1
|
Yang H, Majumder JA, Huang Z, Saluja D, Laurita K, Rollins AM, Hendon CP. Robust, high-density lesion mapping in the left atrium with near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:028001. [PMID: 38419756 PMCID: PMC10901242 DOI: 10.1117/1.jbo.29.2.028001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Significance Radiofrequency ablation (RFA) procedures for atrial fibrillation frequently fail to prevent recurrence, partially due to limitations in assessing extent of ablation. Optical spectroscopy shows promise in assessing RFA lesion formation but has not been validated in conditions resembling those in vivo. Aim Catheter-based near-infrared spectroscopy (NIRS) was applied to porcine hearts to demonstrate that spectrally derived optical indices remain accurate in blood and at oblique incidence angles. Approach Porcine left atria were ablated and mapped using a custom-fabricated NIRS catheter. Each atrium was mapped first in phosphate-buffered saline (PBS) then in porcine blood. Results NIRS measurements showed little angle dependence up to 60 deg. A trained random forest model predicted lesions with a sensitivity of 81.7%, a specificity of 86.1%, and a receiver operating characteristic curve area of 0.921. Predicted lesion maps achieved a mean structural similarity index of 0.749 and a mean normalized inner product of 0.867 when comparing maps obtained in PBS and blood. Conclusions Catheter-based NIRS can precisely detect RFA lesions on left atria submerged in blood. Optical parameters are reliable in blood and without perpendicular contact, confirming their ability to provide useful feedback during in vivo RFA procedures.
Collapse
Affiliation(s)
- Haiqiu Yang
- Columbia University, Department of Electrical Engineering, New York, United States
| | - Jonah A. Majumder
- Columbia University, Department of Biomedical Engineering, New York, United States
| | - Ziyi Huang
- Columbia University, Department of Electrical Engineering, New York, United States
| | - Deepak Saluja
- Columbia University Irving Medical Center, Cardiology Division, Department of Medicine, New York, United States
| | - Kenneth Laurita
- MetroHealth Hospital, Cardiology Division, Department of Medicine, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Andrew M. Rollins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Christine P. Hendon
- Columbia University, Department of Electrical Engineering, New York, United States
| |
Collapse
|
2
|
Qian PC, Tedrow UB. Intracardiac Echocardiography to Guide Catheter Ablation of Ventricular Arrhythmias in Ischemic Cardiomyopathy. Card Electrophysiol Clin 2021; 13:285-292. [PMID: 33990267 DOI: 10.1016/j.ccep.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intracardiac echocardiography (ICE) allows intraprocedural assessment of cardiac anatomy and identification of ischemic myocardial scar and is useful for guidance of the ablation catheter and monitoring for complications. In this review, the authors discuss and provide examples of how ICE can be used to obtain additional information to understand arrhythmia mechanisms and facilitate catheter ablation therapy for ventricular arrhythmias arising from ischemic scar substrates.
Collapse
Affiliation(s)
- Pierre C Qian
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Usha B Tedrow
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Sayseng V, Ober RA, Grubb CS, Weber RA, Konofagou E. Monitoring Canine Myocardial Infarction Formation and Recovery via Transthoracic Cardiac Strain Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2785-2800. [PMID: 32732166 PMCID: PMC7518397 DOI: 10.1016/j.ultrasmedbio.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/08/2020] [Accepted: 06/14/2020] [Indexed: 05/13/2023]
Abstract
Myocardial elastography (ME) is an ultrasound-based strain imaging method that aims to determine the degree of ischemia or infarction as a result of the change in the elastic properties of the myocardium. A survival canine model (n = 11) was employed to investigate the ability of ME to image myocardial infarction formation and recovery. Infarcts were generated by ligation of the left anterior descending coronary artery. Canines were survived and imaged for 4 days (n = 7) or 4 weeks (n = 4), allowing sufficient time for recovery via collateral perfusion. A radial strain-based metric, percentage of healthy myocardium by strain (PHMε), was developed as a marker for healthy myocardial tissue. PHMε was strongly linearly correlated with actual infarct size as determined by gross pathology (R2 = 0.80). Mean PHMε was reduced 1-3 days post-infarction (p < 0.05) at the papillary and apical short-axis levels; full infarct recovery was achieved by day 28, with mean PHMε returning to baseline levels. ME was capable of diagnosing individual myocardial segments as non-infarcted or infarcted with high sensitivity (82%), specificity (92%) and precision (85%) (area under the receiver operating characteristic curve = 0.90). The study therefore strengthens the ME premise that it can detect and assess myocardial infarction progression and recovery in vivo and could thus provide an important role in both disease diagnosis and treatment assesssment.
Collapse
Affiliation(s)
| | - Rebecca A Ober
- Institute of Comparative Medicine, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
4
|
Sayseng V, Grondin J, Salgaonkar VA, Grubb CS, Basij M, Mehrmohammadi M, Iyer V, Wang D, Garan H, Wan EY, Konofagou EE. Catheter Ablation Lesion Visualization With Intracardiac Strain Imaging in Canines and Humans. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1800-1810. [PMID: 32305909 PMCID: PMC7483419 DOI: 10.1109/tuffc.2020.2987480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catheter ablation is a common treatment for arrhythmia, but can fail if lesion lines are noncontiguous. Identification of gaps and nontransmural lesions can reduce the likelihood of treatment failure and recurrent arrhythmia. Intracardiac myocardial elastography (IME) is a strain imaging technique that provides visualization of the lesion line. Estimation of lesion size and gap resolution were evaluated in an open-chest canine model ( n = 3 ), and clinical feasibility was investigated in patients undergoing ablation to treat typical cavotricuspid isthmus (CTI) atrial flutter ( n = 5 ). A lesion line consisting of three lesions and two gaps was generated on the canine left ventricle via epicardial ablation. One lesion was generated in one canine right ventricle. Average lesion and gap areas were measured with high agreement (33 ± 14 and 30 ± 15 mm2, respectively) when compared against gross pathology (34 ± 19 and 26 ± 11 mm2, respectively). Gaps as small as 11 mm2 (3.6 mm on epicardial surface) were identifiable. Absolute error and relative error in estimated lesion area were 9.3 ± 8.4 mm2 and 31% ± 34%; error in estimated gap area was 11 ± 9.0 mm2 and 40% ± 29%. Flutter patients were imaged throughout the procedure. Strain was shown to be capable of differentiating between baseline and after ablation completion as confirmed by conduction block. In all patients, strain decreased in the CTI after ablation (mean paired difference of -17% ± 11%, ). IME could potentially become a useful ablation monitoring tool in health facilities.
Collapse
|
5
|
Sayseng V, Grondin J, Weber RA, Konofagou E. A comparison between unfocused and focused transmit strategies in cardiac strain imaging. Phys Med Biol 2020; 65:03NT01. [PMID: 31585448 DOI: 10.1088/1361-6560/ab4afd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unfocused ultrasound imaging, particularly coherent compounding with diverging waves, is a commonly employed high-frame rate transmit strategy in cardiac strain imaging. However, the accuracy and precision of diverging wave imaging compared to focused-beam transmit approaches in human subjects is unknown. Three transmit strategies-coherent compounding imaging, composite focused imaging with ECG gating and narrow-beams, and focused imaging with wide-beams-were compared in simulation and in transthoracic imaging of healthy human subjects (n = 7). The focused narrow-beam sequence estimated radial end-systolic cumulative strains of a simulated left ventricular deformation with 26% ± 1.5% and 34% ± 1.5% greater accuracy compared with compounding and wide-beam imaging, respectively. Strain estimation precision in transthoracic imaging was then assessed with the Strain Filter on cumulative end-systolic radial strains. Within the strain values where statistically significant differences in precision (E(SNRe|ε)) were found between transmit strategies, the narrow-beam sequence estimated radial strain 13% ± 0.71% and 34% ± 8.9% more precisely on average compared to compounding or wide-beam imaging, respectively.
Collapse
Affiliation(s)
- Vincent Sayseng
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | | | | | | |
Collapse
|
6
|
Andersen MV, Moore C, Søgaard P, Friedman D, Atwater BD, Arges K, LeFevre M, Struijk JJ, Kisslo J, Schmidt SE, von Ramm OT. Quantitative Parameters of High-Frame-Rate Strain in Patients with Echocardiographically Normal Function. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1197-1207. [PMID: 30773380 DOI: 10.1016/j.ultrasmedbio.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Recently, we developed a high-frame-rate echocardiographic imaging system capable of acquiring images at rates up to 2500 per second. High imaging rates were used to quantify longitudinal strain parameters in patients with echocardiographically normal function. These data can serve as a baseline for comparing strain parameters in disease states. The derived timing data also reveal the propagation of mechanical events in the left ventricle throughout the cardiac cycle. High-frame-rate echocardiographic images were acquired from 17 patients in the apical four-chamber view using Duke University's phased array ultrasound system, T5. B-Mode images were acquired at 500-1000 images per second by employing 16:1 or 32:1 parallel processing in receive, a scan depth ≤14 cm and an 80° field of view with a 3.5-MegaHertZ (MHz), 96-element linear array. The images were analyzed using a speckle tracking algorithm tailored for high-frame-rate echocardiographic images developed at Aalborg and Duke University. Four specific mechanical events were defined using strain curves from six regions along the myocardial contour of the left ventricle. The strain curves measure the local deformation events of the myocardium and are independent of the overall cardiac motion. We observed statistically significant differences in the temporal sequence among different myocardial segments for the first mechanical event described, myocardial tissue shortening onset (p < 0.01). We found that the spatial origin of tissue shortening was located near the middle of the interventricular septum in patients with echocardiographically normal function. The quantitative parameters defined here, based on high-speed strain measurements in patients with echocardiographically normal function, can serve as a means of assessing degree of contractile abnormality in the myocardium and enable the identification of contraction propagation. The relative timing pattern among specific events with respect to the Q wave may become an important new metric in assessing cardiac function and may, in turn, improve diagnosis and prognosis.
Collapse
Affiliation(s)
| | | | - Peter Søgaard
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | | | | | | | - Joseph Kisslo
- Duke University Hospital, Durham, North Carolina, USA
| | | | | |
Collapse
|
7
|
Linte CA, Camp JJ, Rettmann ME, Haemmerich D, Aktas MK, Huang DT, Packer DL, Holmes DR. Lesion modeling, characterization, and visualization for image-guided cardiac ablation therapy monitoring. J Med Imaging (Bellingham) 2018; 5:021218. [PMID: 29531966 PMCID: PMC5831757 DOI: 10.1117/1.jmi.5.2.021218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/02/2018] [Indexed: 11/14/2022] Open
Abstract
In spite of significant efforts to improve image-guided ablation therapy, a large number of patients undergoing ablation therapy to treat cardiac arrhythmic conditions require repeat procedures. The delivery of insufficient thermal dose is a significant contributor to incomplete tissue ablation, in turn leading to the arrhythmia recurrence. Ongoing research efforts aim to better characterize and visualize RF delivery to monitor the induced tissue damage during therapy. Here, we propose a method that entails modeling and visualization of the lesions in real-time. The described image-based ablation model relies on classical heat transfer principles to estimate tissue temperature in response to the ablation parameters, tissue properties, and duration. The ablation lesion quality, geometry, and overall progression are quantified on a voxel-by-voxel basis according to each voxel's cumulative temperature and time exposure. The model was evaluated both numerically under different parameter conditions, as well as experimentally, using ex vivo bovine tissue samples undergoing ex vivo clinically relevant ablation protocols. The studies demonstrated less than 5°C difference between the model-predicted and experimentally measured end-ablation temperatures. The model predicted lesion patterns were within 0.5 to 1 mm from the observed lesion patterns, suggesting sufficiently accurate modeling of the ablation lesions. Lastly, our proposed method enables therapy delivery feedback with no significant workflow latency. This study suggests that the proposed technique provides reasonably accurate and sufficiently fast visualizations of the delivered ablation lesions.
Collapse
Affiliation(s)
- Cristian A. Linte
- Rochester Institute of Technology, Biomedical Engineering and Chester F. Carlson Center for Imaging Science, Rochester, New York, United States
| | - Jon J. Camp
- Mayo Clinic, Biomedical Imaging Resource, Rochester, Minnesota, United States
| | - Maryam E. Rettmann
- Mayo Clinic, Division of Cardiology, Rochester, Minnesota, United States
| | - Dieter Haemmerich
- Medical University of South Carolina, Department of Pediatrics, Charleston, South Carolina, United States
| | - Mehmet K. Aktas
- University of Rochester Medical Center, Division of Cardiology, Rochester, New York, United States
| | - David T. Huang
- University of Rochester Medical Center, Division of Cardiology, Rochester, New York, United States
| | - Douglas L. Packer
- Mayo Clinic, Division of Cardiology, Rochester, Minnesota, United States
| | - David R. Holmes
- Mayo Clinic, Biomedical Imaging Resource, Rochester, Minnesota, United States
| |
Collapse
|