1
|
Liu Y, Saharkhiz N, Hossain MM, Konofagou EE. Optimization of the Tracking Beam Sequence in Harmonic Motion Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:102-116. [PMID: 37917522 PMCID: PMC10871064 DOI: 10.1109/tuffc.2023.3329729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Harmonic motion imaging (HMI) is an ultrasound elastography technique that estimates the viscoelastic properties of tissues by inducing localized oscillatory motion using focused ultrasound (FUS). The resulting displacement, assumed to be inversely proportional to the tissue local stiffness, is estimated using an imaging array based on RF speckle tracking. In conventional HMI, this is accomplished with plane-wave (PW) imaging, which inherently suffers from low lateral resolution. Coherent PW compounding (PWC) leverages spatial and temporal resolution using synthetic focusing in transmit. In this study, we introduced focused imaging with parallel tracking in HMI and compared parallel tracking of various transmit F-numbers (F/2.6, 3, 4, and 5) qualitatively and quantitatively with PW and PWC imaging at various compounded angle ranges (6°, 12°, and 18°). An in silico model of a 56-kPa spherical inclusion (diameter: 3.6 mm) embedded in a 5.3-kPa background and a 5.3-kPa elastic phantom with cylindrical inclusions (Young's moduli: 22-56 kPa, diameters: 2.0-8.6 mm) were imaged to assess different tracking beam sequences. Speckle biasing in displacement estimation associated with parallel tracking was also investigated and concluded to be negligible in HMI. Parallel tracking in receive (Rx) resulted in 2%-7% and 8%-12% increase compared to PW imaging ( ) in HMI contrast and contrast-to-noise ratio in silico and phantoms. Focused imaging with parallel tracking in Rx was concluded to be most robust among PW and PWC imaging for displacement estimation, and its preclinical feasibility was demonstrated in postsurgical human cancerous breast tissue specimens and in vivo murine models of breast cancer.
Collapse
|
2
|
Coppola A, Grasso D, Fontana F, Piacentino F, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Venturini M. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. J Clin Med 2023; 12:7677. [PMID: 38137745 PMCID: PMC10743777 DOI: 10.3390/jcm12247677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer with one of the highest mortality rates in the world. Several studies have been conductedusing preclinical experiments in mice to find new therapeutic strategies. Experimental ultrasound, in expert hands, is a safe, multifaceted, and relatively not-expensive device that helps researchers in several ways. In this systematic review, we propose a summary of the applications of ultrasonography in a preclinical mouse model of PDAC. Eighty-eight studies met our inclusion criteria. The included studies could be divided into seven main topics: ultrasound in pancreatic cancer diagnosis and progression (n: 21); dynamic contrast-enhanced ultrasound (DCE-US) (n: 5); microbubble ultra-sound-mediated drug delivery; focused ultrasound (n: 23); sonodynamic therapy (SDT) (n: 7); harmonic motion elastography (HME) and shear wave elastography (SWE) (n: 6); ultrasound-guided procedures (n: 9). In six cases, the articles fit into two or more sections. In conclusion, ultrasound can be a really useful, eclectic, and ductile tool in different diagnostic areas, not only regarding diagnosis but also in therapy, pharmacological and interventional treatment, and follow-up. All these multiple possibilities of use certainly represent a good starting point for the effective and wide use of murine ultrasonography in the study and comprehensive evaluation of pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Dario Grasso
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy;
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
3
|
Saharkhiz N, Kamimura HAS, Konofagou EE. An Efficient and Multi-Focal Focused Ultrasound Technique for Harmonic Motion Imaging. IEEE Trans Biomed Eng 2023; 70:1150-1161. [PMID: 36191094 PMCID: PMC10067540 DOI: 10.1109/tbme.2022.3211465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Harmonic motion imaging (HMI) is an ultrasound-based elasticity imaging technique that utilizes oscillatory acoustic radiation force to estimate the mechanical properties of tissues, as well as monitor high-intensity focused ultrasound (HIFU) treatment. Conventionally, in HMI, a focused ultrasound (FUS) transducer generates oscillatory tissue displacements, and an imaging transducer acquires channel data for displacement estimation, with each transducer being driven with a separate system. The fixed position of the FUS focal spot requires mechanical translation of the transducers, which can be a time-consuming and challenging procedure. In this study, we developed and characterized a new HMI system with a multi-element FUS transducer with the capability of electronic focal steering of ±5 mm and ±2 mm from the geometric focus in the axial and lateral directions, respectively. A pulse sequence was developed to drive both the FUS and imaging transducers using a single ultrasound data acquisition (DAQ) system. The setup was validated on a tissue-mimicking phantom with embedded inclusions. Integrating beam steering with the mechanical translation of the transducers resulted in a consistent high contrast-to-noise ratio (CNR) for the inclusions with Young's moduli of 22 and 44 kPa within a 5-kPa background while the data acquisition speed is increased by 4.5-5.2-fold compared to the case when only mechanical movements were applied. The feasibility of simultaneous generation of multiple foci and tracking the induced displacements is demonstrated in phantoms for applications where imaging or treatment of a larger region is needed. Moreover, preliminary feasibility is shown in a human subject with a breast tumor, where the mean HMI displacement within the tumor was about 4 times lower than that within perilesional tissues. The proposed HMI system facilitates data acquisition in terms of flexibility and speed and can be potentially used in the clinic for breast cancer imaging and treatment.
Collapse
|
4
|
Lee SA, Konofagou EE. FUS-Net: U-Net-Based FUS Interference Filtering. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:915-924. [PMID: 34784273 PMCID: PMC8976793 DOI: 10.1109/tmi.2021.3128641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Imaging applications tailored towards ultrasound-based treatment, such as high intensity focused ultrasound (FUS), where higher power ultrasound generates a radiation force for ultrasound elasticity imaging or therapeutics/theranostics, are affected by interference from FUS. The artifact becomes more pronounced with intensity and power. To overcome this limitation, we propose FUS-net, a method that incorporates a CNN-based U-net autoencoder trained end-to-end on 'clean' and 'corrupted' RF data in Tensorflow 2.3 for FUS artifact removal. The network learns the representation of RF data and FUS artifacts in latent space so that the output of corrupted RF input is clean RF data. We find that FUS-net perform 15% better than stacked autoencoders (SAE) on evaluated test datasets. B-mode images beamformed from FUS-net RF shows superior speckle quality and better contrast-to-noise (CNR) than both notch-filtered and adaptive least means squares filtered RF data. Furthermore, FUS-net filtered images had lower errors and higher similarity to clean images collected from unseen scans at all pressure levels. Lastly, FUS-net RF can be used with existing cross-correlation speckle-tracking algorithms to generate displacement maps. FUS-net currently outperforms conventional filtering and SAEs for removing high pressure FUS interference from RF data, and hence may be applicable to all FUS-based imaging and therapeutic methods.
Collapse
|
5
|
Huang D, Zhang X, Zhao C, Fu X, Zhang W, Kong W, Zhang B, Zhao Y. Ultrasound‐Responsive Microfluidic Microbubbles for Combination Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Danqing Huang
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
| | - Xiaoxuan Zhang
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Cheng Zhao
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xiao Fu
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
| | - Weijing Zhang
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
| | - Wentao Kong
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
- Institute of Brain Science Nanjing University Nanjing 210002 China
| | - Yuanjin Zhao
- Department of Ultrasound, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210002 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| |
Collapse
|
6
|
Basavarajappa L, Rijal G, Hoyt K. Multifocused Ultrasound Therapy for Controlled Microvascular Permeabilization and Improved Drug Delivery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:961-968. [PMID: 32976098 PMCID: PMC8034541 DOI: 10.1109/tuffc.2020.3026697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Focused ultrasound (FUS) exposure of micro-bubble (MB) contrast agents can transiently increase microvascular permeability allowing anticancer drugs to extravasate into a targeted tumor tissue. Either fixed or mechanically steered in space, most studies to date have used a single element focused transducer to deliver the ultrasound (US) energy. The goal of this study was to investigate various multi-FUS strategies implemented on a programmable US scanner (Vantage 256, Verasonics Inc.) equipped with a linear array for image guidance and a 128-element therapy transducer (HIFUPlex-06, Sonic Concepts). The multi-FUS strategies include multi-FUS with sequential excitation (multi-FUS-SE) and multi-FUS with temporal sequential excitation (multi-FUS-TSE) and were compared to single-FUS and sham treatment. This study was performed using athymic mice implanted with breast cancer cells ( N = 20 ). FUS therapy experiments were performed for 10 min after a solution containing MBs (Definity, Lantheus Medical Imaging Inc.) and near-infrared (NIR, surrogate drug) dye were injected via the tail vein. The fluorescent signal was monitored using an in vivo optical imaging system (Pearl Trilogy, LI-COR) to quantify intratumoral dye accumulation at baseline and again at 0.1, 24, and 48 h after receiving US therapy. Animals were then euthanized for ex vivo dye extraction analysis. At 48 h, fluorescent tracer accumulation within the tumor space for the multi-FUS-TSE therapy group animals was found to be 67.3%, 50.3%, and 36.2% higher when compared to sham, single-FUS, and multi-FUS-SE therapy group measures, respectively. Also, dye extraction and fluorescence measurements from excised tumor tissue found increases of 243.2%, 163.1%, and 68.1% for the multi-FUS-TSE group compared to sham, single-FUS, and multi-FUS-SE therapy group measures, respectively. In summary, experimental results revealed that for a multi-FUS sequence, increased microvascular permeability was considerably influenced by both the spatial and temporal aspects of the applied US therapy.
Collapse
|
7
|
Saharkhiz N, Ha R, Taback B, Li XJ, Weber R, Nabavizadeh A, Lee SA, Hibshoosh H, Gatti V, Kamimura HAS, Konofagou EE. Harmonic motion imaging of human breast masses: an in vivo clinical feasibility. Sci Rep 2020; 10:15254. [PMID: 32943648 PMCID: PMC7498461 DOI: 10.1038/s41598-020-71960-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Non-invasive diagnosis of breast cancer is still challenging due to the low specificity of the imaging modalities that calls for unnecessary biopsies. The diagnostic accuracy can be improved by assessing the breast tissue mechanical properties associated with pathological changes. Harmonic motion imaging (HMI) is an elasticity imaging technique that uses acoustic radiation force to evaluate the localized mechanical properties of the underlying tissue. Herein, we studied the in vivo feasibility of a clinical HMI system to differentiate breast tumors based on their relative HMI displacements, in human subjects. We performed HMI scans in 10 female subjects with breast masses: five benign and five malignant masses. Results revealed that both benign and malignant masses were stiffer than the surrounding tissues. However, malignant tumors underwent lower mean HMI displacement (1.1 ± 0.5 µm) compared to benign tumors (3.6 ± 1.5 µm) and the adjacent non-cancerous tissue (6.4 ± 2.5 µm), which allowed to differentiate between tumor types. Additionally, the excised breast specimens of the same patients (n = 5) were imaged post-surgically, where there was an excellent agreement between the in vivo and ex vivo findings, confirmed with histology. Higher displacement contrast between cancerous and non-cancerous tissue was found ex vivo, potentially due to the lower nonlinearity in the elastic properties of ex vivo tissue. This preliminary study lays the foundation for the potential complementary application of HMI in clinical practice in conjunction with the B-mode to classify suspicious breast masses.
Collapse
Affiliation(s)
- Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Ha
- Department of Radiology, New-York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Bret Taback
- Department of Surgery, New-York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Xiaoyue Judy Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rachel Weber
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alireza Nabavizadeh
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Stephen A Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, New-York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Vittorio Gatti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Department of Radiology, New-York-Presbyterian/Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|