A, Eklund A, Dahlberg T, Wiklund K, Andersson M. Patient-specific brain arteries molded as a flexible phantom model using 3D printed water-soluble resin. Sci Rep 2022; 12:10172. [PMID: 35715506 PMCID: PMC9205921 DOI: 10.1038/s41598-022-14279-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Visualizing medical images from patients as physical 3D models (phantom models) have many roles in the medical field, from education to preclinical preparation and clinical research. However, current phantom models are generally generic, expensive, and time-consuming to fabricate. Thus, there is a need for a cost- and time-efficient pipeline from medical imaging to patient-specific phantom models. In this work, we present a method for creating complex 3D sacrificial molds using an off-the-shelf water-soluble resin and a low-cost desktop 3D printer. This enables us to recreate parts of the cerebral arterial tree as a full-scale phantom model ([Formula: see text] cm) in transparent silicone rubber (polydimethylsiloxane, PDMS) from computed tomography angiography images (CTA). We analyzed the model with magnetic resonance imaging (MRI) and compared it with the patient data. The results show good agreement and smooth surfaces for the arteries. We also evaluate our method by looking at its capability to reproduce 1 mm channels and sharp corners. We found that round shapes are well reproduced, whereas sharp features show some divergence. Our method can fabricate a patient-specific phantom model with less than 2 h of total labor time and at a low fabrication cost.
Collapse
Affiliation(s)
| | - Madelene Holmgren
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, 901 87, Umeå, Sweden
- Department of Clinical Science, Neurosciences, Umeå University, 901 87, Umeå, Sweden
| | - Petter Holmlund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, 901 87, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, 901 87, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 901 87, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, 901 87, Umeå, Sweden
| | - Tobias Dahlberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Krister Wiklund
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Magnus Andersson
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
7
|
Laughlin ME, Stephens SE, Hestekin JA, Jensen MO. Development of Custom Wall-Less Cardiovascular Flow Phantoms with Tissue-Mimicking Gel. Cardiovasc Eng Technol 2022; 13:1-13. [PMID: 34080171 PMCID: PMC8888498 DOI: 10.1007/s13239-021-00546-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/12/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE Flow phantoms are used in experimental settings to aid in the simulation of blood flow. Custom geometries are available, but current phantom materials present issues with degradability and/or mimicking the mechanical properties of human tissue. In this study, a method of fabricating custom wall-less flow phantoms from a tissue-mimicking gel using 3D printed inserts is developed. METHODS A 3D blood vessel geometry example of a bifurcated artery model was 3D printed in polyvinyl alcohol, embedded in tissue-mimicking gel, and subsequently dissolved to create a phantom. Uniaxial compression testing was performed to determine the Young's moduli of the five gel types. Angle-independent, ultrasound-based imaging modalities, Vector Flow Imaging (VFI) and Blood Speckle Imaging (BSI), were utilized for flow visualization of a straight channel phantom. RESULTS A wall-less phantom of the bifurcated artery was fabricated with minimal bubbles and continuous flow demonstrated. Additionally, flow was visualized through a straight channel phantom by VFI and BSI. The available gel types are suitable for mimicking a variety of tissue types, including cardiac tissue and blood vessels. CONCLUSION Custom, tissue-mimicking flow phantoms can be fabricated using the developed methodology and have potential for use in a variety of applications, including ultrasound-based imaging methods. This is the first reported use of BSI with an in vitro flow phantom.
Collapse
Affiliation(s)
- Megan E Laughlin
- Department of Biomedical Engineering, University of Arkansas, John A. White Jr. Engineering Hall, 790 W. Dickson St. #120, Fayetteville, AR, 72701, USA
| | - Sam E Stephens
- Department of Biomedical Engineering, University of Arkansas, John A. White Jr. Engineering Hall, 790 W. Dickson St. #120, Fayetteville, AR, 72701, USA
| | - Jamie A Hestekin
- Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Morten O Jensen
- Department of Biomedical Engineering, University of Arkansas, John A. White Jr. Engineering Hall, 790 W. Dickson St. #120, Fayetteville, AR, 72701, USA.
| |
Collapse
|
8
|
Paulsen SJ, Mitcham TM, Pan CS, Long J, Grigoryan B, Sazer DW, Harlan CJ, Janson KD, Pagel MD, Miller JS, Bouchard RR. Projection-based stereolithography for direct 3D printing of heterogeneous ultrasound phantoms. PLoS One 2021; 16:e0260737. [PMID: 34882719 PMCID: PMC8659365 DOI: 10.1371/journal.pone.0260737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/16/2021] [Indexed: 01/17/2023] Open
Abstract
Modern ultrasound (US) imaging is increasing its clinical impact, particularly with the introduction of US-based quantitative imaging biomarkers. Continued development and validation of such novel imaging approaches requires imaging phantoms that recapitulate the underlying anatomy and pathology of interest. However, current US phantom designs are generally too simplistic to emulate the structure and variability of the human body. Therefore, there is a need to create a platform that is capable of generating well-characterized phantoms that can mimic the basic anatomical, functional, and mechanical properties of native tissues and pathologies. Using a 3D-printing technique based on stereolithography, we fabricated US phantoms using soft materials in a single fabrication session, without the need for material casting or back-filling. With this technique, we induced variable levels of stable US backscatter in our printed materials in anatomically relevant 3D patterns. Additionally, we controlled phantom stiffness from 7 to >120 kPa at the voxel level to generate isotropic and anisotropic phantoms for elasticity imaging. Lastly, we demonstrated the fabrication of channels with diameters as small as 60 micrometers and with complex geometry (e.g., tortuosity) capable of supporting blood-mimicking fluid flow. Collectively, these results show that projection-based stereolithography allows for customizable fabrication of complex US phantoms.
Collapse
Affiliation(s)
- Samantha J. Paulsen
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Trevor M. Mitcham
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Charlene S. Pan
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - James Long
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bagrat Grigoryan
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Daniel W. Sazer
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Collin J. Harlan
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Kevin D. Janson
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Mark D. Pagel
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, United States of America
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jordan S. Miller
- Department of Bioengineering, Rice University, Houston, TX, United States of America
- * E-mail: (RRB); (JSM)
| | - Richard R. Bouchard
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, United States of America
- * E-mail: (RRB); (JSM)
| |
Collapse
|
9
|
Chee AJY, Ishii T, Yiu BYS, Yu ACH. Helical toroid phantom for 3D flow imaging investigations. Phys Med Biol 2021; 66:045029. [PMID: 33586671 DOI: 10.1088/1361-6560/abda99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The medical physics community has hitherto lacked an effective calibration phantom to holistically evaluate the performance of three-dimensional (3D) flow imaging techniques. Here, we present the design of a new omnidirectional, three-component (3-C) flow phantom whose lumen is consisted of a helical toroid structure (4 mm lumen diameter; helically winded for 5 revolutions over a torus with 10 mm radius; 5 mm helix radius). This phantom's intraluminal flow trajectory embraces all combinations of x, y, and z directional components, as confirmed using computational fluid dynamics (CFD) simulations. The phantom was physically fabricated via lost-core casting with polyvinyl alcohol cryogel (PVA) as the tissue mimic. 3D ultrasound confirmed that the phantom lumen expectedly resembled a helical toroid geometry. Pulsed Doppler measurements showed that the phantom, when operating under steady flow conditions (3 ml s-1 flow rate), yielded flow velocity magnitudes that agreed well with those derived from CFD at both the inner torus (-47.6 ± 5.7 versus -52.0 ± 2.2 cm s-1; mean ± 1 S.D.) and the outer torus (49.5 ± 4.2 versus 48.0 ± 1.7 cm s-1). Additionally, 3-C velocity vectors acquired from multi-angle pulsed Doppler showed good agreement with CFD-derived velocity vectors (<7% and 10° difference in magnitude and flow angle, respectively). Ultrasound color flow imaging further revealed that the phantom's axial flow pattern was aligned with the CFD-derived flow profile. Overall, the helical toroid phantom has strong potential as an investigative tool in 3D flow imaging innovation endeavors, such as the development of flow vector estimators and visualization algorithms.
Collapse
Affiliation(s)
- Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, Canada
| | | | | | | |
Collapse
|
10
|
Huang H, Chen PY, Huang CC. 40-MHz high-frequency vector Doppler imaging for superficial venous valve flow estimation. Med Phys 2020; 47:4020-4031. [PMID: 32609885 DOI: 10.1002/mp.14362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Doppler ultrasound imaging has been used widely for diagnosing vascular diseases. Recently, vector Doppler imaging (VDI) has been proposed for visualizing the blood flow in all directions to yield more detailed information for estimating flow conditions. Increasing the resolution of VDI is important for the structural mapping of superficial vessels with microstructure. However, VDI that operates under a high-frequency ultrasound (HFUS; >30 MHz) is rare. In this study, a 40-MHz high-frequency VDI (HFVDI) based on ultrafast ultrasound imaging was developed to obtain the vector information of blood flow around the superficial venous valve. METHODS The use of HFUS imaging system causes an overload of data acquisition easily. In order to provide sufficient recording time, the frame rate should be reduced. Because the aliasing problem worsens due to a low frame rate when operating Doppler imaging, phase-unwrapping processing methods based on spatial and temporal continuities were applied. Flow phantom experiments were performed to validate the accuracy. In vivo experiments were performed on the valve of superficial veins of healthy volunteers. RESULTS The experimental results from the phantom study indicated that the error of velocity estimation was <10% in most cases. Dynamic changes of valve movements and flow conditions (including velocity profiles and vector) were observed. Because of the high resolution of HFVDI, the jet and vortex phenomena were observed between the leaflets and in the sinus pocket, respectively. CONCLUSIONS Flow velocities ranging from 2 to 15 mm/s were measured at different locations around the venous valve during the opening and closing phases. All the results indicated that HFVDI has the potential to be a useful tool for vessel duplex scanning.
Collapse
Affiliation(s)
- Hsin Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yu Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Au JS, Yiu BYS, So H, Chee AJY, Greaves DK, Hughson RL, Yu ACH. Ultrasound vector projectile imaging for detection of altered carotid bifurcation hemodynamics during reductions in cardiac output. Med Phys 2019; 47:431-440. [PMID: 31693196 DOI: 10.1002/mp.13905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/13/2019] [Accepted: 10/30/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Complex blood flow is commonly observed in the carotid bifurcation, although the factors that regulate these patterns beyond arterial geometry are unknown. The emergence of high-frame-rate ultrasound vector flow imaging allows for noninvasive, time-resolved analysis of complex hemodynamic behavior in humans, and it can potentially help researchers understand which physiological stressors can alter carotid bifurcation hemodynamics in vivo. Here, we seek to pursue the first use of vector projectile imaging (VPI), a dynamic form of vector flow imaging, to analyze the regulation of carotid bifurcation hemodynamics during experimental reductions in cardiac output induced via a physiological stressor called lower body negative pressure (LBNP). METHODS Seven healthy adults (age: 27 ± 4 yr, 4 men) underwent LBNP at -45 mmHg to simulate a postural hemodynamic response in a controlled environment. Using a research-grade, high-frame-rate ultrasound platform, vector flow estimation in each subject's right carotid bifurcation was performed through a multi-angle plane wave imaging (two transmission angles of 10° and -10°) formulation, and VPI cineloops were generated at a frame rate of 750 fps. Vector concentration was quantified by the resultant blood velocity vector angles within a region of interest; lower concentration indicated greater flow dispersion. Discrete concentration values during peak and late systole were compared across different segments of the carotid artery bifurcation before, and during, LBNP. RESULTS Vector projectile imaging revealed that external and internal carotid arteries exhibited regional hemodynamic changes during LBNP, which acted to reduce both the subject's cardiac output (Δ - 1.2 ± 0.5 L/min, -19%; P < 0.01) and peak carotid blood velocity (Δ - 6.30 ± 8.27 cm/s, -7%; P = 0.05). In these carotid artery branches, the vector concentration time trace before and during LBNP were observed to be different. The impact of LBNP on flow complexity in the two carotid artery branches showed variations between subjects. CONCLUSIONS Using VPI, intuitive visualization of complex hemodynamic changes can be obtained in healthy humans subjected to LBNP. This imaging tool has potential for further applications in vascular physiology to identify and quantify complex hemodynamic features in humans during different physiological stressor tests that regulate hemodynamics.
Collapse
Affiliation(s)
- Jason S Au
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Billy Y S Yiu
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Hélène So
- Faculty of Science and Engineering, Sorbonne Université, 75005, Paris, France
| | - Adrian J Y Chee
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Danielle K Greaves
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,University of Caen Normandy, Espl. De la Paix, 14032, Caen, France
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada
| | - Alfred C H Yu
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| |
Collapse
|
12
|
Bechsgaard T, Hansen KL, Brandt AH, Moshavegh R, Forman JL, Føgh P, Klitfod L, Bækgaard N, Lönn L, Nielsen MB, Jensen JA. Respiratory variability of peak velocities in the common femoral vein estimated with vector flow imaging and Doppler ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1941-1950. [PMID: 29960752 DOI: 10.1016/j.ultrasmedbio.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Respiratory variability of peak velocities (RVPV) in the common femoral vein measured with ultrasound can reveal venous outflow obstruction. Pulse wave (PW) Doppler is the gold standard for venous velocity estimation of the lower extremities. PW Doppler measurements are angle dependent, whereas vector flow imaging (VFI) can yield angle-independent measures. The hypothesis of the present study was that VFI can provide RVPV estimations without the angle dependency of PW Doppler for an improved venous disease assessment. Sixty-seven patients with symptomatic chronic venous disease were included in the study. On average, VFI measured a lower RVPV than PW Doppler (VFI: 14.11 cm/s; PW: 17.32 cm/s, p = 0.002) with a non-significant improved precision compared with PW Doppler (VFI: 21.09%; PW: 26.49%, p = 0.08). In a flow phantom, VFI had improved accuracy (p < 0.01) and equal precision compared with PW Doppler. The study indicated that VFI can characterize the hemodynamic fluctuations in the common femoral vein.
Collapse
Affiliation(s)
- Thor Bechsgaard
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark.
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Andreas Hjelm Brandt
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Ramin Moshavegh
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, Copenhagen University, Copenhagen K, Denmark
| | - Pia Føgh
- Department of Vascular Surgery, Rigshospitalet & Gentofte Hospital - Copenhagen University Hospital, Hellerup, Denmark
| | - Lotte Klitfod
- Department of Vascular Surgery, Rigshospitalet & Gentofte Hospital - Copenhagen University Hospital, Hellerup, Denmark
| | - Niels Bækgaard
- Department of Vascular Surgery, Rigshospitalet & Gentofte Hospital - Copenhagen University Hospital, Hellerup, Denmark
| | - Lars Lönn
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
13
|
Grand-Perret V, Jacquet JR, Leguerney I, Benatsou B, Grégoire JM, Willoquet G, Bouakaz A, Lassau N, Pitre-Champagnat S. A Novel Microflow Phantom Dedicated to Ultrasound Microvascular Measurements. ULTRASONIC IMAGING 2018; 40:325-338. [PMID: 29923458 DOI: 10.1177/0161734618783975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tumor microvascularization is a biomarker of response to antiangiogenic treatments and is accurately assessed by ultrasound imaging. Imaging modes used to visualize slow flows include Power Doppler imaging, dynamic contrast-enhanced ultrasonography, and more recently, microvascular Doppler. Flow phantoms are used to evaluate the performance of Doppler imaging techniques, but they do not have a steady flow and sufficiently small channels. We report a novel device for robust and stable microflow measurements and the study of the microvascularization. Based on microfluidics technology, the prototype features wall-less cylindrical channels of diameters ranging from as small as 147 up to 436 µm, cast in a soft silicone polymer and perfused via a microfluidic flow pressure controller. The device was assessed using flow rates from 49 to 146 µL/min, with less than 1% coefficient of variation over three minutes, corresponding to velocities of 6 to 142 mm/s. This enabled us to evaluate and confirm the reliability of the Superb Microvascular Imaging Doppler mode compared with the Power Doppler mode at these flow rates in the presence of vibrations mimicking physiological motion.
Collapse
Affiliation(s)
- Virginie Grand-Perret
- 1 Imagerie par Resonance Magnetique Medicale et Multi-Modalites, Université Paris-Saclay, Orsay, France
| | - Jean-René Jacquet
- 2 Imagerie et cerveau, Inserm, Univ. François Rabelais, Tours, France
| | - Ingrid Leguerney
- 1 Imagerie par Resonance Magnetique Medicale et Multi-Modalites, Université Paris-Saclay, Orsay, France
- 3 Research Department, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Baya Benatsou
- 1 Imagerie par Resonance Magnetique Medicale et Multi-Modalites, Université Paris-Saclay, Orsay, France
- 3 Research Department, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | | | - Georges Willoquet
- 1 Imagerie par Resonance Magnetique Medicale et Multi-Modalites, Université Paris-Saclay, Orsay, France
| | - Ayache Bouakaz
- 2 Imagerie et cerveau, Inserm, Univ. François Rabelais, Tours, France
| | - Nathalie Lassau
- 1 Imagerie par Resonance Magnetique Medicale et Multi-Modalites, Université Paris-Saclay, Orsay, France
- 3 Research Department, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | | |
Collapse
|
14
|
Chee AJY, Yiu BYS, Ho CK, Yu ACH. Arterial Phantoms with Regional Variations in Wall Stiffness and Thickness. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:872-883. [PMID: 29361372 DOI: 10.1016/j.ultrasmedbio.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Regional wall stiffening and thickening are two common pathological features of arteries. To account for these two features, we developed a new arterial phantom design framework to facilitate the development of vessel models that contain a lesion segment whose wall stiffness and thickness differ from those of other segments. This new framework is based on multi-part injection molding principles that sequentially casted the lesion segment and the flank segments of the vessel model using molding parts devised with computer-aided design tools. The vessel-mimicking material is created from polyvinyl alcohol cryogel, and its acoustic properties are similar to those of arteries. As a case demonstration, we fabricated a stenosed three-segment phantom composed of a central lesion segment (5.1-mm diameter, 1.95-mm wall thickness, 212.6-kPa elastic modulus) and two flank segments (6.0-mm diameter, 1.5-mm wall thickness, 133.7-kPa elastic modulus). B-mode imaging confirmed the difference in thickness between the lesion segment and flank segments of the phantom. Also, Doppler-based vessel wall displacement analysis revealed that when pulsatile flow was fed through the phantom (carotid pulse; 27 mL/s peak flow rate), the lesion segment distended less compared with the flank segments. Specifically, the three-beat averaged peak wall displacement in the lesion segment was measured as 0.28 mm, and it was significantly smaller than that of the flank segments (0.60 mm). It is anticipated that this new multi-segment arterial phantom can serve as a performance testbed for the evaluation of local arterial stiffness estimation algorithms.
Collapse
Affiliation(s)
- Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Billy Y S Yiu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Chung Kit Ho
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|